

TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World+

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Hellerstein,

Wei Hong*, Sailesh Krishnamurthy, Sam Madden, Vijayshankar Raman**, Fred Reiss, and Mehul Shah

University of California, Berkeley
*Intel Berkeley Laboratory

 **IBM Almaden Research Center
http://telegraph.cs.berkeley.edu

Abstract

Increasingly pervasive networks are leading towards a
world where data is constantly in motion. In such a
world, conventional techniques for query processing,
which were developed under the assumption of a far more
static and predictable computational environment, will
not be sufficient. Instead, query processors based on
adaptive dataflow will be necessary. The Telegraph
project has developed a suite of novel technologies for
continuously adaptive query processing. The next
generation Telegraph system, called TelegraphCQ, is
focused on meeting the challenges that arise in handling
large streams of continuous queries over high-volume,
highly-variable data streams. In this paper, we describe
the system architecture and its underlying technology,
and report on our ongoing implementation effort, which
leverages the PostgreSQL open source code base. We
also discuss open issues and our research agenda.

1 INTRODUCTION
The deployment of pervasive communications

infrastructure ranging from short-range wireless ad hoc
sensor networks to globe-spanning intra- and internets has
enabled new applications that process, analyze, and react
to disparate data in a near real-time manner. Examples
include: event-based business processing, profile-based
data dissemination, and query processing over streaming
data sources such as network monitors, sensors, and
mobile devices. Such applications present challenges that
cannot be met by existing database and data management
technology. These challenges stem from their large scale,

their deeply-networked nature, the unpredictability of the
environment, and the need for close interaction with users.

In emerging networked environments, data is the
commodity of interest, and like any commodity, its value
is realized only when it is moved to where it is needed. In
contrast to traditional data processing environments where
data can be assumed to reside statically in known
locations, data in these new applications is constantly
moving and changing. This fluidity leads us to view data
management for these emerging applications as dataflow
processing that must monitor and react to streams of
information as they pass through the network.

1.1 Data Movement Implies Adaptivity
Traditional database query processing approaches are

inappropriate as a substrate on which to build dataflow
processing support for a number of reasons:

Streaming Data – In contrast to traditional database
systems where the query processor can operate by
“pulling” data from the disk (say, using an iterator model),
our target applications involve streaming data where the
data is continually “pushed” to the query processor. This
subtle difference has dramatic implications for the design
of the query processor. Most importantly, while a
traditional query processor can orchestrate the movement
and handling of data, a query processor for data streams
must instead react to arriving data. The arrival rate of the
data streams may be extremely high or bursty, thus placing
constraints on processing time or memory usage; typically,
data must be processed on-the-fly as it arrives and can be
spooled to disk only in the background.

Furthermore, while a traditional processor can rely on
detailed statistics about data stored by that system, reliable
statistics for streaming data are not readily available.
Finally, it is important to note that in many data streams,
time and/or ordering are inherently important, thus queries
over streaming data are likely to be significantly different
than queries over traditional data.

Continuous Queries (CQ) – Dataflow processing
applications often have a monitoring or filtering aspect in
which queries are continuously active. As new data
arrives at the query processor, it is routed through the set
of active queries. Such continuous query processing turns

+ This work was funded in part by the NSF under grants IIS-0086057,
SI-0122599, and EIA-0207603, by the IBM Faculty Partnership Award
program, and by research funds from Intel, Microsoft, and the UC
MICRO program.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 2003 CIDR Conference

traditional database system architecture on its head. In a
traditional system, the arrival of queries initiates access to
a stored collection of data, while here, the arrival of data
initiates access to a stored collection of queries. As would
be expected, this inversion dictates a very different
approach to query processor architecture.

Another important aspect of continuous queries is that
the streams over which they are executed can be
effectively infinite. Queries over infinite streams require
different query semantics, non-blocking query operators,
and new support for fault tolerance. Operators must
continuously return incremental results and may need to be
defined to process subsets (or windows) of the input.
Furthermore, continuous queries can be extremely long-
lived, so they are susceptible to changes over time to
performance and load, data arrival rates, or data
characteristics. Care must be taken to reduce the amount
of state such queries accumulate, and this state must be
preserved and possibly migrated for fault tolerance and
load balancing.

Shared Processing - The combination of long-
running continuous queries and on-the-fly processing of
data streams necessitates new mechanisms for sharing
query processing work. In order to avoid blocking and
having to interrupt the dataflow, data should be processed
simultaneously by all queries that require it as it flows
through the system. Processing each query individually
can be slow and wasteful of resources, as the queries are
likely to have some commonality. Thus, shared processing
must be a fundamental capability of the system.
Furthermore, this shared processing must be made robust
to the addition of new queries and the removal of old ones
over time, so on-the-fly adaptivity must be an essential
component of any solution for shared processing of
continuous queries.

Other Sources of Unpredictability – Finally, there
are a number of other features of our target applications
that render existing static query processing techniques
inappropriate. First, as mentioned above, deeply
networked environments can be highly volatile due to the
number of communications links and disparate systems
and devices involved, data loss (particularly for sensor
networks), and uncertainty due to the unavailability of load
information, statistics, and cost estimates about remote
systems or remotely stored or sensed data. Second,
dataflow processing is often part of a larger control loop in
which query results may be used to affect the environment
or redirect further query processing or data production. In
many cases, users will be directly interacting with the
system while results stream out. Users may choose to
modify their queries on the basis of previously returned
information or other factors. The system must be able to
gracefully adjust in response to user needs.

For all of the reasons outlined above, we have
developed a new architecture for shared, continuous,
dataflow processing. Our approach is distinguished from
other projects on data stream query processing (e.g.,

[CDTW00,CCCC+02, BBDM+02]) by our emphasis on
adaptability. That is, we have designed the data
management components of our system to be able to
quickly evolve and adjust to radical changes in data
availability and content, systems and network
characteristics, and user needs and context. These
considerations have served as the guiding principles
underlying the design of TelegraphCQ.

1.2 TelegraphCQ - Background
The Telegraph project at UC Berkeley began in early

2000 with the goal of developing an Adaptive Dataflow
Architecture for supporting a wide variety of data-
intensive, networked applications. The Telegraph concept
grew out of earlier projects on adaptive relational query
processing aimed at building systems that could adjust
their processing on the fly, in response to changes in user
needs [HACO+99] or to intermittent delays in accessing
data across wide-area networks [UFA98].

The basic technologies underlying Telegraph were
developed to provide adaptivity to individual dataflow
graphs. The first version of Telegraph [SMFH01] was
deployed to support Federated Facts and Figures (FFF), a
query system for deep-web data. FFF made no attempt to
exploit commonality among concurrently active queries.
Instead, it focused on a single-user scenario, providing
efficient early “partial” results to queries with interactive
user control [RH02].

Recently, we have built two prototypes extending
Telegraph to support shared processing over streams,
namely CACQ [MSHR02], and PSoup [CF02]. These
prototypes demonstrated substantial advantages of our
adaptive framework for shared processing over streams
and showed how the adaptivity framework could be
extended to incorporate such sharing. Both systems,
however, had significant limitations. In particular, these
systems: 1) restricted their processing to data that could fit
in memory, 2) did not investigate scheduling and resource
management issues for queries with little or no overlap, 3)
did not explicitly deal with the notion of Quality of Service
(QoS) for adapting to resource limitations, and 4) did not
explore opportunities for varying the degree of adaptivity
to tradeoff flexibility and overhead.

Building on these initial prototypes, we have
embarked on a complete redesign and reimplementation of
our system, with a focus on support for shared, continuous
query processing over query and data streams. We refer to
this system as TelegraphCQ to distinguish it from the
Telegraph project’s broader focus on adaptive dataflow in
general, and to emphasize the challenges we are addressing
in our new implementation.

In the remainder of this paper we describe our
ongoing design of TelegraphCQ, focusing on how it
addresses the challenges outlined above. We begin by
reviewing the basic adaptive mechanisms in Telegraph.

2 ADAPTIVE BUILDING BLOCKS
The main components of Telegraph are shown in

Figure 1. Telegraph consists of an extensible set of
composable dataflow modules or operators that produce
and consume records in a manner analogous to the
operators used in traditional database query engines, or the
modules used in composable network routers [KMCJ+00].
The modules can be composed into multi-step dataflows,
exchanging records via an API called Fjords [MF02] that
can support communication via either “push”
(asynchronous) or “pull” (synchronous) modalities.
Dataflows are initiated by clients either via an ad hoc
query language (a basic version of SQL), or via a scripting
language for representing dataflow graphs explicitly.
Telegraph maintains a metadata catalog of data ingress
“wrappers” or “gateways” that provide access to a variety
of data sources including remote web and peer-to-peer
sources on the Internet, local caches and files, and live
sensor networks. Client communication to Telegraph can
be done via TCP/IP sockets (e.g. from an applet running in
a remote browser), or via local command-line interfaces.

2.1 Module Types
As shown in Figure 1, Telegraph contains three types

of modules:
Ingress and Caching – These modules are

responsible for interfacing with external data sources.
Most Ingress modules are fairly traditional wrappers, such
as an HTML/XML screen scraper (called “TeSS”, the
Telegraph Screen Scraper), a proxy for fetching data from
popular peer-to-peer networks (called “TeleNap”), and a
local file reader; these modules are akin to read-only
access methods in a relational database, but reach out to
remote data sources rather than local disks or indexes.
Such modules may also cache data locally to hide network
delays. In addition more sophisticated Ingress modules
can be built that can also send messages back to the
network. For example a sensor proxy may send control
messages to adjust the sample rate of a sensor network
based on the queries that are currently being processed
[MF02]. Similarly, the TeSS module is able to pass
bindings into remote websites to perform lookups.

Query Processing – In Telegraph, query processing is
performed by routing tuples through query modules.
These modules are pipelined, non-blocking versions of
standard relational operators such as joins, selections,
projections, grouping and aggregation, and duplicate
elimination. In addition, Telegraph uses a special type of
module known as a State Module (SteM) [RDH02].
SteMs are described in Section 2.2.

Adaptive Routing - Telegraph does not rely upon a
traditional query plan, but instead, constructs a query plan
that contains adaptive routing modules, which are able to
“re-optimize” the plan on a continuous basis while a query
is running. Eddies are modules that adaptively decide how
to route data to other query operators on a tuple-by-tuple

basis [AH00], choosing orderings among commutative
modules. Juggle performs online reordering for
prioritizing records by content [RRH99]. Flux routes
tuples among machines in a cluster to support parallelism
with load-balancing and fault-tolerance [SCHF03].
Architecturally, these modules are indistinguishable from
the other more traditional modules: they simply consume
and produce records via the usual Fjords API. However,
these modules can serve all the roles traditionally handled
by an offline query optimizer: ordering of operations,
choice of access and query modules, and
partitioning/replication of dataflows across multiple
machines. Moreover, these modules can reconsider and
revise these decisions while a query is in flight.

2.2 Adaptive Processing W/Eddies & SteMs
Of particular relevance to the development of

TelegraphCQ is the flexibility that is obtained by
combining the Eddy adaptive tuple routing module with
State Modules (SteMs). The role of an Eddy is to
continuously route tuples among a set of other modules
according to a routing policy. Eddies are intended to
support a partially or completely commutative set of
modules, whose inputs and outputs are connected to the
Eddy. This topology allows the Eddy to intercept tuples
that flow into and out of these modules, observing the
module behavior and choosing the order that tuples take
through the modules. When one of the modules processes
a tuple t, it can generate other tuples (e.g., by
concatenating the input tuple with other tuples) and send
them back to the Eddy for further routing. A module can
also optionally return (or bounce back) t to the Eddy if t
requires additional processing. A tuple is sent to the
Eddy’s output if all the modules connected to the Eddy
have successfully handled it. The Eddy shuts down its
connected modules when the end of all of its input streams
(or base tables) has been reached, and each module has
finished processing all of the tuples sent to it.

In order to enable tuples to be routed individually,
each tuple must have some additional state with which it is
associated. The exact structure and location of this state

Figure 1 - Telegraph Architecture

R e que st Pars ing, M e tadata

 SQ L Exp licit Dataflows Catalog

M
od

ul
es

Query Proces s ing

A dapti ve R outing

Ingres s an d C aching

Jo in Se lect SteM Pro ject Grou p A ggreg ation
Sort Trans itiv eC los ure Dup Elim

Eddy F LuX Jugg le

File Read er Sens o r Pro xy P 2P Pro xy
TeSS (s creen s craper)

In
te

r-
M

od
ul

e
C

om
m

 A
PI

“F

jo
rd

s”

depends on the routing policy and implementation, but at a
minimum, for an Eddy representing a single query, the
state must indicate the set of connected modules
successfully visited by the tuple. Note that this state may
be attached to each tuple as in [AH00], or similar tuples
may be logically batched together and associated with
common state information stored by the Eddy.

A SteM is a temporary repository of tuples, essentially
corresponding to half of a traditional join operator. It
stores homogeneous tuples (i.e., tuples spanning the same
set of tables) formed during query processing and supports
insert (build), search (probe), and optionally delete
(eviction) operations. Two kinds of tuples can be routed
to a SteM. When a tuple t ∈ T (a build tuple) is routed to
SteMT , t is added to the set of tuples in SteMT. When a
tuple p ∉ T (a probe tuple) is routed to SteMT , SteMT
returns concatenated matches for it to the Eddy. These
concatenated matches are the tuples in {p} join SteMT that
satisfy all query predicates that can be evaluated on the
columns in p and T.

In order to speed processing, SteMs can be augmented
with indexes. For example, Figure 2 shows an example of
using an Eddy and two SteMs to implement a symmetric
hash join between two relations (S and T). In the join
shown in Figure 2, a hash index would be built on the join
attributes in each SteM. When an S tuple arrives, it is first
sent as a build tuple to SteMS and then sent as a probe
tuple to SteMT. ST matches produced from either SteM are
routed to the output. This routing, combined with hash
indexes on the two SteMs implements an adaptive
symmetric hash join. This approach can be naturally
extended to provide N-way symmetric joins.

As a different example of the use of SteMs, consider a
join in which table S is joined with a remote index on table
T (e.g. T is a web lookup form wrapped by TeSS). The
best way to implement index joins with remote sources is
in an asynchronous fashion as described in [GW00],
requiring a SteM on S (a rendezvous buffer) to hold S
tuples pending matches from the index. In order to
minimize latency, a SteM on T should also be built, as a
cache of previous expensive T lookups, as in [HN96]. This
dataflow looks almost identical to Figure 2, except that S
probes are also routed from the Eddy directly to an index
access method on T.

The two plans described above can be combined into a
single nearly identical plan that contains one Eddy, two
SteMs, and both access methods on T. In that case, the
Eddy can essentially run both query plans at the same time,
by routing the tuples in different ways but sharing the
work of building the SteMs. In some sense the Eddy is
doing online competitive optimization in the spirit of
[Anto93], but (a) it considers both the choice of access
methods and join algorithms, (b) it can change its mind
multiple times during the run of the query, and (c) the
tuples accessed by one plan are reused by the other, so
there is minimal wasted effort. Described differently, the
Eddy and SteMs dynamically design a hybrid join
algorithm. Eddies and SteMs can also dynamically control
the other decisions in query optimization, including
module ordering, and choice of query spanning tree
(choosing which pairs of relations to join). The benefits of
query processing with Eddies and Stems are addressed in
more detail in Raman et al. [RDH02], which also includes
experiments showing the performance benefits of join
hybridization.

It is important to note that any number and
combination of modules can be connected to an Eddy –
including of course, other Eddies. Each individual Eddy
provides a scope for adaptivity; modules at the input or
output of an Eddy are not considered in the Eddy’s
adaptive decision-making, and thus, do not contribute to
the overhead thereof.

2.3 Fjords – InterModule Communication
The glue that binds the various modules together to

form a query plan is an inter-module communications API
that we call Fjords. The key advantage of Fjords is that
they allow query plans to use a mixture of push and pull
connections between modules, thereby being able to
execute query plans over any combination of streaming
and static data sources. The Fjord API is designed so that
the modules themselves can be written in a manner that is
agnostic as to whether their inputs and outputs are all
pushed, all pulled, or some combination of the two.

The insight behind Fjords is that in interactive,
adaptive, and streaming systems, the traditional iterator
model breaks down because the query processor cannot
afford to block waiting for long running modules to
complete, for slow web pages to return results, or for
individual sensors, which may have run out of power or
temporarily disconnected.

One way to deal with such problems is to interpose
“Exchange” modules [Graf93] between the producers and
consumers in a query plan. With Exchange, a producer
running in its own thread (or on another machine) delivers
results to the Exchange module, which queues them and
synchronously delivers them to the consumer when they
are needed. Using Exchange, however, the consumer is
still forced to block if no data is available, due to the
iterator model. Such blocking can limit adaptivity.

Figure 2 - Eddy and SteMs

Instead, Fjords allow pairs of modules to be connected
by various types of queues. For example, a pull-queue is
implemented using a blocking dequeue on the consumer
side and a blocking enqueue on the producer side. A push-
queue is implemented using non-blocking enqueue and
dequeue; control is returned to the consumer when the
queue is empty. The non-blocking dequeue allows the
consumer to pursue other computation or yield the
processor when no data is available. Of course, if desired,
Fjords can provide Exchange semantics using a blocking
dequeue and a non-blocking enqueue.

2.4 Flux: Scaling Up Dataflow Processing
Scalability is a key concern for dataflow processing

systems. The traditional approach for scaling a query is to
horizontally partition its constituent operators across a
shared nothing cluster and use dataflow processing to
execute it [DG92]. In volatile environments, such as the
ones for which Telegraph is intended, the optimal
partitioning of the internal state and input streams of a
dataflow’s constituent operators is likely to change over
time. Thus, to execute efficiently, operators must
periodically adjust their partitioning midstream, while still
executing. For operators with large, ever-changing internal
state, online repartitioning is especially difficult and costly.
Moreover, in a shared-nothing environment, machines are
likely to experience faults causing portions of continually
executing dataflows to lose accumulated operator state and
in-flight data. To deal with these volatilities, we introduce
a module called Flux1.

Flux is a generalization of the Exchange module
[Graf93] and like an Exchange, is an opaque dataflow
module interposed between a producer-consumer operator
pair in a pipelined, partitioned dataflow. In addition to the
data partitioning and routing functions of the Exchange,
Flux provides two additional features: load balancing and
fault tolerance. Load balancing is provided via online
repartitioning of the input stream and the corresponding
internal state of operators on the consumer side. The Flux
state movement protocol employs buffering and reordering
mechanisms to smoothly repartition operator state across
machines with minimal impact to ongoing processing.

Flux provides fault-tolerance for dataflows by
leveraging these state movement mechanisms to replicate
an operator's internal state and in-flight data. For critical
dataflows that require high-availability, Flux provides a
loosely coupled process-pair-like mechanism for quick
failover. On failure, Flux automatically recovers lost in-
flight data and operator state on the remaining non-faulty
machines and continues processing without human
intervention. The online repartitioning mechanisms then
take over to provide efficient rebalancing of execution.

In addition, Flux can be parameterized to provide
varying degrees of replication at different levels in a
dataflow and on per-partition basis for modules partitioned

1 Flux: Fault-tolerant, Load-balancing eXchange

across a cluster. This flexibility allows unneeded reliability
to be traded for improved performance. In essence, Flux
exposes a reliability-based quality-of-service “knob” for
dataflows. By inserting Flux at appropriate points in a
dataflow, a designer can build a dataflow that degrades in a
controlled fashion in the face of resource imbalances and
machine faults across a shared-nothing platform.

3 INITIAL CQ APPROACHES
Having presented the philosophy and core

mechanisms of the original Telegraph system, we now
describe our early work on extending them to support
shared, continuous query processing. There are two main
components of this work: CACQ, an extension of the Eddy
and SteMs mechanisms to support multiple continuous
queries [MSHR02] and PSoup, a further extension to
CACQ that supports access to previously-arrived data and
intermittent connectivity [CF02]. Both of these schemes
were implemented as relatively natural extensions to the
initial Telegraph implementation described in Section 2.

3.1 CACQ
 CACQ was the first continuous query engine to

exploit the adaptive query processing framework of
Telegraph. The key innovation in CACQ is the
modification of Eddies to execute multiple queries
simultaneously. This is accomplished by essentially having
the Eddy execute a single “super”-query corresponding to
the disjunction of all the individual queries posed by the
clients of the system. Extra state, called tuple lineage, is
maintained with each tuple as it passes through the CACQ
process, to help determine the clients to which the output
of the disjunctive CACQ query should be transmitted.

Another key feature of CACQ is its use of grouped
filters to optimize selections in the shared execution of the
individual queries. A grouped filter is an index for single-
variable boolean factors over the same attribute. When a
new query is inserted into the system, it is decomposed
into its individual boolean factors. The single-variable
boolean factors are then inserted into appropriate grouped
filters. Multi-variable boolean factors are inserted into
SteMs. The Eddy subsequently routes a tuple that enters
the system through all the grouped filters and SteMs that
are interested in it.

The details of the tuple lineage, the grouped filters and
the execution of joins using SteMs is described in Madden
et al. [MSHR02]. Performance experiments reported in
that paper indicate that due to its adaptive nature, the
CACQ system is able to match or significantly exceed the
performance of existing static continuous query systems
under a variety of workloads.

3.2 PSoup
PSoup extends the mechanisms developed in CACQ

in two main ways: 1) it allows queries to access historical
data and 2) it adds support for disconnected operation −

users can register queries with the system and return
intermittently to retrieve the latest answers.

The key innovation in PSoup is that it treats data and
queries symmetrically, thereby allowing new queries to be
applied to old data and new data to be applied to old
queries. It does this by indexing queries into a query SteM,
which can be thought of as a generalization of the notion
of a grouped filter. PSoup also supports intermittent
connectivity by separating the computation of query results
from the delivery of those results. PSoup continuously
computes the answers to all active queries, effectively
materializing the results until they are specifically
requested.

As shown in Figure 3, the essential idea behind
PSoup’s execution model for such queries is to treat query
processing as a symmetric join between data and queries.
When a client first registers a query, The SELECT-FROM-
Where clause of the query is extracted and inserted into a
Query SteM, and is then applied to previously arrived data
stored in Data SteMs. This application of “new” queries to
“old” data is how PSoup executes queries over historical
data. Similarly, when a new data element arrives, it is
inserted into the appropriate Data SteM, and is then
applied to previously specified queries stored in the Query
SteM. This act of applying “new” data to “old” queries is
how PSoup supports continuous queries.

PSoup continually runs the data/query join,
materializing the results in a special Results Structure.
Queries in PSoup contain a time-based window
specification. When a previously registered query is
invoked, the window is imposed on the Results Structure
to retrieve the current results. The materialization of results
is the key to supporting disconnected operation and also
enables efficient support for set-based queries. The
performance study presented in [CF02] shows the benefits
of the PSoup materialization strategy.

4 TELEGRAPHCQ
The Telegraph implementation and extensions that we

have built to date have enabled us to explore novel
implementations for adaptive CQ processing mechanisms,
and showed significant advantages over more traditional
approaches in a range of application scenarios. However,
as discussed in Section 1.3, these prototypes had a number
of limitations that we are addressing in the development of
the TelegraphCQ system. Specifically, we are designing
TelegraphCQ with a focus on the following issues: 1)
scheduling and resource management for groups of
queries, 2) support for out-of-core data, 3) variable
adaptivity, 4) dynamic QoS support, and 5) parallel
cluster-based processing and distribution.

In this section we first present an overview of the
window-based query semantics to be supported by
TelegraphCQ. We then describe the design of the system,
focusing on how we are leveraging the PostgreSQL code
base. Finally, we discuss some of the open issues we are
currently addressing in the design.

4.1 Window Semantics in TelegraphCQ
TelegraphCQ supports continuous queries over a

combination of tables and data streams. To deal with data
streams whose length is unbounded, certain operations,
such as joins, can only be run over finite windows on these
streams. In order to support a variety of query types,
TelegraphCQ supports rich windowing schemes over both
the portion of the stream that has already arrived, as well
as those portions that will arrive in the future.
TelegraphCQ also provides flexible mechanisms for
delivering the query results generated over these windows.
The engine allows the results of the execution of the query
over consecutive windows to either be pushed out to the
user as in CACQ, or to be pulled by the user upon demand,
as in PSoup. In this section we describe the windowing
functionality provided by TelegraphCQ. We also briefly
discuss the impact of this functionality on our design.

4.1.1 Windows for Input Streams
Two popular windowing schemes in the context of

stream query processing are landmark and sliding
windows [GKS01]. For landmark queries, the older end of
the window is fixed, while the newer end of the window
moves forward with the arrival of new tuples in the stream.
In contrast, for sliding window queries, both the ends
move forward in unison with the arrival of new tuples. The
semantics offered by landmark and sliding windows,
however, only cover a small fraction of the interesting
applications over data streams.

For example, landmark and sliding windows do not
capture the semantics of a query executed upon the arrival
of every n tuples, nor can they describe windows occur in
the past. As another example, consider a browsing system
where the user might want to query historical portions of
the stream using windows that move backwards starting
from the present time. Traditional landmark and sliding
windows cannot be used in such applications.

The semantics of queries in TelegraphCQ are as
follows. For every instant in time, a window on a stream
defines a set of tuples over which the query is to be
executed. Since each execution of the query produces a set,
the output of a query is presented to the end-user as a
sequence of sets, each set being associated with an instant

Figure 3 - PSoup

Streaming
Data

Sources
PSoup

Data SteM Query SteM

DATA QUERIES

BUILD BU
ILD

PROBE

Symmetric Join

PROBE

Clients

in time. TelegraphCQ allows multiple simultaneous
notions of time, such as logical sequence numbers or
physical time. In order to accommodate loosely
synchronized distributed data sources, we treat time as a
partial order, rather than as a complete order. We have
designed an algebra that extends the standard relational
operators to operate on streams and to allow a stream
defined using one notion of time to be transformed into a
stream using another.

We support much more general windows than the
landmark and sliding windows described above. This is
done using a for-loop construct to declare the sequence of
windows over which the user desires the answers to the
query: a variable "t" moves over the timeline as the for-
loop iterates, and the left and right ends (inclusive) of each
window in the sequence, and the stopping condition for the
query can be defined with respect to this variable "t".

 The for-loop contains a WindowIs statement for each
stream in the query: an input without a corresponding
WindowIs statement is assumed to be a static table by
default. There is one for-loop for every group of streams
that exhibit the same window transition behavior2. Note
that our notion of a for-loop is intended as a powerful, low-
level mechanism rather than a user-level query language
construct. The syntax of the for-loop is as follows:

for(t=initial_value; continue_condition(t); change(t)){

WindowIs(Stream A, left_end(t), right_end(t));
WindowIs(Stream B, left_end(t), right_end(t));
…

}

We now demonstrate the functionality of the window
mechanism using several examples. All the queries in
these examples use the following schema for the daily
closing prices of stocks:

ClosingStockPrices(

long timestamp;
char(4) stockSymbol;
float closingPrice;)

We assume that the stream starts with logical
timestamp 1. There is one entry for every trading day for
every stock symbol. For simplicity, we assume that
Microsoft (MSFT) has been trading since the beginning of
the stream.

1. Snapshot query: These queries execute exactly
once over one window. Example: “Select the closing
prices for MSFT on the first five days of trading”.

SELECT closingPrice, timestamp
FROM ClosingStockPrices
WHERE stockSymbol = ‘MSFT’
for (; t==0; t = -1){
 WindowIs(ClosingStockPrices, 1, 5);
}

2 The transition behavior of windows is determined by the units

used to define the windows, and the increment statement and
continuation condition in the for-loop.

2. Landmark query: The input windows of these
queries have a fixed beginning point in the timeline, and a
forward moving endpoint. Example: “Select all the days
after the hundredth trading day, on which the closing price
of MSFT has been greater than $50. Keep this query
standing in the system for a thousand trading days”.

SELECT closingPrice, timestamp
FROM ClosingStockPrices
WHERE stockSymbol = ‘MSFT’ and
 closingPrice > 50.00
for (t = 101; t <= 1000; t++){
 WindowIs(ClosingStockPrices, 101, t);
}

3. Sliding query: The input windows of these queries
have forward moving beginning and end points. Example:
“On every fifth trading day starting today, calculate the
average closing price of MSFT for the five most recent
trading days. Keep the query standing for fifty trading
days”. (note: ST = the start time of the query.)

Select AVG(closingPrice)
From ClosingStockPrices
Where stockSymbol = ‘MSFT’
for (t = STSTSTST; t < STSTSTST + 50; t +=5){
 WindowIs(ClosingStockPrices, t - 4, t);
}

Notice that this window hops, rather than moving
smoothly over the timeline. Windows can also be defined
to move on-demand, or in the reverse-timestamp direction
by appropriately setting the increment statement for "t" in
the for-loop.

4. Temporal Band-Join: These queries join tuples in
one stream with tuples in another based on timestamp.
Example: “For the five most recent trading days starting
today, select all stocks that closed higher than MSFT on a
given day. Keep the query standing for twenty trading
days”.

Select c2.*
FROM ClosingStockPrices as c1,
 ClosingStockPrices as c2
WHERE c1.stockSymbol = ‘MSFT’ and
 c2.stockSymbol!= ‘MSFT’ and
 c2.closingPrice > c1.closingPrice and
 c2.timestamp = c1.timestamp
for (t = ST; t < ST +20 ; t++){
 WindowIs(c1, t - 4, t);
 WindowIs(c2, t - 4, t);
}

4.1.2 Effect of Window Semantics on System Design
The different types of windows can impose

significantly different requirements on the design of the
query processor and its underlying storage manager. One
fundamental issue has to do with the use of logical (i.e.,
tuple sequence number) vs. physical (i.e., wall clock)
timestamps. If the former is used, then the memory
requirements of a window can be known a priori, while in

the latter case, memory requirements will depend on
fluctuations in the data arrival rate.

Another issue related to memory requirements has to
do with the type of window used in a query. Consider the
execution of a MAX aggregate over a stream. For a
landmark window, it is possible to compute the answer
iteratively by simply comparing the current maximum to
the newest element as the window expands. On the other
hand, for a sliding window, computing the maximum
requires the maintenance of the entire window.

Finally, the direction of movement, and the “hop” size
of the windows (the distance between consecutive
windows defined by the for loop) also have significant
impact on query execution. For instance, if the hop size of
the window exceeds the size of the window itself, then
some portions of the stream are never involved in the
processing of the query.

4.2 TelegraphCQ Design Overview
Having presented the notion of windowed queries that

TelegraphCQ supports, we can now describe our ongoing
implementation. In this section we outline the software
architecture of TelegraphCQ focusing first on how we are
adapting the architecture of PostgreSQL to enable shared
processing of continuous queries over streaming sources.
We then describe the new components that comprise
TelegraphCQ.

4.2.1 Approach
After considerable analysis (and some hand-wringing)

we decided throw out our existing Java-based prototypes
and to implement a completely new system using C/C++.
While there are many considerations in choosing between
Java and C/C++ for a systems development project, in this
case, the over-riding factor was our decision to heavily
leverage the open source PostgreSQL code base. Although
TelegraphCQ is quite different from a traditional query
processor, there is a fair amount of code surrounding the
main query processing modules that we can profitably
reuse.

Figure 4 shows the basic process structure of
PostgreSQL. PostgreSQL uses a process-per-connection
model. Data structures shared by multiple processes, such
as the buffer pool, latches, etc. are located in shared
memory. A Postmaster forks new server processes in
response to new client connections. Within a server
process, a Listener is responsible for accepting requests on
a connection and returning data to the client. When a new
query arrives it is parsed, optimized, and compiled into an
access plan that is then processed by the query Executor.

The components we can use with only minimal
change in TelegraphCQ are shaded in dark gray in Figure
4. These include: the Postmaster, Listener, System
Catalog, Query Parser and Optimizer. Components shown
in light gray (the Executor, Buffer Manager and Access
Methods) are pieces we expect to leverage but only with
significant changes. In addition, by adopting the front-end

components of PostgreSQL we also get to access to
important client-side call-level interface implementations
(not shown in the figure) such as ODBC and JDBC.

Our chief challenge in using PostgreSQL is supporting
the TelegraphCQ features it was not designed for:
streaming data, continuous queries, shared processing and
adaptivity. Another major issue is that PostgreSQL’s
process-per-connection model implementation is not
thread-safe, while for performance reasons, multi-
threading is an important feature of the TelegraphCQ
design. We are thus taking a pragmatic approach to the
implementation: we use the existing process model when
we reuse old code and venture into multi-threading only
with exclusively new code.

Figure 5 shows how we are adding the TelegraphCQ
functionality to the PostgreSQL code base. The figure
shows (as ovals) the three processes that comprise the
TelegraphCQ server. These processes are connected using
a shared memory infrastructure. The rightmost process in
the picture is the “FrontEnd”, which contains the Listener,
Catalog, Parser and Optimizer. The actual query
processing takes place in a separate process called the
“Executor”. Finally, a “Wrapper” process is used to host
the data ingress operators.

As in PostgreSQL, the Postmaster listens on a well-
known port; it and forks a FrontEnd process for each fresh
connection it receives. Since each connection can have
multiple open cursors, we use a proxy service (shown on
the right of Figure 5) to collect individual requests from
clients and instantiate multiple cursors using a single
connection. If necessary, multiple proxies can be used to
overcome limitations on the number of permitted open
cursors for any connection.

The listener accepts multiple continuous queries and
adds them dynamically to the running executor. When a
query is received, the server parses, analyzes, and

Figure 4 - Architecture of PostgreSQL

Client

Access
PlanExecutor

Listener

Optimizer

Parser

Queries

Results

Buffer
Pool

PostgreSQL
Server

Buffer
Manager

Disk

Postmaster

fork

New
Connection

CatalogAccess
Methods

optimizes it into an adaptive plan, that is, a plan the
includes the adaptive operators described in Section 2. The
plans are then placed in the query plan queue (QPQueue),
in a shared memory segment, for the executor. The
executor continually picks up fresh queries from the shared
memory segment. These plans are dynamically folded into
the running queries in the executor. Query results are
placed in client-specific output queues, which are also
located in shared memory segments. The listener picks up
results from the output queues and sends them to the client
proxy for distribution to the clients.

4.2.2 The TelegraphCQ Executor
A key challenge in designing the new executor is the

mapping of our shared continuous processing model onto a
thread structure that will allow for adaptivity while
incurring minimal overhead. In theory, a single Eddy
running in a single thread could be used to run all the
queries in the system (as in CACQ and PSoup), including
those involving totally unrelated streams. Such an
approach has a number of problems, however, as the Eddy
mechanism was not intended to be a generalized scheduler.
For example, it is not tailored to enforce policies for
resource management across disjoint classes of queries.
We expect to support large numbers of active, standing
queries, so we need to avoid the overhead associated with
making each query a separate thread yet we need multiple
threads in order to exploit SMP and cluster parallelism.

As a result, the TelegraphCQ executor is being
developed using a multi-threaded approach in which the
threads provide execution context for multiple queries
encoded using a non-preemptive, state machine-based
programming model. We use the term “Execution Object”
(EO) to describe the threads of control in the TelegraphCQ
executor. Each EO is mapped to a single system thread.
(Note that Figure 5 shows a system with a single EO
instantiated.) An EO consists of a scheduler, one or more
event queues, and a set of non-preemptive Dispatch Units
(DUs) that can be executed based on some scheduling
policy. Unlike EOs, which are visible to the operating
system, DUs are merely abstractions that represent entities
that perform “work” in the system. DUs are responsible for
maintaining their own state. DUs are non-preemptive, but
they follow the Fjords model described in Section 2.3,
which gives us control over their scheduling.

A DU can be run in one of the following modes:

1. A single “traditional” PostgreSQL query plan

with the standard query executor.
2. A single-Eddy query plan with Fjord-style

operators.
3. A shared “continuous query” mode with an Eddy

and Fjord-style operators.

Like PostgreSQL, TelegraphCQ uses surrogate objects

to represent tuples during query processing. While running
“traditional” plans TelegraphCQ uses the PostgreSQL

format for surrogates. While running in the context of an
Eddy, however, due to the continuously changing join
order, the intermediate tuples can be in a multitude of
formats. In addition, they must carry extra information
such as bitmaps for CACQ. Thus, an enhanced surrogate
object format is used to represent intermediate tuples in the
Eddy-based modes.

A key design decision in the executor is how to map
queries onto the model of pre-emptively scheduled EO
system threads containing non-preemptive DUs. The goal
is to separate queries into classes that have significant
potential for sharing work. This determination is made
based on the set of streams and tables over which the
queries are defined, which we call the query footprint. In
the current implementation, we create query classes for
disjoint sets of footprints. However, we intend to
investigate more sophisticated sharing schemes as well as
techniques for maintaining and adjusting the classes as
queries enter and leave the system.

4.2.3 Ingress Operators
The final aspect of the system we discuss here is the

Wrapper mechanism that allows data to be streamed into
the system. By wrapping streams, newly arriving streamed
data can be accessed using mechanisms similar to those
used for previously arrived or even static data. However,
an overarching principle of TelegraphCQ is to avoid
blocking operations, save accesses to disk. For this reason,
wrappers in TelegraphCQ are placed in a separate process,
where they can be accessed in a non-blocking manner (a la
Fjords). Two types of sources are supported:

1. Pull sources, as found in “traditional” federated

database systems.

TelegraphCQ
Executor

Buffer
Pool

TelegraphCQ
Wrapper

QP
DUs

Streamers

Shared memory
infrastructure

Query
Plans

Output
Queues

TelegraphCQ
FrontEnd

Listener
Parser

Optimizer
Catalog

Disks

Proxy

Clients

Figure 5 – TelegraphCQ Architecture

2. Push sources, where connections can be initiated
either by the Wrapper (Push-client) or by the data
source itself (Push-server).

With pull and push-client sources the Wrapper

connects to the source. In contrast, push-server sources
connect to a well-known port served by the Wrapper
process. In either case, the responsibility of fetching data
from the network devolves to the Wrapper process, which
uses a pool of threads to implement non-blocking I/O from
the network.

Streamed data is delivered from the Wrapper process
to the Executor via streamers. A streamer produces tuples
for a stream, by preparing them for materialization in the
buffer pool (and possibly to disk) or for direct delivery to
the Executor. Tuples in buffer pool pages are accessed via
a “scanner” operator, which is similar to the standard scan
operators in classic systems, except that it is driven by
window descriptors. Processing over streamed data that
has been (partially) spooled to disk is an area of on-going
design, as discussed in the next Section.

4.3 Discussion and Open Issues
In the previous sections we have outlined our ongoing

implementation of shared continuous query processing
over streams leveraging an existing, traditional database
engine. While the basic concepts of our approach have
been defined, and the core operators on which the system
rests have been developed, there are a large number of
important open design questions that we are addressing as
part of the TelegraphCQ effort. In this section we briefly
discuss some of these issues.

Query Grouping and Sharing. As mentioned in

Section 4.2.2, the TelegraphCQ executor partitions queries
into execution objects so that queries in the same EO tend
to have a high degree of overlap. This approach allows
many logical operations to share a few physical SteMs and
filters. An open issue is determining how much overlap is
required to group a new query into an existing execution
object.

Even given a policy for partitioning queries, however,
questions about the best policies for routing tuples between
operators in a single EO remain. In CACQ, a simple
extension of the ticket-based policy presented in [AH00]
was shown to provide reasonable performance for some
workloads. It remains to be demonstrated that such
”best effort” techniques can provide adequate performance
for a large class of queries. Furthermore, our approaches
to date have been optimized for global throughput, and
provide no mechanism for prioritizing queries or
preventing a single very expensive query from starving
others. Thus, there are several significant open problems
with respect to the complexity and quality of routing
policies: understanding how ticket based schemes perform
under a variety of workloads, and how they compare to
(NP-hard) optimal schedule computations; modifying

such schemes to adjust the priority of individual queries;
and evaluating the feasibility (in terms of computational
complexity and quality) of more sophisticated schemes.

Adapting Adaptivity. Our adaptive mechanisms are

designed to perform well in environments where little or
no cost information is available, or where estimates of
such information are unreliable in the long term. As such,
they make both per-tuple and per-operator routing
decisions. Such fine-granularity scheduling, of course,
does come at some cost -- indeed, we observed scenarios
in our previous Java-based implementation where routing
decisions could consume significant portions of overall
execution time. For this reason, we believe two techniques
will play a key role in TelegraphCQ: batching tuples, by
dynamically adjusting the frequency of routing decisions
in order to reduce per-tuple costs; and fixing operators, by
adapting the number and order of operators scheduled with
each decision to reduce per operator costs.

 These adjustments constitute a pair of knobs that can
be turned as observations of rate of change and relative
selectivity vary: when change is slow, or selectivity
constant, many tuples should be routed to large, fixed
sequences of operators; when change is fast, or
selectivities vary wildly, small groups of tuples should be
routed to individually scheduled operators. Thus, these
knobs serve as the primary mechanism for adapting the
adaptivity of TelegraphCQ; implementing them requires
investigation into the proper mechanisms for batching and
fixing, as well as policies for automatically turning knobs
based on rates of change and relative selectivity.

Disk-based issues and QoS. Several interesting

issues arise when considering disk-based storage for
streaming applications. The first issue concerning the
design of a storage manager is the technique used to
stream remote data from diverse push and pull-based
sources into the disk and to the executor through the buffer
pool. The buffer pool manager must be tuned to both
accept new bursty streaming data, as well as service
queries that access historical data. The buffer pool must
use replacement and eviction policies that can satisfy the
multiple simultaneous requests issuing from the shared
query processor.

In addition, in scenarios with huge numbers of queries
with periodically active windows, the Query SteMs (in
addition to Data SteMs) may need to be flushed to disk. In
this case, the periodic nature of the windows provides
knowledge that can be exploited for prefetching queries
from the disk. The streaming nature of the data coupled
with the types of queries we describe in Section 4.2.1 raise
interesting questions concerning the design of access
methods that are best suited for different kinds of windows
(backwards moving windows, hopping windows, sliding
windows etc.).

 Another issue is how to implement the underlying file
system. A log-structured file system would enhance write

performance, but for windowed queries of the type
presented in Section 4.1, the read workload on the disk
resembles that of periodic data broadcasting systems
[AAFZ95], which require very different data layout. We
are currently designing a storage subsystem that exploits
the sequential write workload, while also providing
broadcast-disk style read behavior. This effort includes an
investigation of the effects of different Eddy routing
policies on disk-access behavior.

Queries accessing data that spans memory and disk
also raise significant Quality of Service issues, in terms of
deciding what work to drop when the system is in danger
of falling behind the incoming data stream. Our earlier
work on the Juggle operator [RRH99] and on dynamic
pipeline processing [UF02] provide mechanisms for
pushing user preferences down into the query execution
process. Such techniques will need to be integrated into
TelegraphCQ.

Egress Modules. Analogous to our ingress modules,

we also plan to investigate mechanisms for managing and
delivering results, which will be encapsulated in egress
operators. These operators are responsible for handling
results of the query execution engine to accommodate
different modalities of client interaction. For example,
push-based egress operators support interaction where
clients are continually streamed query results, while pull-
based egress operators may log data and support
intermittent retrieval of results. Such operators can
encapsulate fault-tolerance mechanisms to support mobile
clients that periodically become disconnected, and may
encapsulate transcoding services for clients with different
capabilities. Most importantly, to efficiently support result
delivery to large numbers of clients, we will need
operators that provide aggregation and buffering services
that interface better with external overlay delivery
networks.

Cluster and Distributed Implementations. We are

currently extending the Flux module to serve as the basis
of the cluster-based implementation of TelegraphCQ.
Also on the roadmap is a distributed implementation. One
form of distribution is the integration of TelegraphCQ with
the TAG system [MFHH02] for aggregation over ad hoc
sensor networks, but a further step that is planned is the
distribution of the TelegraphCQ engine itself.

5 Related Work
There is a large volume of work related to the

Telegraph project as a whole and to the underlying
technology on which it is based. Such work is discussed in
detail in the papers describing each of the individual
Telegraph components. Here, we focus on projects that
are related to the TelegraphCQ system.

Continuous queries were proposed by Terry et al.
[TGNO92] for the purpose of filtering documents from a
stream according to user requests specified in an SQL-like

language. Seshadri et al.[SLR94] was another early effort
to deal with the problem of defining and executing
database-style queries over sequenced data.

NiagaraCQ [CDTW00] is an XML-based engine that
supports continuous queries over changing data.
NiagaraCQ builds static plans for the different continuous
queries in the systems, and allows two queries to share a
module if they have the same input. Bonnet et al.[BGS01,
BS00] describe how devices can be modeled as ADTs in
an extensible database, to allow different kinds of queries
over them. They define three types of queries that can be
posed over streaming data: historical, snapshot and long-
running queries. STREAM [BW01, ABBM+02] is a data
stream processing project whose focus is on computing
approximate results and on understanding the memory
requirements of posed queries. In particular, one of the
project’s goals is to understand how to efficiently run
queries in a bounded amount of memory. The Aurora
[CCCC+02] system allows users to specify quality-of-
service requirements for queries, and then uses those
specifications to determine how and when to shed load.
TRIBECA [SH98] considers novel query modules over
streams like multiplexers and demultiplexers.

Publish-subscribe systems are also related. SIFT
[YF99] is a selective document dissemination system
which allows users to subscribe to text documents by
specifying a set of weighted keywords. It was one of the
earlier projects to suggest the reversal of roles of queries
and data in filtering systems through the use of an inverted
index on the queries. Xfilter [AF00] and YFilter
[DFFT02] are XML-document filtering engines that group
and efficiently apply XPath queries over incoming
documents. Fabret et al. [FJLP+01] observe that publish-
subscribe systems can apply newly published events to
existing subscriptions and can also match new
subscriptions to existing events. Their solution, however,
focuses only on the problem of grouping and optimizing
subscription matching on the arrival of new data.

Other recent research has focussed on developing
algorithms to perform specific functions on sequenced
data. Lee et al. [LSM99] studies how to learn distributions
from a stream and detect anomalies. Gehrke et al. [GKS01]
considers the problem of computing correlated aggregate
queries over streams, and presents techniques for obtaining
approximate answers in a single pass. Yang et al. [YW01,
YW00] discusses data structures for computing and
maintaining aggregates over streams. Sadri et al.[SZZA01]
propose SQL-TS, an extension of the SQL language to
express sequence queries over time-series data.

Finally, our ideas on sharing work across queries are
related to the problem of multi-query optimization.
Originally posed by Sellis, et al., [Sell88] there has been a
spate of work on this topic more recently, especially from
the group at IIT-Bombay [RSSB00, DSRS01, GSV01].
Multi-query optimization typically shares relational sub-
expressions that appear in the plans of multiple (snapshot)
queries. In contrast, since TelegraphCQ shares modules

across multiple (continuous) queries, its ability to share
work is more flexible; a similar point was made in by
Madden et al., [MSHR02] in comparing CACQ to
NiagaraCQ.

6 Conclusions and Future Work
The deployment of pervasive networking is leading

towards a world where data is constantly in motion. In
such a world, conventional techniques for query
processing, which were developed under the assumption of
a far more static and predictable computational
environment, will not be sufficient. Instead, query
processors, based on the idea of adaptive dataflow will be
necessary. The Telegraph project has developed a suite of
novel technologies for implementing continuously
adaptive query processing.

In this paper we have described our ongoing
implementation of the next generation Telegraph system,
called TelegraphCQ. TelegraphCQ is focused on meeting
the challenges that arise due to the need to handle large
numbers of continuous queries over high-volume, highly-
variable data streams. TelegraphCQ differs from other data
stream and CQ projects due to its focus on extreme
adaptivity and the novel infrastructure required to support
such adaptivity. Our implementation is in an early stage
and we have a long list of open research issues. However,
our initial results are positive and based on our experiences
with a succession of increasingly sophisticated prototypes,
we believe that TelegraphCQ will be an excellent platform
on which build applications and explore issues in deeply
networked data management.

REFERENCES

[AF00] Altinel, M. and Franklin, M., Efficient Filtering of XML
Documents for Selective Dissemination of Information. In VLDB (2000).

[AH00] Avnur, R., and Hellerstein, J., Eddies: Continuously
Adaptive Query Processing. In SIGMOD (2000).

[Anto93] Antoshenkov, G., Dynamic Query Optimization in
Rdb/VMS. In ICDE(1993).

[AAFZ95] Acharya, S., Alonso, R., Franklin, M., and Zdonik, S.,
Broadcast Disks: Data Management for Asymmetric Communications
Environments. In SIGMOD (1995).

[BBDM+02] Babcock, B., et al., Models and Issues in Data Stream
Systems. In PODS (2000).

[BGS01] Bonnet, P., Gehrke, J., and Seshadri, P., Towards Sensor
Databases. In MDM (2001).

[BS00] Bonnet, P., and Seshadri, P., Device Database Systems. In
ICDE (2000).

[BW01] Babu, S., and Widom, J. Continuous Queries Over Data
Streams. SIGMOD Record (Sep 2001).

[CCCC+02] Carney, D., et al., Monitoring Streams - A New Class
of Data Management Applications. In VLDB (2002).

[CDTW00] Chen, J., DeWitt, D., Tian, F., and Wang, Y.,
NiagaraCQ: A Scalable Continuous Query System for Internet Databases.
In SIGMOD (2000).

[CF02] Chandrasekaran, S., and Franklin, M., Streaming Queries
over Streaming Data. In VLDB(2002).

[DG92] DeWitt, D., and Gray, J., Parallel Database Systems: The
Future of High Performance Database Systems. CACM 35(6)(1992).

[DFFT02] Diao, Y., Fischer, P., Franklin, M., and To, R., YFilter:
Efficient and Scalable Filtering of XML Documents (demonstration). In
ICDE (2002).

[DNS91] DeWitt, D., Naughton, J., and Schneider, D. An
Evaluation of Non-equijoin Algorithms. In VLDB (1991).

[DSRS01] Dalvi, N., Sanghai, S., Roy, P., Sudarshan, S., Pipelining
in Multi-Query Optimization. In PODS 2001.

[FJLP+01] Fabret, F., et al., Filtering Algorithms and
Implementation for Very Fast Publish/Subscribe Systems. In SIGMOD
(2002)

[GKS01] Gehrke, J., Korn, F., and Srivastava, D., On Computing
Correlated Aggregates over Continual Data Streams. In SIGMOD (2001).

[Graf93] Graefe. G., Query Evaluation Techniques for Large
Databases. ACM Comp. Surveys 25(2), June, 1993.

[GSV01] Gupta, A., Sudarshan, S., Viswanathan, S., Query
Scheduling in Multi Query Optimization. In IDEAS 2001: 11-19.

[GW00] Goldman, R., and Widom, J., WSQ/DSQ: A Practical
Approach for Combined Querying of Databases and the Web. In
SIGMOD (2000).

[HACO+99] Hellerstein, J., et al., Interactive Data Analysis with
CONTROL, IEEE Computer 32(8), August, 1999.

[HFCD+00] Hellerstein, J., et al.,. Adaptive Query Processing:
Technology in Evolution, IEEE Data Engineering Bulletin, June 2000.

[HHHL+02] Harren, M., et al., “Complex Queries in DHT-Based
Peer-to-Peer Networks”. In IPTPS (2002).

[HN96] Hellerstein, J., Naughton, J., Query Execution Techniques
for Caching Expensive Methods. In SIGMOD(1996).

[KMCJ+00] Kohler, E., Morris, R., Chen, B., Jannotti, J.,
Kaashoek, M., The Click Modular Router. In ACM TOCS 18(3): (2000)

[MFHW02] Madden, S., Franklin, M., Hellerstien, J., Hong, W., A
Tiny Aggregation Service for ad hoc Sensor Networks, In OSDI (2002).

[MF02] Madden, S., and Franklin, M., Fjording the Stream: An
Architecture for Queries Over Streaming Sensor Data, In ICDE (2002).

[MSHR02] Madden, S., Shah, M., Hellerstein, J., and Raman, V.,
Continuously Adaptive Continuous Queries over Streams. In SIGMOD
(2002).

[RDH02] Raman, V., Deshpande, A., and Hellerstein, J., Using
State Modules for Adaptive Query Processing, In ICDE (2003), to
appear.

[RH02] Raman, V., Hellerstein, J., Partial Results for Online Query
Processing. In SIGMOD(2002).

[RRH99] Raman, V., Raman, B., and Hellerstein, J., Online
Dynamic Reordering for Interactive Data Processing. In VLDB (1999).

[RSSB00] Roy, P., Seshadri, A., Sudarshan, A., Bhobhe, S.,
Efficient and Extensible Algorithms For Multi Query Optimization. In
SIGMOD(2000).

[Sell88] Sellis, T. “Multiple Query Optimization.” ACM TODS
13(1):23-52, March 1988.

[SHCF03] Shah, M., Hellerstein, J., Chandrasekaran, S., and
Franklin, M., Flux: An Adaptive Repartitioning Operator for Continuous
Query Systems. In ICDE (2003), to appear.

[SMFH01] Shah, M., Madden, S., Franklin, M, and Hellerstein, J.,
Java Support for Data-Intensive Systems: Experiences Building the
Telegraph Dataflow System, ACM SIGMOD Record, 30(4), Dec, 2001.

[SH98] Sullivan, M., and Heybey, A., Tribeca: A System for
Managing Large Databases of Network Traffic. In USENIX (1998).

[SLR94] Seshadri, P., Livny, M., and Ramakrishnan,R., Sequence
Query Processing. In SIGMOD (1994).

[SZZA01] Sadri, R.., Zaniolo, C., Zarkesh, A., and Adibi, J.,
Optimization of Sequence Queries in Database Systems. In PODS (2001).

[TGNO92] Terry, D., Goldberg, D., Nichols, D,, and Oki, B.,
Continuous Queries Over Append-only Databases. In SIGMOD (1992).

[UF01] Urhan, T., and Franklin, M. XJoin: A Reactively-Scheduled
Pipelined Join Operator. In IEEE Data Engineering Bulletin, 23(2), 2000.

[UFA98] Urhan, T., Franklin, M., and Amsaleg, L., Cost Based
Query Scrambling for Initial Delays. In SIGMOD (1998).

[WA91] Wilschut, A., and Apers, P., Dataflow Query Execution in
a Parallel Main-memory Environment. In Distributed and Parallel
Databases 1(1), 1993.

[YG99] Yan T. W., and Garcia-Molina, H. The SIFT Information
Dissemination System. In ACM TODS 24(4), 1999.

[YW00] Yang, J., AND Widom, J., Temporal View Self-
Maintenance. In EDBT (2000).

[YW01] Yang, J., AND Widom, J., Incremental Computation and
Maintenance of Temporal Aggregates. In ICDE (2001).

