
Managing Expressions as Data in Relational Database Systems

Aravind Yalamanchi, Jagannathan Srinivasan, Dieter Gawlick,

Oracle Corporation
{aravind.yalamanchi, jagannathan.srinivasan, dieter.gawlick}@oracle.com

Abstract

A wide-range of applications, including
Publish/Subscribe, Workflow, and Web-site
Personalization, require maintaining user’s
interest in expected data as conditional
expressions. This paper proposes to manage such
expressions as data in Relational Database
Systems (RDBMS). This is accomplished 1) by
allowing expressions to be stored in a column of
a database table and 2) by introducing a SQL
EVALUATE operator to evaluate expressions
for given data. Expressions when combined with
predicates on other forms of data in a database,
are just a flexible and powerful way of
expressing interest in a data item. The ability to
evaluate expressions (via EVALUATE operator)
in SQL, enables applications to take advantage of
the expressive power of SQL to support complex
subscription models. The paper describes the key
concepts, presents our approach of managing
expressions in Oracle RDBMS, discusses a novel
indexing scheme that allows efficient filtering of
a large set of expressions, and outlines future
directions.

1. Introduction

Conditional expressions are a useful way of describing the
interest of a user with respect to some expected data. For
example in a Content-based subscription system [AS+99],
a user may express his interest in an event ‘Car4Sale’
(using the syntax defined in [Han92]) as follows:

 ON Car4Sale
 IF (Model = ‘Taurus’ and Price < 20000)
 THEN notify(‘scott@yahoo.com’)

Here the expression (Model = ‘Taurus’ and Price

< 20000) describes the user’s interest and the referenced
variables, Model and Price, constitute the relevant
evaluation context (defined in Car4Sale) for this
expression.

This paper explores the idea of managing such
expressions (along with its evaluation context) as data in a
relational database system. We propose to store the
expressions defined for a particular evaluation context
under a column of a database table. Furthermore, by
introducing a special EVALUATE operator that operates
on the column storing expressions, one can identify the
expressions that evaluate to TRUE for an input data item.
The data item constitutes of valid values for all the
variables defined in the corresponding evaluation context.

For example, a consumer table can hold expressions as

data values in an Interest column as shown above. Now
the following query can be issued for an input data item in
order to identify consumers whose interests are met.

 SELECT * FROM consumer
 WHERE
 EVALUATE (consumer.Interest,
 <data item>1) = 1

With the ability to store SQL conditional expressions2

as data in a relational table and query them using the
EVALUATE operator, RDBMS becomes an interesting
platform for supporting a wide-range of applications
including Publish/Subscribe [BA97, AS+99], E-
Commerce [MFB00, DHL01], Workflow [CCPP96],
Continuous Queries [CDTW00, BW01], Web-site

1 The representation of the data items depends on the level of type
system support provided by the underlying database system. Section 3.2
provides a solution for Oracle RDBMS and discusses alternate solutions.
2 Here after, for brevity purposes, ‘expressions’ are used to mean
‘conditional expressions’.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 2003 CIDR Conference

CId Zipcode .. Interest

1 32611 .. Model = ‘Taurus’ and Price < 15000
and Mileage < 25000

2 03060 .. Model = ‘Mustang’ and Year > 1999
and Price < 20000

..

Personalization [CFP99, RSG01], and Resource
Management [RLS98].

Unlike existing technologies, which separate
characteristics of consumer such as name, telephone
number, location, etc. from their interest, our approach
allows the interest to be treated as part of consumer
characteristics. This allows finer control in identifying
relevant consumers. For example, one can identify the
consumers based on their interest and Zipcode, by issuing
a SQL query that uses the EVALUATE operator on the
expression column in conjunction with a predicate on the
Zipcode column as show below:

 SELECT * FROM consumer
 WHERE
 EVALUATE (consumer.Interest,
 <car details>) = 1 AND
 consumer.Zipcode = 03060

Thus, expressions, when combined with predicates on
other forms of data in a database, are just a flexible and
powerful way of expressing interest in a data item. The
ability to evaluate expressions (via EVALUATE operator)
in SQL, enables us to take advantage of the expressive
power of SQL to support complex subscription models
using constructs such as ORDER BY, GROUP BY and
HAVING clauses.

In addition to supporting typical Publish/Subscribe
applications, our approach enables applications to do
mutual filtering. That is, the ability to specify filtering
criteria is no longer limited to subscribers. The publisher
can as well restrict to whom the data item is delivered, by
specifying predicates on the other forms of data
associated with the expression (e.g.: Zipcode in the above
query).

Also, the management of a large number of
expressions can only be done by employing database
technology. To efficiently process the EVALUATE
operator on a large set of expressions, we have developed
a novel indexing scheme called the Expression Filter.
This allows users to optimize filtering of expressions
according to the corresponding evaluation context.

Our SQL EVALUATE operator is similar in spirit to
the LISP eval function [LISP95]. Just like LISP eval
function, which provides immediate evaluation of the
input LISP expression, the SQL EVALUATE operator
does immediate evaluation of the input SQL conditional
expression for a given input data item.

Our approach of managing expressions as data in
RDBMS is somewhat similar to the notion of supporting
QUEL commands as a data type in INGRES [SAHR84].
However, QUEL as a data type is primarily motivated to
provide a way of representing a set of records through
QUEL commands. In contrast, our intent of storing
expressions is to capture interest in terms of filtering
criteria, which evaluate to TRUE or FALSE for an input
data item.

Existing content-based subscription systems and other
active systems employ some form of in-memory indexes
([AS+99], [CDTW00], RETE [For82], Ariel [Han92]) for
filtering expressions efficiently. In contrast, our indexing
scheme creates persistent relational database objects for
storage. Index processing involves issuing SQL queries
on these objects and this mechanism can potentially scale
to large expression sets.

Oracle Rules evaluation engine [ODC01] supports
managing ECA rules [WC95] by grouping them as rule
sets and evaluating them using procedural interfaces. We
are implementing the support for managing expressions as
data in Oracle RDBMS. This support complements the
Rules evaluation engine functionality by allowing
expressions to be stored in database tables that can be
evaluated using SQL.

The rest of the paper is organized as follows. Section 2
covers the key concepts related to managing expressions
as data. Section 3 discusses our approach of integrating
expressions into Oracle RDBMS. Section 4 covers
Expression Filter indexing scheme, which enables
efficient evaluation of a large collection of expressions.
Section 5 discusses future directions. Section 6 concludes
with a summary of the paper.

2. Key Concepts

This section covers the key concepts related to managing
expressions as data.

2.1 Expression

Expressions are boolean conditions that characterize
user’s interest in some expected data. The expressions
must adhere to SQL-WHERE clause format and can
reference variables and built-in or user-defined functions
in their predicates. For example, a valid expression can be
specified as follows:

 UPPER(Model) = ‘TAURUS’ and Price < 20000 and
 HorsePower(Model, Year) > 200

Additionally, the expressions can include predicates

on data types such as XML, Text and Spatial using special
operators. For example, the following expression
references the CONTAINS operator to identify Description
that contains the phrase ‘Sun roof’ .

 Model = ‘Taurus’ and Price < 20000 and
 CONTAINS (Description, ‘Sun roof’) = 1

2.2 Storing Expression as Table Data

Expressions are stored under a column of special data
type in a database table and thus for all purposes treated
as data. Specifically, expressions can be inserted, updated,
and deleted using standard DML statements. For queries
projecting the columns holding expressions, the
expressions are displayed in string format. The table
holding expressions can be replicated like any other table.

Also, by introducing privileges that apply to the column
holding expressions one can control the manipulation of
expressions via DML operations.

2.3 Expression Metadata

A set of expressions stored in a column of a database table
share a common list of variables that can be used in their
predicates. Additionally, the expressions can reference
any built-in function or approved user-defined functions
in their predicates. The list of variable names along with
their data types and the list of built-in and approved user-
defined functions constitute the metadata for a set of
expressions stored in a column. This metadata determines
the evaluation context for the corresponding expressions.
When a new expression is added or an existing expression
is modified (via INSERT or UPDATE), it is validated
against this expression set metadata.

2.4 Operator for Evaluating Expressions

The EVALUATE operator is introduced into SQL to
evaluate an expression for a given data item. The
semantics of the EVALUATE operator can be precisely
described by mapping the conditional expression and the
associated metadata to an equivalent SQL query.
Specifically, the conditional expression maps to the
WHERE clause of a SQL query and the corresponding
expression metadata determines the structure of the
FROM clause of the query. The EVALUATE operator
exhibits the semantics of the equivalent query by
returning 1 for the expressions that evaluate to true for the
data item passed in.

For the example discussed in Section 1, the equivalent
query for the Car4Sale subscription is as follows:

 SELECT 1
 FROM (SELECT :Model as Model,
 :Year as Year,
 :Mileage as Mileage
 FROM <any_table_with_one_row>)
 WHERE
 Model = ‘Taurus’ and Price < 20000

Here, the values for Model , Year , and Mileage
variables in the evaluation context are bound to :Model ,
:Year and :Mileage bind variables respectively. The
above query identifies the user only if the conditional
expression evaluates to true for the variable values passed
in. Additional actions such as notification
(notify(‘scott@yahoo.com’)) can be performed by
including them in the select list items.

2.5 Queries using the EVALUATE Operator

Although a Content-based subscription system is one of
the key applications for storing expressions as table data,
its usage is not limited to such systems. In the above
system, the identification of interested parties and
notification can be separated and the Car4Sale example
can be modelled to use the RDBMS to manage the

identification process. Similarly, the Car4Sale example
can also be used for analyzing the demand for the
available inventory.

1) The ability to evaluate expressions (via EVALUATE

operator) in SQL, enables users to take advantage of
the expressive power of SQL to support complex
applications.

For example, when a large number of consumers are
interested in an input data item, the n most relevant
consumers can be identified by using some conflict-
resolution [For82] criteria. The query example
introduced in Section 1 can be enhanced to use an
ORDER BY clause to sort on credit rating and
identify the top n consumers.

 SELECT * FROM consumer
 WHERE
 EVALUATE(consumer.Interest,
 <car details>) = 1
 ORDER BY consumer.Credit_rating DESC

2) Predicates with EVALUATE operator can be

combined with predicates on other forms of data to
perform filtering based on multiple-domains.

For the Car4Sale example, the demand for a
particular car within a region can be determined by
combining the predicate with EVALUATE operator
and a spatial predicate using the location of the
consumer.

The ability to filter consumers based on multiple
domains can be exploited in a Content-based
subscription system to support mutual filtering. That
is, the ability to specify filtering criteria is no longer
limited to subscribers. The publisher can as well
restrict to whom the data item is delivered. For the
above example, one can limit the notification based
on consumer’s location by specifying an additional
spatial predicate [OSP01]. Furthermore, using a
CASE statement in the SELECT list can control the
action taken.

 SELECT
 (CASE WHEN consumer.annual_income
 > 100000
 THEN
 notify_salesperson
 (consumer.PhoneNumber)
 ELSE
 create_email_msg
 (consumer.EmailAddress)
)
 FROM consumer
 WHERE
 EVALUATE(consumer.Interest,
 <car details>) = 1 AND
 SDO_WITHIN_DISTANCE(consumer.Location,
 :DealerLoc,
 ’distance=50’)
 = ’TRUE’

3) The EVALUATE operator can be used to perform
joins on multiple relations storing expressions and
the corresponding data.

Using the join semantics, a Car dealer in the

Car4Sale example can sort the available cars based
on the demand for them. For this purpose, a batch of
data items (Car details) can be stored in a database
table and they can be evaluated for a set of
expressions by joining the table storing the
expressions with this table. These techniques can
also be used to perform batch evaluation of data
items for a set of subscriptions in a Content-based
subscription system.

 SELECT DISTINCT (inventory.Id),
 count(*) AS Demand
 FROM consumer, inventory
 WHERE
 EVALUATE (consumer.Interest,
 <car details from inventory table>) = 1
 GROUP BY inventory.id
 ORDER BY Demand DESC

4) Expressions can be used to maintain complex (N-to-

M) relationships between data stored in multiple
tables. A join predicate with EVALUATE operator
materializes these relationships.

For example, let there be a table holding

information about Insurance policyholders with
attributes such as type of insurance, coverage level,
and geographical location. Now, a table holding the
list of Insurance agents can store expressions defined
on policyholder’s attributes to maintain an N-to-M
relationship between the insurance agents and the
corresponding policyholders. By using a join
predicate on the column storing (coverage)
expressions, the table storing the policyholders can
be joined with the insurance agents table to identify
all the agents that can attend to each policyholder’s
needs.

SELECT agent.Id,
FROM agent, policyholder
WHERE
 EVALUATE (agent.coverage_expression,
 <policyholder’s attributes>) = 1

2.6 Indexing Expressions

A special form of index can be defined on a set of
expressions stored in a column of a table to process them
efficiently with the EVALUATE operator. With this
capability, the expressions stored as data in database
tables provides a scalable model to manage and evaluate
a large collection of expressions.

3. Integrating Expressions into the Oracle
RDBMS

This section describes our approach for supporting
expressions in Oracle RDBMS.

3.1 Expression Data Type

The data type requirements of a column storing
expressions in a database table are complex when
compared to those of any built-in or user-defined data
type for the following reasons:
1. Since a typical conditional expression is not self-

descriptive, the data type should maintain the
required metadata for an expression. For example, a
predicate A > ’01-AUG-2002’ could produce
different results for a particular value of A based on
the data type of A. Thus, the metadata for an
expression should not only include a list of all the
variables that can be used in the expression but also
their data types.

2. Since the expressions stored under a column of a
database table share common metadata, this columns
should be customized for the expression set by
associating the corresponding metadata to it.
Although a few built-in types like VARCHAR and
NUMBER can be customized for length and
precision (respectively) at the time of column
creation, the different kinds of customizations
possible with these types are fixed and limited and
hence cannot be extended to handle expressions.

To address these requirements, we adopted the

following approach.
Expression Set Metadata, which constitutes of

variable names, their data types, and the approved list of
user-defined functions acts as the evaluation context for
the expression set. The expression set metadata is
managed using Oracle RDBMS type system support.
Specifically, an object type is defined to capture all the
variables that can be referenced in an expression set along
with their data types. The expression set metadata with a
matching name is created from this object type using a
procedural interface. The expression set metadata
implicitly includes a list of all the Oracle built-in
functions as valid references in the expression set. User-
defined functions can be added to this list.

Expression Data Type primarily constitutes of a
VARCHAR or CLOB data type to hold the conditional
expression. The association of the corresponding
Expression Set Metadata is achieved by defining a special
Expression constraint on the column storing expressions
(see Figure 1). This constraint enforces the validity of the
expressions stored in the column as well as provides the
necessary metadata for expression evaluation.

Figure 1: Expression Data Type

Alternately, the Expression data type could be

represented as an object (Abstract Data Type) holding the
VARCHAR representation of the conditional expression
and a reference to the corresponding expression set
metadata. When a column of this data type is defined in a
table, the Expression constraint can ensure that all the
expression instances stored under this column use the
same expression set metadata.

3.2 The EVALUATE Operator

The EVALUATE operator, introduced to evaluate
expressions, accepts a VARCHAR representation of an
expression as the first argument and the data item for
which the expression is evaluated as the second argument.
This operator returns 1 or 0 based on the outcome of the
expression evaluation. While applying the EVALUATE
operator on a database column storing expressions, the
corresponding expression set metadata is derived from the
expression constraint defined on such column. In order to
use the EVALUATE operator on a transient expression
(not stored in a database column), the corresponding
expression set metadata name should be explicitly passed
to the operator through an additional VARCHAR
argument.

The data item passed to the EVALAUATE operator
consists of valid values for all the elementary attributes
(or variables) in the corresponding expression set
metadata. So, the contents and type of the data item

depends on the Expression set metadata associated with
the corresponding expression instance. Since the types of
the arguments to the EVALUATE operator are
predefined, the data item is converted into one of the two
canonical forms (string or AnyData3) before passing it as
the second argument. Hence, the two flavours of
EVALUATE operator are:

• Data item as a string: For a data item
constituting of non-binary data types, it can be
represented as a string of name-value pairs.

Operator Signature:
 EVALUATE (VARCHAR, VARCHAR)
 returns NUMBER;

Usage:
 SELECT * FROM consumer WHERE
 EVALUATE(consumers.interest,
 ‘Model=>’’Mustang’’,
 Price=>22000,
 Mileage=>18000,
 Year=>2000’) = 1

• Data item as AnyData: For a data item

constituting of binary data types, the above
approach is not possible. For such data items a
canonical AnyData form of an instance of the
corresponding object type should be passed. The
above data item can be passed to the
EVALUATE operator by converting the instance
of Car4Sale object type into AnyData as shown
in the usage below.

Operator Signature:
 EVALUATE (VARCHAR, AnyData)
 returns NUMBER;

Usage:
 SELECT * FROM consumer WHERE
 EVALUATE(consumers.interest,
 AnyData.convertObject(
 Car4Sale(‘Mustang’,
 22000,
 18000,
 2000))

) = 1

The use of the object type (Abstract Data Type) in the
expression set metadata (Car4Sale in the above example)
is to enable the second flavour of the EVALUATE
operator describe above. For database systems with
limited type system support, binary types in the data items
can be restricted or alternate forms of EVALUATE
operator should be considered.

3 The AnyData data type [OSR01], introduced in
Oracle9i, provides interfaces to convert any valid SQL
(built-in or user-defined) types into a homogeneous type
and convert it back to the original SQL type. The
homogeneous type can be stored in database tables or
passed as an argument to a function or an operator.

3.3 Expression Evaluation

By default, when an expression and the data item are
passed to the EVALUATE operator, a dynamic query is
issued to evaluate the expression for the data item. Thus,
for a set of expressions (stored in a column), one dynamic
query per expression is required. This approach of testing
every expression for a data item is a linear time solution
and is not scalable for a large set expressions evaluated
against a high volume of data items. For this purpose, an
optional index can be defined on the column storing the
expressions to evaluate them efficiently.

3.4 Indexing a set of Expressions

Using Oracle’s Extensibility framework [SM+00], a new
mechanism for indexing conditional expressions is
introduced. This indexing mechanism is implemented as a
new Indextype, Expression Filter, to create and maintain
indexes on columns storing expressions. When an
Expression Filter index is defined on a column storing
expressions, the EVALUATE operator on such column
uses the index based on its access cost. For this purpose,
the index cost is computed from the expression set
statistics like number of expressions in the set, average
number of conjunctive predicates per expression, and
selectivity of the expressions. For a large set of
expressions, the index can quickly eliminate the
expressions that are false for a given data item and return
only the expressions that evaluate to true.

4. Expression Indexing – Expression Filter

In Oracle RDBMS a new indexing mechanism,
Expression Filter, is introduced to efficiently filter a large
set of expressions for a data item. As described in Section
3.4, an Expression Filter index can be created on a
column storing expressions and the EVALUATE operator
on such column may use the index to process the
expressions efficiently. This section describes the
techniques used to index a set of expressions.

4.1 Approach

Given a large set of expressions, many of them tend to
have certain commonalities in their predicates. For a data
item, these expressions can be evaluated efficiently if the
commonalities are exploited and the processing cost is
shared across multiple predicates. For example, given two
predicates with a common left-hand side, say Year =

1998 and Year = 1999, in most cases, the falseness or
trueness of one predicate can be determined based on the
outcome of the other predicate. That is if the predicate
Year = 1998 is true, the other predicate Year = 1999
cannot be true for the same value of the Year. Similar
logical relationships can be formed for predicates having
common left-hand sides with range, not equal to and
other kind of operators. For example, if the predicate Year

> 1999 is true for a data item, then the predicate Year >
1998 is conclusively true.

An Expression Filter index defined on a set of
expressions exploits the logical relationships between
multiple predicates by grouping them based on the
commonality of their left-hand sides. These left-hand
sides, also called the complex attributes, are arithmetic
expressions constituting of one or more elementary
attributes and user-defined functions (e.g.: HORSEPOWER
(model, year)). In the expression set, these left-hand
sides (complex attributes) appear in the predicates along
with an operator and a constant on the right-hand side
(RHS). (Eg : HORSEPOWER (model, year) >= 150). Few
predicates that do not have constants on the right-hand
side can be rewritten to contain a constant on the right-
hand side.

4.2 Index Representation

The Expression Filter index internally uses a few
persistent database objects to maintain the index
information for an expression set. The grouping
information for all the predicates in an expression set are
captured in a relational table called the Predicate table.
Typically, the Predicate table contains one row for each
expression in the expression set. An expression containing
one or more disjunctions is converted into a disjunctive-
normal form (Disjunction of Conjunctions) and each
disjunction in this normal form is treated as a separate
expression with the same identifier as the original
expression. The Predicate table contains one row for each
such disjunction.

Figure 2: Predicate Table

The most-common left-hand sides of the predicates
(complex attributes) in an expression set are identified by

user specification or by statistics collection. For each
common left-hand side, a predicate group is formed with
all the corresponding predicates in the expression set. For
example, if predicates with Model, Price and
HorsePower(Model, Year) attributes are very common in
the expression set, three predicate groups are formed for
these attributes. The Predicate table captures the predicate
grouping information as shown in Figure 2.

For each predicate group, the Predicate table has two
columns – one to store the operator of the predicate and
the other to store the constant on the right-hand side of the
predicate. For each predicate in an expression, its operator
and the constant on the right-hand side are stored under
the corresponding columns of the predicate group. The
predicates that do not fall into one of the preconfigured
groups are preserved in their original form and stored in a
VARCHAR column of the Predicate table as sparse
predicates (for the above example, the predicates on
Mileage and Year fall in this category). The predicates
with IN lists and the predicates involving sub-queries are
implicitly treated as sparse predicates. Additional indexes
are created on the Predicate table as explained in the
Section 4.3.

At the time of index creation the Predicate table
associated with an expression set is created by the
Indextype implementation. The expressions in the set are
pre-processed and the predicate table is populated with
the predicate grouping information. Additionally, the
information stored in the predicate table is maintained to
reflect any changes made to the expression set using DML
operations on the column storing the expressions

4.3 Index Processing

In order to evaluate a data item for a set of expressions,
the left-hand side associated with each predicate group is
computed and its value is compared with the
corresponding constants stored in the predicate table using
appropriate operator. For example, if the
HORSEPOWER(‘TAURUS’,2001) returns 153, by looking into
the predicate table, the predicates satisfying this value are
those interested in horsepower being equal to 153 or those
interested in horsepower being greater than a value that is
below 153 etc.,. Assuming that the operators and right-
hand side constants of the above group are stored in G3_OP
and G3_RHS columns of the predicate table (Figure 2), the
following query on the predicate table returns the rows
that satisfy this group of predicates.

 SELECT exp_id FROM predicate_table WHERE
 G3_OP = ‘=’ and G3_RHS = :rhs_val or
 G3_OP = ‘>’ and G3_RHS < :rhs_val or
 …

where :rhs_val is the value from the computation of the
left-hand side.

Similar techniques are used for less than (<),
greater than or equal to (>=), less than or equal

to (<=), not equal to (!=, <>), LIKE , IS NULL , and IS

NOT NULL predicates. Predicates with BETWEEN operator
are broken into two predicates with greater than or

equal to and less than or equal to operators.
Duplicate predicate groups can be configured for a left-
hand side if it frequently appears more than once in a
single expression (e.g.: Year >= 1996 and Year <=

2000).
The WHERE clause shown in the above query is

repeated for each predicate group in the predicate table
and they are all joined by conjunctions. So, when the
complete query is issued on the predicate table, it returns
the identifiers for the expressions that evaluate to true
with all the predicates in the preconfigured groups. For
these resulting expressions, the sparse predicates (if any)
stored in the predicate table are evaluated using dynamic
queries to determine if an expression is true for the given
data item.

 SELECT exp_id FROM predicate_table
 WHERE --- predicates in group 1
 (G1_OP is null or --- no predicate
 --- involving this LHS
 ((:g1_val is not null AND
 (G1_OP = ‘=’ and G1_RHS = :g1_val or
 G1_OP = ‘>’ and G1_RHS < :g1_val or
 G1_OP = ‘<’ and G1_RHS > :g1_val or
 ...) or
 (:g1_val is null AND G1_OP = ‘IS NULL’)))

 AND --- predicates in group 2
 (G2_OP is null or
 ((:g2_val is not null AND
 (G2_OP = ‘=’ and G1_RHS = :g2_val or
 G2_OP = ‘>’ and G1_RHS < :g2_val or
 G2_OP = ‘<’ and G1_RHS > :g2_val or
 ...) or
 (:g2_val is null AND G1_OP = ‘IS NULL’)))
 AND
 ...

For efficient execution of the query on the predicate

table (shown above), concatenated bitmap indexes
[OQ97, ODC01] are created on the {Operator, RHS
constant} columns of a few selected groups. These groups
are identified either by the user specification or from the
statistics about the frequency of predicates (belonging to a
group) in the expression set. With the indexes defined on
a few preconfigured predicate groups, the predicates from
an expression set are classified into three classes:

1. Predicates with Indexed attributes: Bitmap indexes

are created for the predicates belonging to these
groups. In order to evaluate all the predicates in a
group, the above query performs a few range scans
on the corresponding index and returns the
expressions that evaluate to true with just that
predicate. Similar scans are performed on the bitmap
indexes of other indexed predicates and the results
from these index scans are combined using ‘BITMAP
AND’ operations to determine all the expressions that
evaluate to true with all the indexed predicates. This
enables filtering of multiple predicate groups

simultaneously using one or more bitmap indexes.

2. Predicates with Stored attributes: The predicates
belonging to this group are captured in the
corresponding {Operator, RHS constant} columns of
the predicate table, with no bitmap indexes defined
on them. For all the expressions that evaluate to true
with the indexed predicates, the above query
compares the values of the left-hand sides of these
predicate groups with those stored in the predicate
table. Although bitmap indexes are created for a
selected number of groups, the Oracle optimizer may
choose not to use the index based on its access cost
and such groups are treated as stored predicate
groups. The query issued on the predicate table
remains unchanged for a different choice of indexes.

3. Sparse predicates: For expressions that evaluate to
true for all the predicates in its indexed and stored
groups, the corresponding sparse predicates (if any),
are evaluated in the final stage. If these expressions
evaluate to true with the sparse predicates, they are
considered true for the given data item.

In order to reduce the number of range scans

performed on the bitmap indexes for the evaluation of
predicates in the indexed groups, the operators in the
predicates are mapped to predetermined integer values.
When the < and > operators are mapped to adjacent
values (in order), their corresponding range scans can be
combined into one. For similar reason, the operators <=
and >= are also mapped to adjacent integer values.
Optionally, the user can specify the common operators
that appear with predicates on a left-hand side and further
bring down the number of range scans performed on the
corresponding bitmap index. For the above example,
Model attribute commonly appears in equality predicates
and the Expression filter index can be configured to check
only for equality predicates while processing the indexed
predicate groups. Any remaining predicates on Model
attribute are processed during sparse predicate evaluation.

4.4 Predicate Table Query

Once the predicate groups for an expression set are
determined, the structure of the predicate table is fixed
and the query to be issued on the predicate table is fixed.
The choice of indexed vs. stored predicate groups does
not change the query. So, as part of Expression Filter
index creation, the corresponding predicate table query is
determined and stored in the dictionary. The same query
(with bind variables) is used on the predicate table for any
data item passed in for the expression set evaluation. This
ensures that the predicate table query is compiled once
and reused for the evaluation of any number of data items.

4.5 Cost of Evaluation

The cost of evaluating a predicate in an expression set
depends on the group it belongs to. The steps involved in
evaluating the predicates in
• an Indexed predicate group is

- One time computation of the left-hand side
of the predicate group.

- One or more range scans on the bitmap
indexes using the computed value.

• a Stored predicate groups is
- One time computation of the left-hand side

of the predicate group.
- Comparison of the computed value with the

operators and the right-hand side constants
of all the predicates remaining in the
working set (after the filtering of indexed
predicates).

• a Sparse predicate group is
- For all the expressions remaining in the

working set after the filtering of indexed and
stored predicates, parse of the sub-
expression representing the corresponding
sparse predicates.

- Evaluation of the sub-expression through
substitution of data values (dynamic query).

4.6 Performance Characterization

Preliminary performance experiments with the Expression
Filter indexing scheme showed promising results. For the
lack of a standard benchmark for the Expression
evaluation, these experiments were conducted using input
from Customer Relationship Management (CRM)
application. The Expression Filter index performed the
best when it is fine-tuned for the given expression set. The
tunable characteristics of an index include the list of
common predicates, the list of common operators for
these predicates and the number of indexed predicates.
For a column storing a representative set of expressions,
the index can be fine-tuned by collecting expression set
statistics and creating the index from these statistics. For
expression sets with frequent modifications, self-tuning of
the corresponding indexes is possible by collecting the
statistics at certain intervals and modifying the index
accordingly.

For a set of expressions each having one equality
predicate, the best expression evaluation performance can
be achieved by creating a simple B+-Tree index with all
the right-hand-side constants in these predicates. For
example a large set of expressions with predicates of form
ACCOUNT_ID = :acc_id can be filtered for a value of
acc_id by creating a B+-Tree index with all the values of
acc_id (RHS constants) in the expression set. However,
these indexes should be customized for the given
expression set and complex indexing techniques are
required for expressions having multiple predicates with
possible conjunctions and disjunctions.

For the above expression set, we observed that the
performance of the generalized Expression Filter index
matched that of the customized index. At the same time,
the Expression Filter index can handle complex
expressions with multiple predicates with little or no
added complexity.

5. Future Directions

5.1 Supporting Expression as a Native Data Type

In the current work, the column of VARCHAR data type
with an Expression constraint is treated as a column of
Expression data type. So, the semantics of an Expression
instance are lost once it is fetched into a programmatic
language like JAVA and C. In order to allow operations
on a transient (not stored in a table) version of an
expression, native support for the expression data type is
required.

An Expression data type must be customizable for an
expression set by allowing the corresponding evaluation
context (or metadata) specification at the time of
declaration. For this purpose, the Expression data type
should be a special form of parameterized type that
accepts the list of valid variables and their data types as
parameters. That is, while declaring a column of
Expression data type to hold a set of expressions in a
table, the variables in the corresponding evaluation
context can be passed as arguments to this type in order
customize it for the given expression set. Any expression
with an invalid variable reference is automatically
rejected by the data type check.

Additional operators such as an EQUAL operator to
check for logical equivalence of two expressions and an
IMPLIES operator to determine if one expression implies
another expression can be supported for the Expression
data type.

5.2 Supporting EVALAUTE as a Native SQL
Operator

Currently, the EVALUATE operator cannot derive the
context from the query in which it is used. That is, the
data item for which a set of expressions is evaluated
should be explicitly passed to the operator as an
argument. By supporting EVALUATE operator as a
native SQL operator, its functionality can be enhanced to
derive the required data items from the current query
context. This is beneficial when the data items for which
a set of expressions is evaluated are obtained from another
table (included in the FROM clause of the same query).

With native SQL support, the EVALUATE operator
can also consider alternate execution plans by exploiting
any indexes defined on the table storing the data items.

5.3 Indexing Expressions with Text, XML and Spatial
predicates

An expression stored in a table may contain domain
specific predicates on extensible types like Text, XML
and Spatial data types. These domain specific predicates
use special operators on the corresponding data. For
example, a predicate on XML data can be specified with
an ExistsNode operator. In order to identify an XML
document with a publication whose author is Scott one
can use the following predicate.

 ExistsNode (doc,
 ‘/publication/author[@name=”Scott”]’) = 1

For the Expression Filter index, the domain specific

information for such predicates should be exploited in
order to filter them efficiently. The Expression Filter
indexing techniques described in Section 4 are being
extended to support efficient filtering of XPath predicates
on XML Data. For a collection of XPath predicates on a
variable of XML data type, these indexes share the
processing cost across multiple XPath predicates by
grouping them based on the level of XML Elements and
the level and the value of XML Attributes appearing in
these predicates.

Oracle9i Text engine [OTR01] supports document
classification based on the text queries on the expected
documents. These text queries are typically the conditions
that appear in the CONTAINS operator operating on a
Text data type. The document classification uses a
specialized index to filter a large collection of text queries
for a document.

We plan to integrate the Document Classification
index with the Expression Filter index and thus support
efficient filtering of expressions involving predicates on
Text as well as other data types. In this process, the
Expression Filter indexing mechanism will be made
extensible to allow easy integration of any new domain-
specific classification indexes with the Expression Filter
index. In future, this framework can be used to support
efficient filtering of predicates on complex data types like
Spatial, Image, and Video.

5.4 Characterizing Expressions with respect to data

To identify the most-relevant expression out of the
expressions that evaluate to true for a given data item,
with the current support, the conflict resolution criteria
can be applied on the attributes other than the expression
(Section 2.5 Point 1). However, it may be desirable to use
certain characteristics of the expressions to choose the
most-relevant expression out of a result set. One such
characteristic is the selectivity of the expressions. For this
purpose, each expression can compute a selectivity factor
based on the distribution of the expected data items and
the most-selective expression in a result set can be chosen
as the candidate expression for a data item. Note that the

use of selectivity to sort expressions in a result set is
similar to the use of rank in sorting the results from Text
based searches.

The EVALUATE operator can be enhanced to return
an ancillary value (selectivity) which can be used to rank
the expressions in a result set.

6. Conclusions

The paper explored the idea of managing expressions as
data in an RDBMS. Specifically, conditional expressions
adhering to SQL-WHERE clause format are allowed to be
stored as column values, and an EVALUATE operator is
introduced to evaluate expressions as part of SQL queries.
With this support RDBMS becomes a platform for
supporting wide-range of applications, including
Publish/Subscribe, E-Commerce, Workflow, and
Resource Management.

A distinguishing aspect of our approach is that the
predicates using EVALUATE operator on expressions
can be combined with predicates on other relational
attributes to perform multi-domain filtering. Furthermore,
the expressive power of SQL can be exploited to support
complex applications. Since RDBMS manages
expressions, the approach implicitly benefits from the
database system features, including security, fault-
tolerance, and its ability to scale.

We have implemented support for expressions in
Oracle RDBMS by leveraging Oracle’s Type System, and
the Oracle’s Extensible Indexing Framework. The
indexing scheme introduced to filter a large set of
expressions is built into RDBMS and hence can easily
scale to large number of expressions.

With the ability to add new SQL data types and
Operators into the RDBMS, the expressions stored in
tables can easily allow predicates on these new data types.
If a classification index exists for the new data type, it can
be plugged into the Expression Filter indexing mechanism
for efficient expression evaluation. With this support the
Expression data type truly becomes extensible.

Acknowledgement

We would like to thank Jayanta Banerjee, Matthieu
Devin, Lucy Chernobrod, and Mark Craig for many
helpful discussions.

7. References

[AS+99] Aguilera, M., Strom, R., Sturman, D., Astley,
M., and Chandra, T. "Matching Events in a Content-based
Subscription System". 18th ACM Symposium on
Principles of Distributed Computing, 1999: 53-61.
[BA97] Segall, B., and Arnold, D. “Elvin has Left the
Building: A Publish/Subscribe Notification Service with
Quenching,” Proc. August 1997.

[BW01] Babu, S. and Widom, J. “Continuous Queries
Over Data Streams”, SIGMOD Record, 30(3), September
2001: 109-120.
[CCPP96] Casati, F., Ceri, S., Pernici, B., and Pozzi, G.
“Deriving Active Rules for Workflow Enactment”, Proc.
7th International Conference on Database and Expert
Systems Applications 1996 : 94--110.
[CDTW00] Chen, J., DeWitt, D. J., Tian F., and Wang,
Y. “NiagaraCQ: A Scalable Continuous Query System
for Internet Databases”, SIGMOD 2000 : 379-390.
[CFP99] Ceri, S., Fraternali, P., and Paraboschi, S. “Data-
driven one-to-one web site generation for data-intensive
applications”, Proc. 25th International Conference on
Very Large Databases 1999 : 615-626.
[DHL01] Dayal, U., Hsu, M., and Ladin, R. “Business
Process Coordination: State of the Art, Trends, and Open
Issues”, Proc. 27th International Conference on Very
Large Databases 2001 : 3-13.
[For82] Forgy, C. “Rete: A Fast Algorithm for the Many
Patterns/Many Objects Match Problem”, Artificial
Intelligence 19(1) 1982 : 17-37.
[Han92] Hanson, E. N. “Rule Condition testing and
action execution in Ariel”, SIGMOD Conference 1992 :
49-58.
[LISP95] Graham, P. “ANSI Common Lisp”, Prentice
Hal, 1st edition November 2, 1995.
[MFB00] Mühl, G., Fiege, L., and Buchmann, A.
"Evaluation of Cooperation Models in Electronic
Business", Information Systems for E-Commerce,
November 2000.
[OQ97] O’Neil, P. and Quass, D., “Improved Query
Performance with Variant Indexes,” Proceedings of the
ACM SIGMOD Inernational. Conference on Management
of Data 1997 : 38-49.
[ODC01] Oracle9i Database Concepts, Release 2, Oracle
Corp., http://technet.oracle.com/docs/content.html, Part#
A96524-01 Jun 2001.
[OSP01] Oracle 9i Spatial Reference, Release 2, Oracle
Corp, http://technet.oracle.com/docs/content.html, Part#
A96630-01Jun 2001.
[OSR01] Oracle9i SQL Reference, Release 2, Oracle
Corp., http://technet.oracle.com/docs/content.html, Part#
A96540-01 Jun 2001.
[OTR01] Oracle9i Text Reference, Release 2, Oracle
Corp., http://technet.oracle.com/docs/content.html, Part#
A96518-01 Jun 2001.
[RLS98] Raman, R., Livny, M., and Solomon, M.,
“Matchmaking Distributed Resource Management for
High Throughput Computing”. Proc. 7th IEEE
International Symposium on High Performance
Distributed Computing. 1998.
[RSG01] Rossi, G., Schwabe, D., and Guimaraes, M.,
“Designing Personalized Web Applications”, Proceedings
of the World Wide Web Conference (WWW’10)., May
2001.

[SAHR84] Stonebraker, M., Anderson, E., Hanson, E. N
and Rubenstein, W. B. “Quel as a Data type”, SIGMOD
Conference 1984 : 208-214.
[SM+00] Srinivasan, J., Murthy, R., Sundara, S.,
Agarwal, N., and DeFazio, S.: “Extensible Indexing: A
Framework for Integrating Domain-Specific Indexing
Schemes into Oracle8i”, ICDE 2000 : 91-100.
[WC95] Widom, J. and Ceri, S. “Active Database
Systems”. Morgan-Kaufmann, San Mateo, California,
1995.

