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Abstract 
Peer-to-peer sharing systems are becoming 
increasingly popular and an exciting new class of 
innovative, internet-based data management 
systems. In these systems, users contribute their 
own resources (processing units and storage 
devices) and content (i.e., documents) to the P2P 
community. We focus on the management of 
content and resources in such systems. Our goal 
is to harness all available resources in the P2P 
network so that the users can access all available 
content efficiently. Efficiency is taken both from 
(i) the point of view of the system, in that we 
strive to ensure fair load distribution among all 
peer nodes, and (ii) from the point of view of the 
users, in that we strive to ensure low user-request 
response times. 
We propose a novel architecture for this new 
class of applications, which differs drastically 
from what is either found currently in existing 
products or proposed in academia. We contribute 
and study novel solutions that achieve our goals, 
while at the same time addressing the formidable 
challenges due to the autonomy of peers, their 
heterogeneous processing and storage capacities, 
their different content contributions, the huge 
system scale, and the highly dynamic system 
environment. 
 

1 Introduction 
The client-server model has been the dominant model for 
constructing distributed systems and services and the 
simplicity of its concept has played a key role in the 
successful commercial deployment of distributed 
computing for more than a decade. The emergence of 
internet computing and applications, however, have made 
prominent some of the model’s inherent weaknesses: the 
requirement of central control of information and 
processing at specialized computing nodes (i.e., the 
servers) is too stringent and limiting for a variety of 
rapidly emerging internet computing application classes. 
Internet content sharing systems are an example of 
systems supporting such an application class, which has 
become very popular with systems like Napster [20], 
Gnutella [13], KaZaa [18], Audio Galaxy [4], etc.  

In general, content sharing systems consist of a 
(potentially very large) number of computing nodes, 
offering (computing and storage) resources and content 
(“documents”) to the community. Thus, nodes belonging 
to users may contribute content to the rest of the 
community and, in addition, may permit the use of their 
own resources to store content contributed by others and 
allow access to it from other community members. Given 
these characteristics, the central control of information at 
special nodes is undesirable in order to avoid central 
points of failure and performance bottlenecks, to preserve 
the anonymity of users accessing content and services, 
and to fully utilize the available resources contributed by 
all member nodes. As a result, the peer-to-peer (P2P) 
paradigm for architecting distributed systems is recently 
becoming increasingly popular. P2P systems consist of a 
set of peers, which are nodes of equal stature, which have 
autonomy, and which can collaborate with each other, 
pulling together their resources, in order to either obtain 
services or jointly tackle large computing jobs. 
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1.1 Problem Definition  

Our Goals  
Our goal with this research is to ensure the high 
performance of the system through the proper exploitation 
of all available resources and the efficient management of 
content. Efficiency is interpreted both (i) from the 
system’s point of view and will be ensured through the 
fair load distribution across all peers in the system, and 
(ii) from a user’s point of view, by facilitating short 
response times to user requests. Fair load distribution in 
our setting implies that we ensure load balancing, while 
taking into account the heterogeneity of the contributed 
resources by the different peers. 

In addition to the obvious high usefulness of achieving 
these goals, it should be stressed that achieving fair load 
distribution is of fundamental importance in a P2P 
system, given the equal stature of the nodes, and that low 
response times is one of the main promises inherent in the 
peer-to-peer paradigm.  

 
The Challenges 
Ensuring the efficiency in P2P content sharing systems is 
a formidable task. Having autonomous nodes of equal 
stature introduces the need of complex distributed 
coordination algorithms. Furthermore, the system should 
be expected to scale to hundreds of thousands of nodes 
and millions of documents. In addition, different nodes 
make different content contributions (e.g., from no 
contribution at all, to contributing several documents) and 
offer/possess heterogeneous processing and storage 
capacities. Finally, the system may operate in a highly 
dynamic environment in which the popularity of the 
stored content varies with time, nodes enter and leave the 
system at will, and content can be added and deleted at 
any time. These facts significantly raise the level of 
complexity involved in the goal of managing content and 
all available resources so as to provide efficient access to 
the stored content.  

1.2 An Overview of our Approach 

We assume that the content in the system has (an initially 
static and) known popularity1, with document popularities 
following the Zipf distribution, as is the case for Web 
objects [19, 31] and existing popular P2P systems [17]. 
The key elements of the proposed architecture are that:  
1. We form groups of documents. The document groups 

can be defined for example using hashing functions 
on document ids, or they can be defined using more 
elaborate approaches: for example, assuming that the 
contributed documents are accompanied by keywords 

                                                           
1 Initial popularities of documents can fairly easily be estimated in most 
applications. For example, music file popularities follow their position in 
popular charts; the popularities of book files in library applications can 
be estimated using check-out information at conventional libraries; 
popularities of video files can be estimated by information at video 
rental stores, etc. 

characterizing their semantic content, we can utilize 
tools (e.g., [27, 5, 32]) that can classify the 
documents, given their keywords, into semantic 
categories. (Hereafter, for simplicity we will describe 
our architecture using document semantic categories. 
However, it should be clear that any other document 
grouping is equally acceptable). 

2. We form clusters of peers (nodes), based on the 
semantic categories of the documents contributed by 
them. 

3. Given this, our load balancing task is then viewed as 
a two level problem: First, we ensure load balancing 
across the peer clusters (inter-cluster load balancing) 
through the appropriate assignment of the document 
categories to the clusters; second, we ensure the load 
balancing among the peers that belong in the same 
cluster (intra-cluster load balancing), for all clusters. 

4. Finally, our intra-cluster load balancing and response 
time goals are achieved through the maintenance and 
exploitation of metadata describing the association 
between peer clusters and document categories, 
and/or the use of routing indices, as proposed in the 
literature. 

The maximum number of clusters in the system is 
tunable and predefined during the bootstrap of the system, 
while the number of document categories may expand at 
will. This means that a document category exists only 
when there are published documents associated with it. 
On the other hand, since the maximum number of clusters 
is constant during the lifetime of the system, we can 
assume that all clusters are created empty during the 
bootstrap phase and are dynamically populated with 
document categories over time. We should note here that 
peer clusters partition the domain of document categories, 
so that every category belongs to only one cluster. 
However, it is possible for a cluster to exist independently 
of its association to document categories (this could 
happen, for example, when the number of existing 
categories is smaller than the maximum number of 
clusters). 

 
1.3 The Contributions 
To our knowledge this is the first work that addresses the 
problem of harnessing all available resources contributed 
by the peers so to ensure efficiency of operation in this 
exciting new application area. Our main contributions are:  
1. A radically different proposal for architecting P2P 

systems. Our proposed architecture imposes a logical 
system structure based on the concepts of document 
categories, node clustering, and their associations.  

2. A formal description of the problem of inter-cluster 
load balancing and its solution. We utilize the 
fairness index of [25] as a novel metric for load 
balancing in our context. We show that a greedy 
algorithm achieves very good to excellent inter-
cluster load balancing across a wide range of 
scenarios. We also present additional mechanisms 



that can facilitate short response times and intra-
cluster load balancing. 

3. A study of the robustness of our solution to the 
dynamics of peers and content (omitted for space 
reasons), and 

4. The mechanism consisting of the additional 
architecture, algorithms, and protocols, which 
accommodate the dynamics of peers and content, 
maintaining the system’s efficiency on the fly. 

We offer evidence that show that our solution achieves 
our performance goals and is robust with respect to 
different distributions of the popularity of document 
categories, varying skew of access to documents, different 
scales (with respect to the number of documents, the 
number of nodes, the number of categories, and to the 
number of clusters), differing content contributions by 
nodes, differing node processing and storage capacities, 
and with respect to the dynamics of the environment. 

2. Related Work 
The problem of fair load distribution for P2P sharing 
systems has not been addressed extensively by related 
research and is an open problem.  

Recent work in P2P systems, like the overlay 
networks that have been designed to facilitate the 
development of P2P applications, (e.g., Tapestry [8], 
Pastry [3], CAN [28], and Chord [15]), focus only on the 
problems of query routing and object location to 
guarantee that if there exist results relevant to a query, 
these results will be returned. In these systems load 
balancing is addressed in a rather naive way, by simply 
resorting to the uniformity of the hash function utilized. 

The work in [29] is an exception to the above rule, 
addressing the problem of load balancing in order to face 
“flash crowds”. However, they assume a static system 
architecture and global knowledge. Our work aims to 
solve a much more general problem, as stated above. 

Typical systems such as Freenet [14] and Gnutella 
[13] might face serious difficulties when it comes to 
ensuring low response times, since requests are passed 
from peer to peer, until either one is found that stores the 
desired document(s), or a user-determined “number-of-
hops” count is reached and the system gives up. Our 
architecture will not burden the user with such difficult 
decisions and will ensure a response time within only a 
few hops for the common case and an upper bound on the 
number of hops for the worst case. 

The problem of the efficient search in a P2P network 
is also addressed in [1] by introducing the concept of 
routing indices, which allow nodes to forward queries to 
their neighbors that are more likely to have answers. Also 
[7] studies the same problem and demonstrates that some 
simple search algorithms from AI can offer big benefits 
when compared with the strategies of Gnutella and 
Freenet. The search protocols of [1, 7] can be applied to 
our architecture, as well. In [6] an analysis of “hybrid” 

P2P systems (i.e., P2P systems where some sort of 
centralized control still exists) is presented. [6] develops 
and validates an analytical model and uses it to compare 
various hybrid P2P architectures. 

Other related work in P2P systems is the system 
Gridella [17] and the project Piazza [30]. Gridella is a 
system that goes beyond the well-known Gnutella system 
and provides efficient and robust search by relying on a 
sophisticated data structure called P-Grid. Piazza is an 
ambitious project at the University of Washington with 
the goal of using successful ideas from database 
technology in the field of P2P computing.  

Another strand of project DIET, under which this 
work is carried out, studies P2P systems from the point of 
view of autonomous agents, built using a bottom-up and 
ecosystem-inspired approach [23, 9]. SWAN is a recent 
P2P lookup system implemented using the agent platform 
developed in DIET [12]. The system Anthill, presented in 
[22], also attempts to build P2P systems using ideas from 
nature-inspired computing (in particular, ant colonies 
[11]). So far a file sharing and a load balancing 
application have been built using Anthill [22, 2]. 

3. System Architecture 
The basic (technological and “philosophical”) principle of 
our approach that makes it radically different compared to 
other approaches towards a P2P system architecture is 
that, in order to achieve high performance in such a 
system, we need to impose a logical system structure, 
which can facilitate the achievement of our performance 
goals. This structure we propose consists of the peer 
clusters, the document categories, and their associations. 
The challenge is to ensure that this structure respects the 
autonomy of peers, the heterogeneity of their 
characteristics, and that the overall solution successfully 
addresses the difficulties presented earlier and facilitates 
the achievement of our performance goals. 

A fact that complicates our task is that there is no 
consensus in our community to resolve the debate for the 
most appropriate overall architecture for P2P systems. 
Some favor pure peer-to-peer, as opposed to hybrid peer-
to-peer architectures in which typically there exists a set 
of super peers, which are organized in their own P2P 
network and are burdened with additional chores, such as 
maintaining metadata and key knowledge for the proper 
system functioning [6]. Where this dilemma arises in the 
presentation of our architecture, we will be discussing 
solutions that fit both environments. 

We first present the architectural organization of our 
architecture, assuming a static system for reasons of 
simplicity. In Section 5 we deal with the dynamic 
behavior of the system. 

3.1 Peer Clustering and Document Categories 

The nodes of the system will be logically organized into a 
set C of clusters. All nodes belonging to the same cluster 



will be able to either serve all the retrieval requests for 
documents contributed by all the nodes of that cluster (for 
example, in the case the nodes can store all documents), 
or find another node that can. The latter can be achieved 
by having each node, or a distinct set of super peer nodes, 
store cluster metadata, describing which documents are 
stored by which cluster nodes. In the following we will 
assume this latter design choice and discuss the type of 
metadata needed and its use. Alternatively, if pure P2P 
solutions are favored, the same goal can be achieved 
using routing indices2 at the cluster’s nodes, routing 
requests for documents/categories to the proper cluster 
node(s).  

In the proposed architecture, clusters of nodes form 
storage collectives/repositories, and each cluster can store 
and thus serve requests for documents belonging to one or 
more document categories. Each category may belong to 
only one cluster. The nodes are assigned to clusters 
according to the categories of the documents they 
contribute. So, depending on how the categories are 
assigned to clusters, a node may belong to more than one 
cluster if it contributes documents associated with more 
than one category. 

 
3.2 Metadata description 
 
Each node maintains data structures in order to be able to 
communicate with other nodes and exchange information 
or find other nodes that hold desired information. Each 
node keeps the following metadata structures: 
• The Document Table (DT), mapping ids of 

documents stored locally to document categories. 
• The Document Category Routing Table (DCRT), 

mapping each document category to a cluster-id, 
where cluster-ids are pseudorandom numbers 
computed during the bootstrapping of the system. 

• The Node Routing Table (NRT), mapping each 
cluster-id to a list of node-ids (pseudorandom 
numbers computed during the bootstrap of each 
node) of nodes belonging to the cluster. 
For the moment, we assume that each document 

belongs to a single category. We will eliminate this 
assumption later.  

3.3 Query Processing 

Let us now give an example of how queries are processed 
in our system.  

User queries Q are submitted to the system through 
the users’ nodes and are of the form [(k1, k2 … kn), m, idQ], 
where ki are user-supplied keywords, m is the number of 
desired results, defaulting to and bounded by a system-
wide value (e.g., 50 results), and idQ is a pseudorandom 

                                                           
2 For routing indices and their use for a similar goal refer 
to [1]. 

number, uniquely identifying each query. Query 
processing is a two-step procedure: 
1. The requesting node does the following: 

a. It maps the keywords (k1, k2 … kn) to one or more 
semantic categories, si, using appropriate 
categorization tools (e.g, [27, 5, 32] - see section 
1.2, item (1)). 

b. Through its DCRT it finds the clusters of nodes 
with the semantic categories, si. 

c. It chooses a random node ni from each associated 
cluster, using its NRT, and sends the query to it. 
If no live node exists, the query will fail. The 
random selection of nodes can ensure that cluster 
nodes get an equal share of the workload 
targeting their cluster.  

2. The target node ni does the following: 
a. It matches the categories of the query against the 

semantic categories of its documents and finds a 
number a of resulting documents matching the 
query. 

b. If the number a of resulting documents is less 
than m, ni forwards the query to all of its known 
neighbors in the cluster, decreasing m by a. This 
will be recursively repeated until the desired 
number of document(s) is found or all reachable 
nodes of the cluster have been queried. Loops in 
query forwarding can be easily detected and 
broken using idQ. 

c. The final result set R is returned to the requesting 
node by node ni. 

For the time being, we assume that the metadata data 
structures of nodes are up to date.  

Note that, as a result of our architecture, in the worst 
case the response time will be bounded from above by the 
number of nodes in the larger cluster to participate. Thus, 
with this approach we can see that both (i) the load is 
balanced within a cluster and (ii) guarantees can be given 
to users with respect to worst-case response times. 

4. Fair Load Distribution 
In order to ensure the high performance of the system, we 
have to avoid bottlenecks and balance the load across all 
system nodes. Load in our case is the number of retrieval 
requests served by a node of the system. This goal can be 
partly achieved by associating the document categories 
with clusters of nodes, in a manner that ensures a fair 
distribution of the document-category popularities to the 
clusters of nodes. We refer to this property as inter-cluster 
load balancing. 

With the term intra-cluster load balancing we mean 
that, for each cluster, all the nodes that belong to it receive 
on average (approximately) the same number of requests 
from the total requests that target this cluster. With the 
term global load balancing we mean that the average load 
of all the nodes that belong to the system must be as 
uniform as possible. Global load balancing is achieved by 



independently achieving inter-cluster and intra-cluster 
load balancing.  

In the following we assume that all the nodes of a 
cluster have enough storage capacity in order to store all 
the documents of the cluster. In Section 4.3 we eliminate 
this assumption. Thus, when a query reaches any node of 
the cluster, it will be answered locally from the queried 
node. So, if the query is initially forwarded to a randomly 
chosen node of the cluster, then the load will be balanced 
among the nodes of the cluster as described in Section 
3.3. So, intra-cluster load balancing will be achieved and 
henceforth we concentrate on the problem of inter-cluster 
load balancing. 

4.1 Formal Problem Formulation  

We now formally define the problem of inter-cluster load 
balancing. In order to gain insight on the complexity of 
the problem and leverage known solutions, we first make 
a few simplifying assumptions which lead us to the NP-
Completeness result and to known heuristics for the 
problem. Later, we form our solution by extending known 
heuristics and drop the simplifying assumptions. 

As we already said above, we initially assume that 
peers have the same processing and storage capacities, 
and enough storage space to store all documents of the 
categories to which they contribute. We will do away with 
all these assumptions in Section 4.3. 

We denote with |A| the number of elements of the set 
A.  Our system will store a set D of sharable documents. 
The |D| documents are contributed by a set N of 
peers/nodes. Each node in the system is a user’s 
computer. Nodes can contribute more than one document 
to the system. The |D| sharable documents of the system 
belong to a set S of categories. This is captured by a 
function f: D → S that maps each document to one or 
more document categories. Each document d is associated 
with a popularity, [ ]10∈ ,p(d) , which gives us the 
probability that a user will want to retrieve d. We will 
denote with p(s) the total popularity of semantic category 
s. This popularity is equal to the sum of the popularities of 
the documents it consists of. In other words, 

∑
=

=
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sdfd

dpsp . If a document belongs to more 

than one semantic category, its popularity is evenly 
distributed among them. We denote with D(n) and S(n) 
the set of all the documents and categories that are stored 
by node n. We will denote with Di(n) the set of documents 
whose categories are assigned in cluster ci and are stored 
in node n and Si(n) denotes the subset of S(n) that is 
assigned to cluster ci. Each node n has a popularity 

[ ]10∈ ,p(n)  that is equal to the sum of the popularities of 

its documents. Formally, ∑
∈

=
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Si be the set of all semantic categories belonging to cluster 
I, and ∑
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iSs
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4.2 Complexity Results 

We now define the inter-cluster load balancing problem 
(ICLB) formally. 
The Decision Problem ICLB 
Instance: Assume a set N of nodes and a set D of 
documents contributed by the nodes in N. Each document 

Dd ∈  has an associated category f(d) from a set of 
categories S and a popularity [ ]10∈ ,p(d) . For simplicity 
reasons we assume that each node contributes documents 
belonging to a single semantic category, that all nodes 
have the same processing and storage capacity, and that 
each document may belong to a single semantic category. 
Question: Is there a partition of N into k clusters N1, N2, 
…, Nk such that the following two constraints are 
satisfied? 
1. If two documents belong to the same category, then 

the nodes that contributed/store these documents 
belong to the same cluster.  

2. Clusters have equal normalized popularities. 

Formally, 
( ) ( )

j

j

i

i

N

Sp
N
Sp

= for all 1 ≤ I, j ≤ k. 

The load-balancing objective formalized by ICLB is to 
create k clusters of peers/nodes that will have equal total 
popularity and consequently equal load. But not all 
clusters are of equal size. So the popularity should be 
normalized with respect to the number of nodes in the 
clusters so that the average load faced by each peer/node 
in the system will be equal. Thus, we want the clusters 
that will be created to have equal normalized cluster 
popularities and this is captured by the second constraint 
above. 
Proposition. ICLB is NP-complete. 
Sketch of Proof. Membership in NP is straightforward. 
To prove NP-hardness we use a transformation from the 
BALANCED PARTITION problem3. This problem is a 
generalization of the PARTITION problem given in [21].
 ■ 

In the inter-cluster load-balancing problem as defined 
above, the normalized cluster popularities are constrained 
to be equal to each other. An alternative way of looking at 
this issue, would be not to equate but rather to balance the 

normalized cluster popularities, 
( )

i

i

N

Sp
, among the 

clusters. This balancing can be performed according to 
any metric of “fairness” such as the ones compared in 
[24]. In this paper, “fairness” is measured according to the 

                                                           
3 The proof is due to Apostolis Dimitromanolakis.  
 



fairness index of [25] which is defined as follows. Let r 
be a resource to be shared among n individuals and x be a 
random variable giving the amount allocated to each 
individual (where xi gives the amount allocated to 
individual i). The fairness index of x is then given by the 
following formula: 

( )( )
( )
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In our problem setting, r stands for the load, n stands 
for the number of clusters, and xi for the normalized 
popularity of cluster ci.   

The value of the fairness index is always between 0 
and 1. The closer the value is to 1, the fairer the load 
distribution becomes (with 1 giving total fairness). Values 
closer to 0 are less fair. As an example, if the fairness 
index is 0.20 it means that the load distribution is fair 
(unfair) for the 20% (80%) of the nodes in the system. 
The fairness index represents a global property of the 
system and naturally captures the essence of load 
balancing. In our current work we revisit the issue of 
fairness using majorization that has been shown to be 
stricter than other fairness metrics such as the fairness 
index [24]. 

4.3 Accounting for Different Peer Processing and 
Storage Capacities and Content Contributions 

So far, we have assumed that all the peers in the system 
are equivalent, in that they all have the same processing 
and storage capacity, that each node contributes 
documents of a single category, and has enough storage 
space to store all documents of this category. However, in 
the general case, the system will consist of nodes that will 
have different storage capacities and processing power 
and that will contribute documents belonging to 
categories assigned to different clusters. Our approach to 
deal with this situation is as follows. 

Each node n stores a set of documents, D(n), whose 
categories may be assigned to different clusters. If, say, 
some documents of n are assigned to cluster c1 and some 
to cluster c2 then D1(n) and D2(n) represent the documents 
stored by n which are assigned to c1 and c2 respectively. 
Moreover, each node is modeled as having a number of 
processing capacity units, measured in relation to some 
reference point (e.g. clock speed, cpu benchmark 
performance, etc.). Thus, in this case, the normalized 
cluster popularities are given by: 

( )

( )∑
∈ )(
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where p(D(k)) and p(Di(k)) represent the popularity of the 
document sets D(k) and Di(k), uk is the number of 
computational units of the node k, p(Si) is the popularity 

of the set Si of the semantic categories belonging to cluster 
i, and Ni is the set of nodes belonging to cluster i. 

We naturally expect that each node will be able to 
store locally at least the documents it contributes. The 
additional storage capacity that exists in some nodes will 
be used to store replicas of some of the most popular 
documents within the cluster.  

The astute reader will notice that the achievement of 
intra-cluster load balancing in this case can no longer be 
guaranteed by the mechanism presented in Section 3.3, 
which randomly selects a node, between those storing a 
replica of the desired document within the cluster, and 
forwards the request to it. The reason for this is that the 
different nodes of the cluster can store content whose total 
popularity differs.  

Our solution for the intra-cluster load balancing 
problem here is based on storing popular document 
replicas in such a way that ensures that the total content 
popularities stored by any two nodes of a cluster are 
(almost) equal.  

In this way, the mechanism presented in Section 3.3 
continues to suffice to ensure intra-cluster load balancing. 
In essence this document replica placement strategy 
determines the values for the sets D(n), and Di(n) for all 
nodes n and all clusters ci in the above formula. 
Furthermore, this solution must also ensure that the 
storage space requirements imposed by it onto the nodes 
are very small.  

The details of the proposed solution are as follows. 
We expect that there is a number reflecting the desirable 
number of replicas, n_reps, for each document (assume 
for simplicity that this number is the same for all 
documents). Then, for each cluster ci and for every 
category s, which is stored in this cluster and which 
contains n_docs documents, each with size size_of_doc, 
the total storage space required to store s is equal to: 

docofsizerepsndocsnssize ____)( ××=  
 We divide this storage size into │Ni│ pieces, one per 

each node of this cluster. Thus, the popularity of a node k 
p(k) depends on the documents k stores. If the popularity 
distribution of the documents in s is uniform, then for any 
two nodes k1, k2, we have p(k1) = p(k2) and we are done.  

If the document popularity distribution in s is skewed, 
we select the m most popular documents in the category, 
whose total popularity covers a significant percentage of 
the document probability mass (e.g., 35%). Subsequently, 
we place one replica of these m documents in all nodes of 
the cluster. In our experiments we have found that less 
than 10% of all documents typically total more than 35% 
of the document probability mass for practically all 
realistic different Zipf distributions. Thus, the end result 
of this policy is that the expected load to be received by 
the nodes of this cluster is effectively balanced between 
the cluster nodes. 

The following example illustrates the storage 
requirements this approach puts on the nodes. 



Example.  Consider a system with 2,000,000 
documents, 200,000 nodes, 2,000 categories and 500 
clusters, n_docs = 1,000, n_reps = 5, and which stores 3-
minute MP3 documents with size_of_doc = 4MB. Then 
for every category s, size(s) = 20GB. Assuming each 
cluster consists of 200 nodes, i.e., │Ni│=200, each node 
in the cluster receives originally 100 MB of data. The 
requirement to store the m = 100 (10%) most popular 
documents costs an additional 400 MB for each node, 
bringing the total storage requirement to 500 MB per 
node, per category stored in the cluster. Since on average 
4 categories are placed in a cluster, the total required 
storage space amounts to 2GB, a very small percentage of 
current disk space. ■ 

4.4 The MaxFair Algorithm for Inter-cluster Load 
Balancing and its Performance 

We have developed a greedy algorithm, called MaxFair, 
for inter-cluster load balancing based on maximizing the 
fairness index as defined in section 4.2. MaxFair works as 
follows. It considers each category in turn and assigns it 
to a cluster of nodes (O(|S|) time). The criterion for this 
assignment is the “maximum fairness” among the 
normalized cluster popularities, as they emerge after this 
assignment. When a new category must be assigned to 
one of the clusters, all the possible assignments are tested 
(O(|C|) time) and finally it is assigned to the cluster 
yielding the maximum fairness for the normalized cluster 
popularities (O(|C|) time), between all possible 
assignments. The MaxFair algorithm is not executed in a 
distributed manner. MaxFair is incomplete but its worst-
case time complexity is O(|S|×│C│2) where │S│ is the 
number of categories and │C│ is the number of clusters. 
Additionally, it performs very well for a variety of 
scenarios as we show below. 

Performance Study Setup 

In all the experiments we perform, the popularity 
distribution of documents follows the Zipf distribution 
with the Zipf parameter value equal to 0.8. (We note that 
the Zipf parameter values, which have been found to 
adequately capture the distributions of accesses for web 
objects range between 0.6 and 0.8) [19, 31]. Since we 
can’t know in advance how the documents are mapped to 
categories, we also can’t know the popularity distribution 
among the document categories. Thus, we test our 
algorithm using two scenarios.  

In the first scenario, we initially use a Zipf distribution 
for the category popularities with a value for the Zipf 
parameter θ equal to 0.7. This is a worse case scenario 
since it is highly likely that the categories will contain a 
mixture of popular and unpopular documents, resulting in 
a category popularity distribution that is much less 
skewed than the one with θ=0.7. 

In this first scenario, each document is associated with 
a category using a random number generator and taking 

into account the popularity of the categories as this is 
given from the initial Zipf distribution of the category 
popularities. It should be noted that the final category 
popularity distribution created in this way is Zipf-like, 
with several “spikes” in the popularities of categories, 
which give a significantly higher popularity for a large 
number of categories than what was predicted by the 
original Zipf category popularity distribution. The results 
are shown in Figure 1. 

In the second scenario, we have a random assignment 
of documents to categories, which results in a near-
uniform distribution of documents into categories. The 
results are shown in Figure 2. 

We have tested a number of different configurations. 
The system configuration we present here consists of 
│D│=200,000 documents, │N│=20,000 nodes/peers, 
│C│=100 clusters, and │S│=500 semantic categories. 
Each one of the nodes has a relative processing capacity 
that is randomly chosen in the range [1...5]. Each node 
contributes a random number of documents, which span 
various categories (between 1 and 20). Note that this 
configuration corresponds to a system that is of much 
larger scale in terms of the number of nodes in it. This is 
so, since these 20,000 nodes are the “altruistic” nodes 
contributing (documents, disk storage space, and 
processing capacity) to our system. It is well known that 
the greatest percentage of nodes in systems like Napster 
and Gnutella, for example, were “free riders” [10] – these 
free riders are not included in our algorithms managing 
content and computational/storage resources. Please also 
note that, the larger the scale of the system, the easier the 
load balancing problem becomes. 

Discussion of the Results 

In general, for all the tested cases the fairness achieved by 
MaxFair is greater then 95%. 
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Figure 1: Normalized cluster popularities for a Zipf-like 
(θ=0.7) popularity distribution for the category 
popularities 

 
Also, as the number of categories and the number of 

clusters increases, the achievable fairness increases, as 
well; this is as expected, since with greater numbers of 



categories and clusters the balancing problem becomes 
inherently easier (there are more and smaller popularity 
values to be assigned to more clusters). However, even for 
small values of these parameters (50 clusters, 200 
categories), the achievable fairness was above 90%. 
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Figure 2: Normalized cluster popularities for a random 
popularity distribution for the category popularities 
 

In Figures 1 and 2 we show the results for a skewed 
assignment of documents to categories and for a Zipf 
distribution of category popularities. The results testify to 
the very good performance of MaxFair. 

As mentioned, we have also evaluated MaxFair under 
different access-distribution skews for documents and 
categories, cluster population configurations, scaling 
factors (on the number of documents, the number of 
nodes, the number of categories, and the number of 
clusters). We omit the results for space reasons. The 
general conclusion is that the MaxFair algorithm can (i) 
achieve very good to outstanding performance, and that 
(ii) its performance is robust across a wide range of 
system and problem parameter values and configurations. 

5. Accommodating the Dynamics of Peers 
and Content 

We now develop the additional mechanism, consisting of 
a cluster architecture, algorithms, and protocols necessary 
to dynamically adapt to the changing environment so that 
inter-cluster load balancing is ensured continuously. In 
particular, we consider the following three cases: 
1. The content popularity varies. 
2. The content population varies (documents can be 

added or deleted). 
3. The peer population varies (nodes can be added or 

deleted). 
The same approach is used for all of these cases. Due to 
space limitations, we present here only the solution for the 
first case. However, we have designed and developed 
publish/revoke and join/leave protocols, accounting for 
the content and peer populations’ variations respectively. 

5.1 Content Popularity Variations 

In order to handle the complexity and the associated 
overheads of content popularity variations, we adopt a 
hierarchical organization for the nodes in the clusters: at 
the top of the hierarchy, each cluster has a node, called the 
leader of the cluster.  

5.1.1 Cluster Leader Election 

The selection of the cluster leader is done as follows: 
Leaders are elected periodically (e.g., every day). Before 
the end of a period, nodes inform their cluster neighbors 
(the nodes in the cluster appearing in the node’s NRT) of 
their computing, storage, and bandwidth capabilities, 
while also forwarding relevant information received by 
other nodes. Thus, over time, all nodes of the cluster have 
a quite clear picture of the status of all nodes in the 
cluster, as far as processing, storage, and bandwidth 
capabilities are concerned. When the time has come for 
the system to enter the adaptation stage, the most 
powerful node in each cluster is chosen to be the leader of 
the cluster (thus a node can be the leader in more than one 
cluster). Note, that this process may result in more than 
one peer believing to be the cluster leader (due to network 
partitionings, or when peers decide with incomplete 
information, for example). However, this poses no 
problem.  

During the adaptation stage, nodes probe their cluster 
leaders to assure they are alive. In the case of a leader 
failure, another node is selected to be the new leader. This 
can be the next more capable node, or a node close to the 
leader in the tree hierarchy4 (i.e., one that has most of the 
information needed for the adaptation and needs to send 
out only a small number of messages to acquire all 
remaining information). Furthermore, this guarantees that 
all nodes of a cluster know which node is currently their 
leader. 

Note that the selection of the cluster leader is 
performed on-the-fly when needed and assumes no 
previous explicit structure or knowledge. Thus this is 
indeed a pure P2P solution, since all nodes can become 
their clusters’ leaders at some time and the parent-
children relations are dynamic. 

5.1.2 Dynamic Adaptation 

Our approach is structured into four phases: a per-cluster 
monitoring phase, a leaders’ communication phase, a 
fairness evaluation phase, and a load-rebalancing phase. 
In the following we present step by step the four phases of 
the adaptation mechanism. We assume that nodes keep 
statistics of the retrieval requests they served, broken 
down into per-category hits (implemented as per-category 
hit counters). 
 
 
                                                           
4 To be presented later. 



Phase 1. Per Cluster Monitoring 
The leaders send to their cluster nodes a request for 

their hit counters. The request message is recursively sent 
from each node to its cluster neighbors, while loops in the 
graph are detected and broken by dropping request 
messages that have been seen again at a node. This results 
in the dynamic, on-the-fly creation of a tree structure from 
the cluster graph, where nodes consider the source of the 
request query to be their parent and the target of the 
forwarded queries to be their children.  

Since the creation of the tree structure is orthogonal to 
its actual functionality, we can alternatively assume a 
preexisting tree structure, such as the one suggested in 
[26]. 

Eventually, the leader node ends up with the set of 
total per-category hits for the whole cluster in the last 
period. Naturally, these hit counter values reflect the 
current popularity of the categories that have been stored 
in the cluster. 

The above description covered the no-failure case. As 
alluded to earlier, failures and faults may result in the 
physical partitioning of clusters, resulting in turn in the 
creation of multiple trees (sub-clusters) per cluster, which 
will participate independently in the adaptation process. 
Ensuring fault tolerance operation in P2P systems 
efficiently, is largely an open problem and certainly 
outside the scope of this paper. Here we only mention that 
there are mainly two alternatives: (i) allow sub-clusters, in 
different physical partitions, to form their own trees and 
proceed in the next phases of the adaptation, described 
below, and when the partitioning is resolved reconcile 
their actions, merging their trees; and (ii) impose limits 
(e.g., on the number of peer participants) so to reduce the 
possibility that more than one tree per cluster participates 
in the adaptation phases. In the following, we refer to a 
“cluster”, and its “leader” but readers should keep in mind 
that it could be only a “sub-cluster” in the presence of 
failures. 
Phase 2. Leader Communication Protocol 

The leader nodes of clusters communicate with each 
other in order to share their clusters’ load figures. In 
system configurations with fewer but larger clusters this 
can be done using traditional multi-cast protocols 
involving all leaders. For systems with very large 
numbers of clusters, the load information exchange can be 
done through “epidemic-style” protocols, enabling leaders 
of neighboring clusters to know about each other’s load. 
Thus, at the end of this phase all communicating leaders 
know the current load distribution among their clusters 
and the load distribution among the document categories. 
Note that, since nodes in a cluster know their leader 
during adaptation, a cluster leader needs only contact one 
random node in every cluster to discover the cluster’s 
leader. 
Phase 3. Evaluation of fairness 

A chosen leader (e.g., the leader of the cluster with the 
highest normalized popularity either among all clusters or 

among the clusters in a “neighborhood”) measures the 
fairness index value. If it is above a low-threshold value 
(e.g., 90%) nothing is done. Else, the rebalancing phase is 
entered). 
Phase 4. Load rebalancing among clusters 

In this phase, the leader with the highest normalized 
popularity runs a variation of the MaxFair algorithm, 
called the MaxFair_Reassign algorithm, with which 
categories are reassigned to new clusters so that the load 
is balanced and fairness increases.  

 
Algorithm MaxFair_Reassign 
While ( fairness < upper threshold AND moves < 
max_moves ) 

1. Among all clusters, find the cluster ci with the 
highest normalized cluster popularity. 

2. For every semantic category s of cluster ci: 
a. For every cluster cj different than ci: 

i. Do dummy reassigns of s to cj, recompute 
the resulting fairness values and keep the id 
of the cluster, m, during the move that gave 
the better result. 

3. Actually reassign s to cm (the procedure of 
moving around categories will be discussed 
later). 

4. Update the normalized popularity of ci and cm 
and recalculate the fairness value. 

5. Increment moves. 
End while 

 
The algorithm is greedy in the sense that it tries at each 
step to achieve the maximum gain in balance by making 
the best reassignment in terms of which category to 
reassign and to which cluster to reassign it and that it 
selects, at each iteration, a category from the cluster with 
the highest normalized cluster popularity. 

Our primary concern was to ensure fast rebalancing, 
which implies that only a very small number of categories 
need be moved, since this will be the source of the 
associated cost. 

Algorithm MaxFair_Reassign updates only the 
metadata kept by the nodes in the affected clusters. In this 
way, we avoid having to perform very large volume 
transfers, all in once, as a single transaction. Instead, we 
adopt a lazy rebalancing protocol, as will be explained 
below.   

 
Lazy Rebalancing Protocol 
After running MaxFair_Reassign: 
1. Within the “source” cluster, all the nodes will be 

notified and update their metadata to reflect that the 
moved category is no longer to be served by this 
cluster’s nodes. “Trace data” will be included 
pointing to the “destination” cluster to which the 
category has moved. Within the “destination” cluster 
all nodes’ metadata will be also updated to reflect the 
reassignment. 



2. Recall from Section 4.3 that the set of documents of 
each category have been partitioned into groups and 
different groups have been stored in the nodes of the 
“source” cluster. The transfer of these groups to the 
nodes of the “destination” cluster will occur by 
pairing nodes between the two clusters with each 
“source” node delivering its group to the 
“destination” node. These transfers can be taking 
place in parallel and can be scheduled for the first 
opportune time. The goal of this step is to break 
down a very large transfer to a number of much 
smaller transfer tasks. The transfer of higher 
popularity groups can be scheduled first, so to ensure 
faster rebalancing. The pairing between nodes in the 
source and destination clusters can be achieved in 
several ways, either using cluster node metadata 
found at super peers, or searching in pure peer-to-
peer form by each node based on information 
exchanged by the leaders in phase 2 of the adaptation 
process. 

3. Future requests for this category’s documents will be 
initially coming into nodes of the “source” cluster 
from nodes of other clusters that were not notified of 
the reassignment. These requests will be forwarded to 
the “destination” cluster as follows. A node, say n, of 
the “destination” cluster will be randomly selected 
(among those that have been chosen to store the 
requested document) and the request and the id of the 
requesting node will be forwarded to n.  

4. When a node n from the “destination” cluster 
receives a request, if n actually stores the requested 
document(s) (i.e., step 2 has reached n for the 
requested documents) it will send the reply to the 
requesting node. Else, n will explicitly request the 
document(s) from its coupling node in the “source” 
cluster, store, and then return the document(s) to the 
requesting node. It will also piggyback onto the reply 
the update in the metadata information reflecting the 
reassignment. 

5. Periodically, all the nodes in the cluster send to their 
neighboring nodes updates to their metadata 
information that they have collected from the 
piggybacked responses to their requests. The nodes 
merge the information (resolving conflicts, as is 
explained below) and propagate it. This epidemic-
style protocol eventually guarantees that all nodes of 
the cluster become aware of all metadata information 
updates. 

Conflicts may arise in the metadata updates received 
from different neighbors of a node of a cluster during step 
5 above (e.g., when a category has moved twice and one 
descendant node in the cluster is informed of the first 
move while another descendant node is informed of the 
second move). In order to facilitate conflict resolution, we 
extend the DCRT of each node to keep a per-category 

move_counter. When a category is moved to a new 
cluster the new cluster’s nodes store as part of the 
metadata for this category a move_counter (incremented 
by one in step 1 above, for every move MaxFair_Reassign 
decides). Thus, to resolve conflicts, the metadata 
information with the highest move counter value is kept at 
the ancestor node. 

5.1.3 Discussion 

Having “traditional” distributed systems in mind, one 
might view the costs associated with rebalancing (i.e., the 
transfer of potentially thousands of documents) as 
prohibitively costly. However, we stress that P2P content 
sharing systems are definitively characterized by very 
large document transfers. For example, users routinely 
“download” up to hundreds of megabytes. Our effort, as 
exemplified in step 2 above, is intended to break down a 
huge “rebalancing” data transfer to a number of smaller 
ones, which mimic routine transfers to satisfy user 
requests.  
 
Example. To illustrate this further, consider an example 
system with 200,000 nodes grouped in 400 clusters, each 
with 500 nodes. The documents have a size of 4MB (e.g., 
3-minute MP3 clips). Let us suppose further that 
MaxFair_Reassign selects to reassign 10 categories, with 
each containing 1000 documents and that all documents 
are desired to have a minimum number of two replicas. 
This creates a data transfer for each reassigned category 
of 8GB (1000 * 4MB * 2). This large data transfer is 
broken down to 500 transfers (to the 500 nodes of the 
destination cluster) of 16MB each. Since 10 categories are 
reassigned, up to 5,000 pairs of nodes may be engaged in 
this transfer. Thus with our approach, in the example 
system of 200,000 active nodes engaged in content 
sharing, the major rebalancing cost, owing to the data 
transfers, “masquerades” as an increase of 2.5% on the 
active users, engaged in small-to-medium-size data 
transfers of 16MB each. ■ 

5.2 The Performance of Rebalancing  

In this subsection we present some results regarding the 
performance of our load rebalancing approach. We focus 
on the internals of the MaxFair_Reassign algorithm, and 
in particular, on the number of reassignments required to 
ensure that the fairness of the inter-cluster load balancing 
is within acceptable levels (i.e., within the upper and 
lower thresholds). 

In Figure 3, we present five experiments with each 
experiment producing an initial configuration, and inter-
cluster load balancing performed by MaxFair for the 
“challenging” case defined by an initial skewed Zipf 
popularity distribution among the documents and among 
the categories (θ = 0.8). In all experiments the reason for 
requiring load rebalancing was the addition of new 
documents, the total popularity of which amounts to 30% 



of the total document popularity, and which are 
distributed randomly to the categories. 

The upper and lower threshold values for the fairness 
are 92% and 83% respectively. The system consists of the 
same number of documents, categories, clusters, and 
nodes as for the test cases in Section 4.  

It should be apparent that the above scenario 
represents a very challenging test case for our approach. 
The expected changes in a real system will bring about a 
significantly lower change than the one captured by the 
above test case. 
 

 
Figure 3: The MaxFair_Reassign algorithm, when the 
30% of the popularity mass changed, for five different 
experiments. 

 
The results show clearly that the number of 

reassignments required in order to maintain very high 
load distribution fairness among the clusters is small (7 or 
8). Finally, because:  
1. The fairness of the initial inter-cluster load 

balancing achieved through algorithm MaxFair is 
very high, 

2. With a small number of reassigned categories the 
algorithm MaxFair_Reassign can improve fairness 
significantly, and 

3. The cost for each category reassignment is small, as 
argued above, 

we can conclude that the overall cost of our solution for 
rebalancing the load is small.  

6.   Conclusions 
The P2P paradigm is becoming increasingly popular for 
developing internet-scale applications. P2P content 
sharing systems, as popularized by the initial endeavors of 
Napster, Gnutella, etc., are receiving increasing attention 
from academics and industry as an important class of 
internet data management applications. 

In this paper we have presented the problem of 
managing content and resources in P2P sharing systems 
so to ensure the efficiency of operation. Efficiency is 
viewed both from the point of view of the system, in the 
sense of ensuring globally fair load distribution among all 

peers, and from the point of view of the users, in the sense 
of facilitating low user-request response times. 

We have presented (i) an overall system architecture, 
(ii) a formal problem formulation, and, (iii) algorithms, 
protocols and mechanisms that achieve our performance 
goals. To our knowledge this is the first paper that tackles 
the load distribution problem head on and at the same 
time facilitating fast response and giving worst-case 
guarantees for the response times user queries suffer. 
Achieving these goals is a formidable challenge given the 
need to respect the autonomy of peers, their heterogeneity 
(in terms of storage and processing capacity), the peer 
population dynamics (e.g., peers enter and leave the 
system at their free will), and the content population 
dynamics (e.g. documents being added/deleted at any time 
and document populations are varying with time). 

Finally, we have also presented the additional 
architecture, algorithms, and protocols necessary to 
accommodate the dynamics of the environment (peer 
population changes, content population changes and 
content popularities changes) and we presented arguments 
regarding the efficiency of our approach. 

We believe the above constitutes the first effort that 
addresses comprehensively the problems of fair load 
distribution and low response times in P2P systems and 
that enough evidence has been presented that testifies to 
its benefits. We put it forward as a radically-different 
proposal for architecting P2P sharing systems. However, 
to complete our approach, a large number of issues, of 
both theoretical and “systems” flavor, remain open. These 
include, (i) the development of optimal algorithms for 
inter-cluster load balancing and heuristics achieving near-
optimal performance; (ii) optimal system configurations, 
in terms of the number of clusters versus the number of 
nodes per cluster; (iii) epidemic-style algorithms (a la 
Freenet and OceanStore[16]) for leader collaboration in 
systems with very large numbers of clusters, (iv) 
alternative architectures for each cluster, (v) alternative 
definitions/metrics for fairness and related algorithms, (vi) 
the optimal “granularity” (i.e., whether nodes, documents, 
or whole categories should be moved) when correcting 
imbalances between clusters, (vii) alternative, more 
space-efficient document placement policies and related  
algorithms that guarantee intra-cluster load balancing, and 
(viii) cache placement and replacement algorithms that 
can complement our architecture. Future efforts should 
also involve the implementation of “champion 
applications” and the empirical evaluation of the system’s 
performance. We call on the community to join us in 
tackling these research problems. 
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