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Abstract 

Increasingly pervasive networks are leading towards a 
world where data is constantly in motion.  In such a 
world, conventional techniques for query processing, 
which were developed under the assumption of a far more 
static and predictable computational environment, will 
not be sufficient.  Instead, query processors based on 
adaptive dataflow will be necessary.   The Telegraph 
project has developed a suite of novel technologies for 
continuously adaptive query processing.  The next 
generation Telegraph system, called TelegraphCQ, is 
focused on meeting the challenges that arise in handling 
large streams of continuous queries over high-volume, 
highly-variable data streams.  In this paper, we describe 
the system architecture and its underlying technology,  
and report on our ongoing implementation effort, which 
leverages the PostgreSQL open source code base. We 
also discuss open issues  and our research agenda. 

1 INTRODUCTION 
The deployment of pervasive communications 

infrastructure ranging from short-range wireless ad hoc 
sensor networks to globe-spanning intra- and internets has 
enabled new applications that process, analyze, and react 
to disparate data in a near real-time manner.  Examples 
include: event-based business processing, profile-based 
data dissemination, and query processing over streaming 
data sources such as network monitors, sensors, and 
mobile devices.  Such applications present challenges that 
cannot be met by existing database and data management 
technology.    These challenges stem from their large scale, 

their deeply-networked nature, the unpredictability of the 
environment, and the need for close interaction with users. 

In emerging networked environments, data is the 
commodity of interest, and like any commodity, its value 
is realized only when it is moved to where it is needed.   In 
contrast to traditional data processing environments where 
data can be assumed to reside statically in known 
locations, data in these new applications is constantly 
moving and changing.  This fluidity leads us to view data 
management for these emerging applications as dataflow 
processing that must monitor and react to streams of 
information as they pass through the network.  

1.1 Data Movement Implies Adaptivity 
Traditional database query processing approaches are 

inappropriate as a substrate on which to build dataflow 
processing support for a number of reasons:  

Streaming Data –  In contrast to traditional database 
systems where the query processor can operate by 
“pulling” data from the disk (say, using an iterator model),  
our target applications involve streaming data where the 
data is continually “pushed” to the query processor.  This 
subtle difference has dramatic implications for the design 
of the query processor.  Most importantly, while a 
traditional query processor can orchestrate the movement 
and handling of data, a query processor for data streams 
must instead react to arriving data.  The arrival rate of the 
data streams may be extremely high or bursty, thus placing 
constraints on processing time or memory usage; typically, 
data must be processed on-the-fly as it arrives and can be 
spooled to disk only in the background. 

Furthermore, while a traditional processor can rely on 
detailed statistics about data stored by that system, reliable 
statistics for streaming data are not readily available.  
Finally, it is important to note that in many data streams, 
time and/or ordering are inherently important, thus queries 
over streaming data are likely to be significantly different 
than queries over traditional data. 

Continuous Queries (CQ) – Dataflow processing 
applications often have a monitoring or filtering aspect in 
which queries are continuously active.  As new data 
arrives at the query processor, it is routed through the set 
of active queries.   Such continuous query processing turns 
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traditional database system architecture on its head.  In a 
traditional system, the arrival of queries initiates access to 
a stored collection of data, while here, the arrival of data 
initiates access to a stored collection of queries.  As would 
be expected, this inversion dictates a very different 
approach to query processor architecture. 

Another important aspect of continuous queries is that 
the streams over which they are executed can be 
effectively infinite.  Queries over infinite streams require 
different query semantics, non-blocking query operators, 
and new support for fault tolerance.  Operators must 
continuously return incremental results and may need to be 
defined to process subsets (or windows) of the input.  
Furthermore, continuous queries can be extremely long-
lived, so they are susceptible to changes over time to 
performance and load, data arrival rates, or data 
characteristics.  Care must be taken to reduce the amount 
of state such queries accumulate, and this state must be 
preserved and possibly migrated for fault tolerance and 
load balancing. 

Shared Processing - The combination of long-
running continuous queries and on-the-fly processing of 
data streams necessitates new mechanisms for sharing 
query processing work.  In order to avoid blocking and 
having to interrupt the dataflow, data should be processed 
simultaneously by all queries that require it as it flows 
through the system.  Processing each query individually 
can be slow and wasteful of resources, as the queries are 
likely to have some commonality.  Thus, shared processing 
must be a fundamental capability of the system.  
Furthermore, this shared processing must be made robust 
to the addition of new queries and the removal of old ones 
over time, so on-the-fly adaptivity must be an essential 
component of any solution for shared processing of 
continuous queries. 

Other Sources of Unpredictability – Finally, there 
are a number of other features of our target applications 
that render existing static query processing techniques 
inappropriate.  First, as mentioned above, deeply 
networked environments can be highly volatile due to the 
number of communications links and disparate systems 
and devices involved, data loss (particularly for sensor 
networks), and uncertainty due to the unavailability of load 
information, statistics, and cost estimates about remote 
systems or remotely stored or sensed data.  Second,  
dataflow processing is often part of a larger control loop in 
which query results may be used to affect the environment 
or redirect further query processing or data production.  In 
many cases, users will be directly interacting with the 
system while results stream out.  Users may choose to 
modify their queries on the basis of previously returned 
information or other factors.  The system must be able to 
gracefully adjust in response to user needs. 

For all of the reasons outlined above, we have 
developed a new architecture for shared, continuous, 
dataflow processing.  Our approach is distinguished from 
other projects on data stream query processing (e.g., 

[CDTW00,CCCC+02, BBDM+02]) by our emphasis on 
adaptability.  That is, we have designed the data 
management components of our system to be able to 
quickly evolve and adjust to radical changes in data 
availability and content, systems and network 
characteristics, and user needs and context.  These 
considerations have served as the guiding principles 
underlying the design of TelegraphCQ.  

1.2 TelegraphCQ - Background 
The Telegraph project at UC Berkeley began in early 

2000 with the goal of developing an Adaptive Dataflow 
Architecture for supporting a wide variety of data-
intensive, networked applications.  The Telegraph concept 
grew out of earlier projects on adaptive relational query 
processing aimed at building systems that could adjust 
their processing on the fly, in response to changes in user 
needs [HACO+99] or to intermittent delays in accessing 
data across wide-area networks [UFA98]. 

The basic technologies underlying Telegraph were 
developed to provide adaptivity to individual dataflow 
graphs.  The first version of Telegraph [SMFH01] was 
deployed to support Federated Facts and Figures (FFF), a 
query system for deep-web data.  FFF made no attempt to 
exploit commonality among concurrently active queries.  
Instead, it focused on a single-user scenario, providing 
efficient early “partial” results to queries with interactive 
user control [RH02].  

Recently, we have built two prototypes extending 
Telegraph to support shared processing over streams, 
namely CACQ [MSHR02], and PSoup [CF02]. These 
prototypes demonstrated substantial advantages of our 
adaptive framework for shared processing over streams 
and showed how the adaptivity framework could be 
extended to incorporate such sharing.  Both systems, 
however, had significant limitations.  In particular, these 
systems: 1) restricted their processing to data that could fit 
in memory, 2) did not investigate scheduling and resource 
management issues for queries with little or no overlap, 3) 
did not explicitly deal with the notion of Quality of Service 
(QoS) for adapting to resource limitations, and 4) did not 
explore opportunities for varying the degree of adaptivity 
to tradeoff flexibility and overhead. 

Building on these initial prototypes, we have 
embarked on a complete redesign and reimplementation of 
our system, with a focus on support for shared, continuous 
query processing over query and data streams.  We refer to 
this system as TelegraphCQ to distinguish it from the 
Telegraph project’s broader focus on adaptive dataflow in 
general, and to emphasize the challenges we are addressing 
in our new implementation.  

In the remainder of this paper we describe our 
ongoing design of TelegraphCQ, focusing on how it 
addresses the challenges outlined above. We begin by 
reviewing the basic adaptive mechanisms in Telegraph. 



                                                                                             

2 ADAPTIVE BUILDING BLOCKS  
The main components of Telegraph are shown in 

Figure 1.  Telegraph consists of an extensible set of 
composable dataflow modules or operators that produce 
and consume records in a manner analogous to the 
operators used in traditional database query engines, or the 
modules used in composable network routers [KMCJ+00].  
The modules can be composed into multi-step dataflows, 
exchanging records via an API called Fjords [MF02] that 
can support communication via either “push” 
(asynchronous) or “pull” (synchronous) modalities. 
Dataflows are initiated by clients either via an ad hoc 
query language (a basic version of SQL), or via a scripting 
language for representing dataflow graphs explicitly. 
Telegraph maintains a metadata catalog of data ingress 
“wrappers” or “gateways” that provide access to a variety 
of data sources including remote web and peer-to-peer 
sources on the Internet, local caches and files, and live 
sensor networks. Client communication to Telegraph can 
be done via TCP/IP sockets (e.g. from an applet running in 
a remote browser), or via local command-line interfaces.  

2.1 Module Types 
As shown in Figure 1, Telegraph contains three types 

of modules: 
Ingress and Caching – These modules are 

responsible for interfacing with external data sources.   
Most Ingress modules are fairly traditional wrappers, such 
as an HTML/XML screen scraper (called “TeSS”, the 
Telegraph Screen Scraper), a proxy for fetching data from 
popular peer-to-peer networks (called “TeleNap”), and a 
local file reader; these modules are akin to read-only 
access methods in a relational database, but reach out to 
remote data sources rather than local disks or indexes.  
Such modules may also cache data locally to hide network 
delays.   In addition more sophisticated Ingress modules 
can be built that can also send messages back to the 
network.  For example a sensor proxy may send control 
messages to adjust the sample rate of a sensor network 
based on the queries that are currently being processed 
[MF02].  Similarly, the TeSS module is able to pass 
bindings into remote websites to perform lookups. 

Query Processing – In Telegraph, query processing is 
performed by routing tuples through query modules.   
These modules are pipelined, non-blocking versions of 
standard relational operators such as joins, selections, 
projections, grouping and aggregation, and duplicate 
elimination.  In addition, Telegraph uses a special type of 
module known as a State Module (SteM) [RDH02].  
SteMs are described in Section 2.2. 

Adaptive Routing - Telegraph does not rely upon a 
traditional query plan, but instead, constructs a query plan 
that contains adaptive routing modules, which are able to 
“re-optimize” the plan on a continuous basis while a query 
is running. Eddies are modules that adaptively decide how 
to route data to other query operators on a tuple-by-tuple 

basis [AH00], choosing orderings among commutative 
modules.  Juggle performs online reordering for 
prioritizing records by content [RRH99].  Flux routes 
tuples among machines in a cluster to support parallelism 
with load-balancing and fault-tolerance [SCHF03]. 
Architecturally, these modules are indistinguishable from 
the other more traditional modules: they simply consume 
and produce records via the usual Fjords API.  However, 
these modules can serve all the roles traditionally handled 
by an offline query optimizer: ordering of operations, 
choice of access and query modules, and 
partitioning/replication of dataflows across multiple 
machines.   Moreover, these modules can reconsider and 
revise these decisions while a query is in flight.  

2.2 Adaptive Processing  W/Eddies & SteMs  
Of particular relevance to the development of 

TelegraphCQ is the flexibility that is obtained by 
combining the Eddy adaptive tuple routing module with 
State Modules (SteMs).     The role of an Eddy is to 
continuously route tuples among a set of other modules 
according to a routing policy.  Eddies are intended to 
support a partially or completely commutative set of 
modules, whose inputs and outputs are connected to the 
Eddy.  This topology allows the Eddy to intercept tuples 
that flow into and out of these modules, observing the 
module behavior and choosing the order that tuples take 
through the modules. When one of the modules  processes 
a tuple t, it can generate other tuples (e.g., by 
concatenating the input tuple with other tuples) and send 
them back to the Eddy for further routing.  A module can 
also optionally return (or bounce back) t to the Eddy if t 
requires additional processing.  A tuple is sent to the 
Eddy’s output if all the modules connected to the Eddy 
have successfully handled it.  The Eddy shuts down its 
connected modules when the end of all of its input streams 
(or base tables) has been reached, and each module has 
finished processing all of the tuples sent to it. 

In order to enable tuples to be routed individually, 
each tuple must have some additional state with which it is 
associated.  The exact structure and location of this state 

Figure 1 - Telegraph Architecture
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depends on the routing policy and implementation, but at a 
minimum, for an Eddy representing a single query, the 
state must indicate the set of connected modules 
successfully visited by the tuple. Note that this state may 
be attached to each tuple as in [AH00], or similar tuples 
may be logically batched together and associated with 
common state information stored by the Eddy. 

A SteM is a temporary repository of tuples, essentially 
corresponding to half of a traditional join operator.  It 
stores homogeneous tuples (i.e., tuples spanning the same 
set of tables) formed during query processing and supports 
insert (build), search (probe), and optionally delete 
(eviction) operations.   Two kinds of tuples can be routed 
to a SteM.  When a tuple t ∈  T (a build tuple) is routed to 
SteMT , t  is added to the set of tuples in SteMT.  When a 
tuple p ∉  T  (a probe tuple) is routed to SteMT , SteMT 
returns concatenated matches for it to the Eddy.  These 
concatenated matches are the tuples in {p} join SteMT that 
satisfy all query predicates that can be evaluated on the 
columns in p and T.  

In order to speed processing, SteMs can be augmented 
with indexes.  For example, Figure 2 shows an example of 
using an Eddy and two SteMs to implement a symmetric 
hash join between two relations (S and T).  In the join 
shown in Figure 2, a hash index would be built on the join 
attributes in each SteM.  When an S tuple arrives, it is first 
sent as a build tuple to SteMS and then sent as a probe 
tuple to SteMT.  ST matches produced from either SteM are 
routed to the output.  This routing, combined with hash 
indexes on the two SteMs implements an adaptive 
symmetric hash join.  This approach can be naturally 
extended to provide N-way symmetric joins. 

As a different example of the use of SteMs, consider a 
join in which table S is joined with a remote index on table 
T (e.g. T is a web lookup form wrapped by TeSS).  The 
best way to implement index joins with remote sources is 
in an asynchronous fashion as described in [GW00], 
requiring a SteM on S (a rendezvous buffer) to hold S 
tuples pending matches from the index.  In order to 
minimize latency, a SteM on T should also be built, as a 
cache of previous expensive T lookups, as in [HN96]. This 
dataflow looks almost identical to Figure 2, except that S 
probes are also routed from the Eddy directly to an index 
access method on T.  

The two plans described above can be combined into a 
single nearly identical plan that contains one Eddy, two 
SteMs, and both access methods on T.  In that case, the 
Eddy can essentially run both query plans at the same time, 
by routing the tuples in different ways but sharing the 
work of building the SteMs.  In some sense the Eddy is 
doing online competitive optimization in the spirit of 
[Anto93], but (a) it considers both the choice of access 
methods and join algorithms, (b) it can change its mind 
multiple times during the run of the query, and (c) the 
tuples accessed by one plan are reused by the other, so 
there is minimal wasted effort.  Described differently, the 
Eddy and SteMs dynamically design a hybrid join 
algorithm.  Eddies and SteMs can also dynamically control 
the other decisions in query optimization, including 
module ordering, and choice of query spanning tree 
(choosing which pairs of relations to join).  The benefits of 
query processing with Eddies and Stems are addressed in 
more detail in Raman et al. [RDH02], which also includes 
experiments showing the performance benefits of join 
hybridization. 

It is important to note that any number and 
combination of modules can be connected to an Eddy – 
including of course, other Eddies.  Each individual Eddy 
provides a scope for adaptivity; modules at the input or 
output of an Eddy are not considered in the Eddy’s 
adaptive decision-making, and thus, do not contribute to 
the overhead thereof.  

2.3    Fjords – InterModule Communication 
The glue that binds the various modules together to 

form a query plan is an inter-module communications API 
that we call Fjords.   The key advantage of Fjords is that 
they allow query plans to use a mixture of push and pull 
connections between modules, thereby being able to 
execute query plans over any combination of streaming 
and static data sources.  The Fjord API is designed so that 
the modules themselves can be written in a manner that is 
agnostic as to whether their inputs and outputs are all 
pushed, all pulled, or some combination of the two. 

The insight behind Fjords is that in interactive, 
adaptive, and streaming systems, the traditional iterator 
model breaks down because the query processor cannot 
afford to block waiting for long running modules to 
complete, for slow web pages to return results, or for 
individual sensors, which may have run out of power or 
temporarily disconnected.   

One way to deal with such problems is to interpose 
“Exchange” modules [Graf93] between the producers and 
consumers in a query plan.  With Exchange, a producer 
running in its own thread (or on another machine) delivers 
results to the Exchange module, which queues them and 
synchronously delivers them to the consumer when they 
are needed.  Using Exchange, however, the consumer is 
still forced to block if no data is available, due to the 
iterator model.  Such blocking can limit adaptivity.   

Figure 2 - Eddy and SteMs 



                                                                                             

Instead, Fjords allow pairs of modules to be connected 
by various types of queues.  For example, a pull-queue is 
implemented using a blocking dequeue on the consumer 
side and a blocking enqueue on the producer side. A push-
queue is implemented using non-blocking enqueue and 
dequeue;  control is returned to the consumer when the 
queue is empty.  The non-blocking dequeue allows the 
consumer to pursue other computation or yield the 
processor when no data is available.  Of course, if desired, 
Fjords can provide Exchange semantics using a blocking 
dequeue and a non-blocking enqueue. 

2.4 Flux: Scaling Up Dataflow Processing 
Scalability is a key concern for dataflow processing 

systems.  The traditional approach for scaling a query is to 
horizontally partition its constituent operators across a 
shared nothing cluster and use dataflow processing to 
execute it [DG92]. In volatile environments, such as the 
ones for which Telegraph is intended, the optimal 
partitioning of the internal state and input streams of a 
dataflow’s constituent operators is likely to change over 
time. Thus, to execute efficiently, operators must 
periodically adjust their partitioning midstream, while still 
executing. For operators with large, ever-changing internal 
state, online repartitioning is especially difficult and costly. 
Moreover, in a shared-nothing environment, machines are 
likely to experience faults causing portions of continually 
executing dataflows to lose accumulated operator state and 
in-flight data. To deal with these volatilities, we introduce 
a module called Flux1. 

Flux is a generalization of the Exchange module 
[Graf93] and like an Exchange, is an opaque dataflow 
module interposed between a producer-consumer operator 
pair in a pipelined, partitioned dataflow. In addition to the 
data partitioning and routing functions of the Exchange, 
Flux provides two additional features: load balancing and 
fault tolerance. Load balancing is provided via online 
repartitioning of the input stream and the corresponding 
internal state of operators on the consumer side. The Flux 
state movement protocol employs buffering and reordering 
mechanisms to smoothly repartition operator state across 
machines with minimal impact to ongoing processing. 

Flux provides fault-tolerance for dataflows by 
leveraging these state movement mechanisms to replicate 
an operator's internal state and in-flight data. For critical 
dataflows that require high-availability, Flux provides a 
loosely coupled process-pair-like mechanism for quick 
failover. On failure, Flux automatically recovers lost in-
flight data and operator state on the remaining non-faulty 
machines and continues processing without human 
intervention. The online repartitioning mechanisms then 
take over to provide efficient rebalancing of execution. 

In addition, Flux can be parameterized to provide 
varying degrees of replication at different levels in a 
dataflow and on per-partition basis for modules partitioned 
                                                           
1 Flux: Fault-tolerant, Load-balancing eXchange 

across a cluster. This flexibility allows unneeded reliability 
to be traded for improved performance. In essence, Flux 
exposes a reliability-based quality-of-service “knob” for 
dataflows. By inserting Flux at appropriate points in a 
dataflow, a designer can build a dataflow that degrades in a 
controlled fashion in the face of resource imbalances and 
machine faults across a shared-nothing platform. 

3 INITIAL CQ APPROACHES  
Having presented the philosophy and core 

mechanisms of the original Telegraph system, we now 
describe our early work on extending them to support 
shared, continuous query processing.  There are two main 
components of this work: CACQ, an extension of the Eddy 
and SteMs mechanisms to support multiple continuous 
queries [MSHR02] and PSoup, a further extension to 
CACQ that supports access to previously-arrived data and 
intermittent connectivity [CF02]. Both of these schemes 
were implemented as relatively natural extensions to the 
initial Telegraph implementation described in Section 2. 

3.1 CACQ 
 CACQ was the first continuous query engine to 

exploit the adaptive query processing framework of 
Telegraph. The key innovation in CACQ is the 
modification of Eddies to execute multiple queries 
simultaneously. This is accomplished by essentially having 
the Eddy execute a single “super”-query corresponding to 
the disjunction of all the individual queries posed by the 
clients of the system. Extra state, called tuple lineage, is 
maintained with each tuple as it passes through the CACQ 
process, to help determine the clients to which the output 
of the disjunctive CACQ query should be transmitted. 

Another key feature of CACQ is its use of grouped 
filters to optimize selections in the shared execution of the 
individual queries. A grouped filter is an index for single-
variable boolean factors over the same attribute. When a 
new query is inserted into the system, it is decomposed 
into its individual boolean factors. The single-variable 
boolean factors are then inserted into appropriate grouped 
filters. Multi-variable boolean factors are inserted into 
SteMs. The Eddy subsequently routes a tuple that enters 
the system through all the grouped filters and SteMs that 
are interested in it.    

The details of the tuple lineage, the grouped filters and 
the execution of joins using SteMs is described in Madden 
et al. [MSHR02].  Performance experiments reported in 
that paper indicate that due to its adaptive nature, the 
CACQ system is able to match or significantly exceed the 
performance of existing static continuous query systems 
under a variety of workloads. 

3.2 PSoup 
PSoup extends the mechanisms developed in CACQ 

in two main ways: 1) it allows queries to access historical 
data and 2) it adds support for disconnected operation − 



                                                                                             

users can register queries with the system and return 
intermittently to retrieve the latest answers.   

The key innovation in PSoup is that it treats data and 
queries symmetrically, thereby allowing new queries to be 
applied to old data and new data to be applied to old 
queries.  It does this by indexing queries into a query SteM, 
which can be thought of as a generalization of the notion 
of a grouped filter. PSoup also supports intermittent 
connectivity by separating the computation of query results 
from the delivery of those results.   PSoup continuously 
computes the answers to all active queries, effectively 
materializing the results until they are specifically 
requested. 

As shown in Figure 3, the essential idea behind 
PSoup’s execution model for such queries is to treat query 
processing as a symmetric join between data and queries. 
When a client first registers a query, The SELECT-FROM-
Where clause of the query is extracted and inserted into a 
Query SteM, and is then applied to previously arrived data 
stored in Data SteMs. This application of “new” queries to 
“old” data is how PSoup executes queries over historical 
data. Similarly, when a new data element arrives, it is 
inserted into the appropriate Data SteM, and is then 
applied to previously specified queries stored in the Query 
SteM. This act of applying “new” data to “old” queries is 
how PSoup supports continuous queries.   

PSoup continually runs the data/query join, 
materializing the results in a special Results Structure.  
Queries in PSoup contain a time-based window 
specification.  When a previously registered query is 
invoked, the window is imposed on the Results Structure 
to retrieve the current results. The materialization of results 
is the key to supporting disconnected operation and also 
enables efficient support for set-based queries.  The 
performance study presented in [CF02] shows the benefits 
of the PSoup materialization strategy. 

4 TELEGRAPHCQ  
The Telegraph implementation and extensions that we 

have built to date have enabled us to explore novel 
implementations for adaptive CQ processing mechanisms, 
and showed significant advantages over more traditional 
approaches in a range of application scenarios.  However, 
as discussed in Section 1.3, these prototypes had a number 
of limitations that we are addressing in the development of 
the TelegraphCQ system.  Specifically, we are designing 
TelegraphCQ with a focus on the following issues: 1) 
scheduling and resource management for groups of 
queries, 2) support for out-of-core data, 3) variable 
adaptivity, 4) dynamic QoS support, and 5) parallel 
cluster-based processing and distribution. 

In this section we first present an overview of the 
window-based query semantics to be supported by 
TelegraphCQ.  We then describe the design of the system, 
focusing on how we are leveraging the PostgreSQL code 
base.  Finally, we discuss some of the open issues we are 
currently addressing in the design. 

4.1 Window Semantics in TelegraphCQ 
TelegraphCQ supports continuous queries over a 

combination of tables and data streams. To deal with data 
streams whose length is unbounded, certain operations, 
such as joins, can only be run over finite windows on these 
streams. In order to support a variety of query types, 
TelegraphCQ supports rich windowing schemes over both 
the portion of the stream that has already arrived, as well 
as those portions that will arrive in the future. 
TelegraphCQ also provides flexible mechanisms for 
delivering the query results generated over these windows.  
The engine allows the results of the execution of the query 
over consecutive windows to either be pushed out to the 
user as in CACQ, or to be pulled by the user upon demand, 
as in PSoup.  In this section we describe the windowing 
functionality provided by TelegraphCQ. We also briefly 
discuss the impact of this functionality on our design. 

4.1.1 Windows for Input Streams 
Two popular windowing schemes in the context of 

stream query processing are landmark and sliding 
windows [GKS01]. For landmark queries, the older end of 
the window is fixed, while the newer end of the window 
moves forward with the arrival of new tuples in the stream. 
In contrast, for sliding window queries, both the ends 
move forward in unison with the arrival of new tuples. The 
semantics offered by landmark and sliding windows, 
however, only cover a small fraction of the interesting 
applications over data streams. 

For example, landmark and sliding windows do not 
capture the semantics of a query executed upon the arrival 
of every n tuples, nor can they describe windows occur in 
the past. As another example, consider a browsing system 
where the user might want to query historical portions of 
the stream using windows that move backwards starting 
from the present time. Traditional landmark and sliding 
windows cannot be used in such applications. 

The semantics of queries in TelegraphCQ are as 
follows.  For every instant in time, a window on a stream 
defines a set of tuples over which the query is to be 
executed. Since each execution of the query produces a set, 
the output of a query is presented to the end-user as a 
sequence of sets, each set being associated with an instant 

Figure 3 - PSoup 
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in time. TelegraphCQ allows multiple simultaneous 
notions of time, such as logical sequence numbers or 
physical time. In order to accommodate loosely 
synchronized distributed data sources, we treat time as a 
partial order, rather than as a complete order. We have 
designed an algebra that extends the standard relational 
operators to operate on streams and to allow a stream 
defined using one notion of time to be transformed into a 
stream using another.  

We support much more general windows than the 
landmark and sliding windows described above. This is 
done using a for-loop construct to declare the sequence of 
windows over which the user desires the answers to the 
query: a variable "t" moves over the timeline as the for-
loop iterates, and the left and right ends (inclusive) of each 
window in the sequence, and the stopping condition for the 
query can be defined with respect to this variable "t".  

 The for-loop contains a WindowIs statement for each 
stream in the query: an input without a corresponding 
WindowIs statement is assumed to be a static table by 
default. There is one for-loop for every group of streams 
that exhibit the same window transition behavior2.  Note 
that our notion of a for-loop is intended as a powerful, low-
level mechanism rather than a user-level query language 
construct.  The syntax of the for-loop is as follows: 

 
for(t=initial_value; continue_condition(t); change(t)){ 

WindowIs(Stream A, left_end(t), right_end(t)); 
WindowIs(Stream B, left_end(t), right_end(t)); 
… 

} 

We now demonstrate the functionality of the window 
mechanism using several examples. All the queries in 
these examples use the following schema for the daily 
closing prices of stocks: 

 
ClosingStockPrices( 

long timestamp; 
char(4) stockSymbol; 
float closingPrice;) 
 

We assume that the stream starts with logical 
timestamp 1. There is one entry for every trading day for 
every stock symbol. For simplicity, we assume that 
Microsoft (MSFT) has been trading since the beginning of 
the stream. 

1. Snapshot query: These queries execute exactly 
once over one window. Example: “Select the closing 
prices for MSFT on the first five days of trading”. 

 
SELECT closingPrice, timestamp 
FROM ClosingStockPrices 
WHERE stockSymbol = ‘MSFT’ 
for (; t==0; t = -1 ){ 
 WindowIs(ClosingStockPrices, 1, 5); 
} 

                                                           
2 The transition behavior of windows is determined by the units 

used to define the windows, and the increment statement and 
continuation condition in the for-loop. 

2. Landmark query: The input windows of these 
queries have a fixed beginning point in the timeline, and a 
forward moving endpoint.  Example: “Select all the days 
after the hundredth trading day, on which the closing price 
of MSFT has been greater than $50. Keep this query 
standing in the system for a thousand trading days”. 

 
SELECT closingPrice, timestamp 
FROM ClosingStockPrices 
WHERE stockSymbol = ‘MSFT’ and 
      closingPrice > 50.00 
for (t = 101; t <= 1000; t++ ){ 
    WindowIs(ClosingStockPrices, 101, t); 
} 
 

3. Sliding query: The input windows of these queries 
have forward moving beginning and end points.  Example: 
“On every fifth trading day starting today,  calculate the 
average closing price of MSFT for the five most recent 
trading days. Keep the query standing for fifty trading 
days”. (note: ST = the start time of the query.) 

 
Select AVG(closingPrice) 
From ClosingStockPrices 
Where stockSymbol = ‘MSFT’ 
for (t = STSTSTST; t < STSTSTST + 50; t +=5 ){ 
    WindowIs(ClosingStockPrices, t - 4, t); 
}  
 

Notice that this window hops, rather than moving 
smoothly over the timeline. Windows can also be defined 
to move on-demand, or in the reverse-timestamp direction 
by appropriately setting the increment statement for "t" in 
the for-loop. 

4. Temporal Band-Join: These queries join tuples in 
one stream with tuples in another based on timestamp.  
Example: “For the five most recent trading days starting 
today, select all stocks that closed higher than MSFT on a 
given day. Keep the query standing for twenty trading 
days”.  

Select c2.* 
FROM ClosingStockPrices as c1, 
         ClosingStockPrices as c2 
WHERE c1.stockSymbol = ‘MSFT’ and 
     c2.stockSymbol!= ‘MSFT’ and 
     c2.closingPrice > c1.closingPrice and 
     c2.timestamp = c1.timestamp  
for (t = ST; t < ST +20 ; t++ ){ 
    WindowIs(c1, t - 4, t); 
    WindowIs(c2, t - 4, t); 
} 

4.1.2 Effect of Window Semantics on System Design 
The different types of windows can impose 

significantly different requirements on the design of the 
query processor and its underlying storage manager.   One 
fundamental issue has to do with the use of logical (i.e., 
tuple sequence number) vs. physical (i.e., wall clock) 
timestamps.  If the former is used, then the memory 
requirements of a window can be known a priori,  while in 



                                                                                             

the latter case, memory requirements will depend on 
fluctuations in the data arrival rate.   

Another issue related to memory requirements has to 
do with the type of window used in a query. Consider the 
execution of a MAX aggregate over a stream.  For a 
landmark window, it is possible to compute the answer 
iteratively by simply comparing the current maximum to 
the newest element as the window expands. On the other 
hand, for a sliding window, computing the maximum 
requires the maintenance of  the entire window.  

Finally, the direction of movement, and the “hop” size 
of the windows (the distance between consecutive 
windows defined by the for loop) also have significant 
impact on query execution. For instance, if the hop size of 
the window exceeds the size of the window itself, then 
some portions of the stream are never involved in the 
processing of the query.   

4.2 TelegraphCQ Design Overview  
Having presented the notion of windowed queries that 

TelegraphCQ supports, we can now describe our ongoing 
implementation.   In this section we outline the software 
architecture of TelegraphCQ focusing first on how we are 
adapting the architecture of PostgreSQL to enable shared 
processing of continuous queries over streaming sources.  
We then describe the new components that comprise 
TelegraphCQ. 

4.2.1 Approach 
After considerable analysis (and some hand-wringing) 

we decided throw out our existing Java-based prototypes 
and to implement a completely new system using C/C++.  
While there are many considerations in choosing between 
Java and C/C++ for a systems development project, in this 
case, the over-riding factor was our decision to heavily 
leverage the open source PostgreSQL code base. Although 
TelegraphCQ is quite different from a traditional query 
processor, there is a fair amount of code surrounding the 
main query processing modules that we can profitably 
reuse.   

Figure 4 shows the basic process structure of 
PostgreSQL.  PostgreSQL uses a process-per-connection 
model. Data structures shared by multiple processes, such 
as the buffer pool, latches, etc. are located in shared 
memory.  A Postmaster forks new server processes in 
response to new client connections.  Within a server 
process, a Listener is responsible for accepting requests on 
a connection and returning data to the client.  When a new 
query arrives it is parsed, optimized, and compiled into an 
access plan that is then processed by the query Executor. 

The components we can use with only minimal 
change in TelegraphCQ are shaded in dark gray in Figure 
4.  These include: the Postmaster, Listener, System 
Catalog, Query Parser and Optimizer.  Components shown 
in light gray (the Executor, Buffer Manager and Access 
Methods) are pieces we expect to leverage but only with 
significant changes.  In addition, by adopting the front-end 

components of PostgreSQL we also get to access to 
important client-side call-level interface implementations 
(not shown in the figure) such as ODBC and JDBC.  

Our chief challenge in using PostgreSQL is supporting 
the TelegraphCQ features it was not designed for: 
streaming data, continuous queries, shared processing and 
adaptivity.  Another major issue is that PostgreSQL’s 
process-per-connection model implementation is not 
thread-safe, while for performance reasons, multi-
threading is an important feature of the TelegraphCQ 
design.  We are thus taking a pragmatic approach to the 
implementation: we use the existing process model when 
we reuse old code and venture into multi-threading only 
with exclusively new code.   

Figure 5 shows how we are adding the TelegraphCQ 
functionality to the PostgreSQL code base.   The figure 
shows (as ovals) the three processes that comprise the 
TelegraphCQ server.  These processes are connected using 
a shared memory infrastructure.  The rightmost process in 
the picture is the “FrontEnd”, which contains the Listener, 
Catalog, Parser and Optimizer. The actual query 
processing takes place in a separate process called the 
“Executor”.   Finally, a “Wrapper” process is used to host 
the data ingress operators. 

As in PostgreSQL, the Postmaster listens on a well-
known port; it and forks a FrontEnd process for each fresh 
connection it receives. Since each connection can have 
multiple open cursors, we use a proxy service (shown on 
the right of Figure 5) to collect individual requests from 
clients and instantiate multiple cursors using a single 
connection. If necessary, multiple proxies can be used to 
overcome limitations on the number of permitted open 
cursors for any connection.  

The listener accepts multiple continuous queries and 
adds them dynamically to the running executor. When a 
query is received, the server parses, analyzes, and 

Figure 4 - Architecture of PostgreSQL 
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optimizes it into an adaptive plan, that is, a plan the 
includes the adaptive operators described in Section 2. The 
plans are then placed in the query plan queue (QPQueue), 
in a shared memory segment, for the executor. The 
executor continually picks up fresh queries from the shared 
memory segment. These plans are dynamically folded into 
the running queries in the executor. Query results are 
placed in client-specific output queues, which are also 
located in shared memory segments. The listener picks up 
results from the output queues  and sends them to the client 
proxy for distribution to the clients.  

4.2.2 The TelegraphCQ Executor  
A key challenge in designing the new executor is the 

mapping of our shared continuous processing model onto a 
thread structure that will allow for adaptivity while 
incurring minimal overhead.   In theory, a single Eddy 
running in a single thread could be used to run all the 
queries in the system (as in CACQ and PSoup), including 
those involving totally unrelated streams.  Such an 
approach has a number of problems, however, as the Eddy 
mechanism was not intended to be a generalized scheduler.  
For example, it is not tailored to enforce policies for 
resource management across disjoint classes of queries.  
We expect to support large numbers of active, standing 
queries, so we need to avoid the overhead associated with 
making each query a separate thread yet we need multiple 
threads in order to exploit SMP and cluster parallelism. 

As a result, the TelegraphCQ executor is being 
developed using a multi-threaded approach in which the 
threads provide execution context for multiple queries 
encoded using a non-preemptive, state machine-based 
programming model.  We use the term “Execution Object” 
(EO) to describe the threads of control in the TelegraphCQ 
executor. Each EO is mapped to a single system thread.  
(Note that Figure 5 shows a system with a single EO 
instantiated.) An EO consists of a scheduler, one or more 
event queues, and a set of non-preemptive Dispatch Units 
(DUs) that can be executed based on some scheduling 
policy. Unlike EOs, which are visible to the operating 
system, DUs are merely abstractions that represent entities 
that perform “work” in the system. DUs are responsible for 
maintaining their own state.  DUs are non-preemptive, but 
they follow the Fjords model described in Section 2.3, 
which gives us control over their scheduling.  

A DU can be run in one of the following modes: 
 
1. A single “traditional” PostgreSQL query plan 

with the standard query executor. 
2. A single-Eddy query plan with Fjord-style 

operators. 
3. A shared “continuous query” mode with an Eddy 

and Fjord-style operators.  
 
Like PostgreSQL, TelegraphCQ uses surrogate objects 

to represent tuples during query processing. While running 
“traditional” plans TelegraphCQ uses the PostgreSQL 

format for surrogates. While running in the context of an 
Eddy, however, due to the continuously changing join 
order, the intermediate tuples can be in a multitude of 
formats. In addition, they must carry extra information 
such as bitmaps for CACQ. Thus, an enhanced surrogate 
object format is used to represent intermediate tuples in the 
Eddy-based modes.   

A key design decision in the executor is how to map 
queries onto the model of pre-emptively scheduled EO 
system threads containing non-preemptive DUs.   The goal 
is to separate queries into classes that have significant 
potential for sharing work.   This determination is made 
based on the set of streams and tables over which the 
queries are defined, which we call the query footprint.  In 
the current implementation, we create query classes for  
disjoint sets of footprints.  However, we intend to 
investigate more sophisticated sharing schemes as well as 
techniques for maintaining and adjusting the classes as 
queries enter and leave the system. 

4.2.3 Ingress Operators 
The final aspect of the system we discuss here is the 

Wrapper mechanism  that allows data to be streamed into 
the system. By wrapping streams, newly arriving streamed 
data can be accessed using mechanisms similar to those 
used for previously arrived or even static data. However, 
an overarching principle of TelegraphCQ is to avoid 
blocking operations, save accesses to disk.  For this reason, 
wrappers in TelegraphCQ are placed in a separate process, 
where they can be accessed in a non-blocking manner (a la 
Fjords).  Two types of sources are supported: 

 
1. Pull sources, as found in “traditional” federated 

database systems.  
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2. Push sources, where connections can be initiated 
either by the Wrapper (Push-client) or by the data 
source itself (Push-server). 

 
With pull and push-client sources the Wrapper 

connects to the source.  In contrast,  push-server sources 
connect to a well-known port served by the Wrapper 
process. In either case, the responsibility of fetching data 
from the network devolves to the Wrapper process, which 
uses a pool of threads to implement non-blocking I/O from 
the network. 

Streamed data is delivered from the Wrapper process 
to the Executor via streamers. A streamer produces tuples 
for a stream, by preparing them for materialization in the 
buffer pool (and possibly to disk) or for direct delivery to 
the Executor. Tuples in buffer pool pages are accessed via 
a “scanner” operator, which is similar to the standard scan 
operators in classic systems, except that it is driven by 
window descriptors.  Processing over streamed data that 
has been (partially) spooled to disk is an area of on-going 
design, as discussed in the next Section.   

4.3 Discussion and Open Issues 
In the previous sections we have outlined our ongoing 

implementation of shared continuous query processing 
over streams leveraging an existing, traditional database 
engine. While the basic concepts of our approach have 
been defined, and the core operators on which the system 
rests have been developed, there are a large number of 
important open design questions that we are addressing as 
part of the TelegraphCQ effort.  In this section we briefly 
discuss some of these issues. 

 
Query Grouping and Sharing.  As mentioned in 

Section 4.2.2, the TelegraphCQ executor partitions queries 
into execution objects so that queries in the same EO tend 
to have a high degree of overlap.  This approach allows 
many logical operations to share a few physical SteMs and 
filters. An open issue is determining how much overlap is 
required to group a new query into an existing execution 
object.   

Even given a policy for partitioning queries, however, 
questions about the best policies for routing tuples between 
operators in a single EO remain.  In CACQ, a simple 
extension of the ticket-based policy presented in [AH00] 
was shown to provide reasonable performance for some 
workloads. It remains to be demonstrated that such  
”best effort” techniques can provide adequate performance 
for a large class of queries.  Furthermore, our approaches 
to date have been optimized for global throughput, and 
provide no mechanism for prioritizing queries or 
preventing a single very expensive query from starving 
others.  Thus, there are several significant open problems 
with respect to the complexity and quality of routing 
policies:  understanding how ticket based schemes perform 
under a variety of workloads, and how they compare to 
(NP-hard) optimal schedule computations;  modifying 

such schemes to adjust the priority of individual queries; 
and evaluating the feasibility (in terms of computational 
complexity and quality) of more sophisticated schemes.  

 
Adapting Adaptivity.  Our adaptive mechanisms are 

designed to perform well in environments where little or 
no cost information is available, or where estimates of 
such information are unreliable in the long term.  As such, 
they make both per-tuple and per-operator routing 
decisions.  Such fine-granularity scheduling, of course,  
does come at some cost -- indeed, we observed scenarios 
in our previous Java-based implementation where routing 
decisions could consume significant portions of overall 
execution time.  For this reason, we believe two techniques 
will play a key role in TelegraphCQ:  batching tuples, by 
dynamically adjusting the frequency of  routing decisions 
in order to reduce per-tuple costs; and fixing operators, by 
adapting the number and order of operators scheduled with 
each decision to reduce per operator costs.  

 These adjustments constitute a pair of knobs that can 
be turned as observations of rate of change and relative 
selectivity vary:  when change is slow, or selectivity 
constant, many tuples should be routed to large, fixed 
sequences of operators;  when change is fast,  or 
selectivities vary wildly, small groups of tuples should be 
routed to individually scheduled operators.  Thus, these 
knobs serve as the primary mechanism for adapting the 
adaptivity of TelegraphCQ;  implementing them requires 
investigation into the proper mechanisms for batching and 
fixing, as well as policies for automatically turning knobs 
based on rates of change and relative selectivity. 

 
Disk-based issues and QoS. Several interesting 

issues arise when considering disk-based storage for 
streaming applications. The first issue concerning the 
design of a storage manager is the technique used to 
stream remote data from diverse push and pull-based 
sources into the disk and to the executor through the buffer 
pool. The buffer pool manager must be tuned to both 
accept new bursty streaming data, as well as service 
queries that access historical data. The buffer pool must 
use replacement and eviction policies that can satisfy the 
multiple simultaneous requests issuing from the shared 
query processor.  

In addition, in scenarios with huge numbers of queries 
with periodically active windows, the Query SteMs (in 
addition to Data SteMs) may need to be flushed to disk. In 
this case, the periodic nature of the windows provides 
knowledge that can be exploited for prefetching queries 
from the disk. The streaming nature of the data coupled 
with the types of queries we describe in Section 4.2.1 raise 
interesting questions concerning the design of access 
methods that are best suited for different kinds of windows 
(backwards moving windows, hopping windows, sliding 
windows etc.). 

 Another issue is how to implement the underlying file 
system. A log-structured file system would enhance write 



                                                                                             

performance, but for windowed queries of the type 
presented in Section 4.1, the read workload on the disk 
resembles that of periodic data broadcasting systems 
[AAFZ95], which require very different data layout. We 
are currently designing a storage subsystem that exploits 
the sequential write workload, while also providing 
broadcast-disk style read behavior. This effort includes an 
investigation of the effects of different Eddy routing 
policies on disk-access behavior.  

Queries accessing data that spans memory and disk 
also raise significant Quality of Service issues, in terms of 
deciding what work to drop when the system is in danger 
of falling behind the incoming data stream.  Our earlier 
work on the Juggle operator [RRH99] and on dynamic 
pipeline processing [UF02] provide mechanisms for 
pushing user preferences down into the query execution 
process.  Such techniques will need to be integrated into 
TelegraphCQ.   

 
Egress Modules.  Analogous to our ingress modules, 

we also plan to investigate mechanisms for managing and 
delivering results, which will be encapsulated in egress 
operators. These operators are responsible for handling 
results of the query execution engine to accommodate 
different modalities of client interaction. For example, 
push-based egress operators support interaction where 
clients are continually streamed query results, while pull-
based egress operators may log data and support 
intermittent retrieval of results. Such operators can 
encapsulate fault-tolerance mechanisms to support mobile 
clients that periodically become disconnected, and may 
encapsulate transcoding services for clients with different 
capabilities. Most importantly, to efficiently support result 
delivery to large numbers of clients, we will need 
operators that provide aggregation and buffering services 
that interface better with external overlay delivery 
networks. 

 
Cluster and Distributed Implementations.  We are 

currently extending the Flux module to serve as the basis 
of the cluster-based implementation of TelegraphCQ.  
Also on the roadmap is a distributed implementation.  One 
form of distribution is the integration of TelegraphCQ with 
the TAG system [MFHH02] for aggregation over ad hoc 
sensor networks, but a further step that is planned is the 
distribution of the TelegraphCQ engine itself. 

5 Related Work  
There is a large volume of work related to the 

Telegraph project as a whole and to the underlying 
technology on which it is based.  Such work is discussed in 
detail in the papers describing each of the individual 
Telegraph components.  Here, we focus on projects that 
are related to the TelegraphCQ system. 

Continuous queries were proposed by Terry et al. 
[TGNO92] for the purpose of filtering documents from a 
stream according to user requests specified in an SQL-like 

language. Seshadri et al.[SLR94] was another early effort 
to deal with the problem of defining and executing 
database-style queries over sequenced data.  

NiagaraCQ [CDTW00] is an XML-based engine that 
supports continuous queries over changing data. 
NiagaraCQ builds static plans for the different continuous 
queries in the systems, and allows two queries to share a 
module if they have the same input. Bonnet et al.[BGS01, 
BS00] describe how devices can be modeled as ADTs in 
an extensible database, to allow different kinds of queries 
over them. They define three types of queries that can be 
posed over streaming data: historical, snapshot and long-
running queries. STREAM [BW01, ABBM+02] is a data 
stream processing project whose focus is on computing 
approximate results and on understanding the memory 
requirements of posed queries. In particular, one of the 
project’s goals is to understand how to efficiently run 
queries in a bounded amount of memory. The Aurora 
[CCCC+02] system allows users to specify quality-of-
service requirements for queries, and then uses those 
specifications to determine how and when to shed load. 
TRIBECA [SH98] considers novel query modules over 
streams like multiplexers and demultiplexers.  

Publish-subscribe systems are also related.  SIFT 
[YF99] is a selective document dissemination system 
which allows users to subscribe to text documents by 
specifying a set of weighted keywords. It was one of the 
earlier projects to suggest the reversal of roles of queries 
and data in filtering systems through the use of an inverted 
index on the queries. Xfilter [AF00]  and YFilter 
[DFFT02] are XML-document filtering engines that group 
and efficiently apply XPath queries over incoming 
documents. Fabret et al. [FJLP+01] observe that publish-
subscribe systems can apply newly published events to 
existing subscriptions and can also match new 
subscriptions to existing events. Their solution, however, 
focuses only on the problem of grouping and optimizing 
subscription matching on the arrival of new data. 

Other recent research has focussed on developing 
algorithms to perform specific functions on sequenced 
data. Lee et al. [LSM99] studies how to learn distributions 
from a stream and detect anomalies. Gehrke et al. [GKS01] 
considers the problem of computing correlated aggregate 
queries over streams, and presents techniques for obtaining 
approximate answers in a single pass. Yang et al. [YW01, 
YW00] discusses data structures for computing and 
maintaining aggregates over streams. Sadri et al.[SZZA01] 
propose SQL-TS, an extension of the SQL language to 
express sequence queries over time-series data.  

Finally, our ideas on sharing work across queries are 
related to the problem of multi-query optimization.  
Originally posed by Sellis, et al., [Sell88] there has been a 
spate of work on this topic more recently, especially from 
the group at IIT-Bombay [RSSB00, DSRS01, GSV01].  
Multi-query optimization typically shares relational sub-
expressions that appear in the plans of multiple (snapshot) 
queries.  In contrast, since TelegraphCQ shares modules 



                                                                                             

across multiple (continuous) queries, its ability to share 
work is more flexible; a similar point was made in by 
Madden et al., [MSHR02] in comparing CACQ to 
NiagaraCQ.   

6 Conclusions and Future Work  
The deployment of pervasive networking is leading 

towards a world where data is constantly in motion.  In 
such a world, conventional techniques for query 
processing, which were developed under the assumption of 
a far more static and predictable computational 
environment, will not be sufficient.  Instead, query 
processors, based on the idea of adaptive dataflow will be 
necessary.   The Telegraph project has developed a suite of 
novel technologies for implementing continuously 
adaptive query processing.  

In this paper we have described our ongoing 
implementation of the next generation Telegraph system, 
called TelegraphCQ.  TelegraphCQ is focused on meeting 
the challenges that arise due to the need to handle large 
numbers of continuous queries over high-volume, highly-
variable data streams. TelegraphCQ differs from other data 
stream and CQ projects due to its focus on extreme 
adaptivity and the novel infrastructure required to support 
such adaptivity.   Our  implementation is in an early stage 
and we have a long list of open research issues.  However, 
our initial results are positive and based on our experiences 
with a succession of increasingly sophisticated prototypes, 
we believe that TelegraphCQ will be an excellent platform 
on which build applications and explore issues in deeply 
networked data management. 
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