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Abstract

With the rapid increase in the use of inexpensive,
location-aware sensors in a variety of new appli-
cations, large amounts of time-sequenced location
data will soon be accumulated. Efficient indexing
techniques for managing these large volumes of
trajectory data sets are urgently needed. The key
requirements for a good trajectory indexing tech-
nique is that it must support both searches and in-
serts efficiently.

This paper proposes a new indexing mechanism
called SETI, a Scalable and Efficient Trajectory
Index, that meets these requirements. SETI uses
a simple two-level index structure to decouple the
indexing of the spatial and the temporal dimen-
sions. This decoupling makes both searches and
inserts very efficient. Based on an actual imple-
mentation, we demonstrate that SETI clearly out-
performs two previously proposed trajectory in-
dexing mechanisms, namely the 3D R-tree and the
TB-tree.

Unlike previously proposed trajectory indexing
structures, SETI is a logical indexing structure
that uses existing spatial indexing structures, such
as R-trees, without any modifications. Conse-
quently, DBMSs that currently support R-trees
can easily implement SETI, making it a both a
practical and an efficient choice for indexing tra-
jectory data sets.
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1 Introduction

The need to accurately determine location has been a crit-
ical part of exploration endeavors since the early days of
human history. The advent of satellite and atomic clock
technologies in the second half of the last century lead to
the development of satellite-based location determination
techniques, such as the GPS [10]. For a long time, the
GPS technology was only available for military applica-
tions, but since May of 2000 it has become possible for
civilian GPS receivers to accurately identify the location
of a GPS receiver within a few meters. GPS technology
is quickly enabling a number of new applications, includ-
ing tracking fleets of vehicles, navigating boats and ships,
and tracking wildlife. Another popular application of this
technology is in cellular phones with embedded GPS sen-
sors. In the United States, cellular phones are now required
to be E911-enabled. E911 is a federally mandated require-
ment [8] which states that cellular phone companies must
be able to locate the geographical location of the cellular
phone user with an accuracy of a few hundred meters in
most cases. In case of an emergency, E911 will provide
better location information to the emergency workers.

While GPS works well for computing the location in
the outdoors, determining location when inside a build-
ing requires using other techniques. A popular technique
for determining location indoors is using ultrasonic, or
radio frequencies, or a combination of these two tech-
niques [2, 13, 23, 31]. Location information produced by
these techniques can be very accurate; for example, the
BAT system [13, 31] can compute locations that is usually
accurate within 9 cm of the actual location! The availability
of indoor location information is also giving rise to a new
class of applications, such as asset tracking and context-
aware applications that adapt to the users needs as the user
moves around in physical space. Rapid advances in semi-
conductor technologies have made it possible to build such
location-computing devices for a small price, making mass
deployments of such devices possible.

Using these location-computing techniques, as an ob-



ject moves around in space we can gather the successive
location positions of the object. These successive locations
can be viewed as a sequence of line segments that collec-
tively form the trajectory for that object. Thus, a trajectory
segment for an object moving in a k-dimensional space is
essentially a line in a k + 1-dimensional space, with time
as the additional dimension. In the last few years, we have
seen a rapid increase in the deployment of location-sensing
devices and applications that make use of this information,
and this trend is likely to accelerate in the near future. As
a result, we will soon be faced with the task of manag-
ing large volumes of trajectory data. For example, if one
were to continually collect GPS sensor readings from a fleet
of one hundred thousand trucks, transmitting their location
every minute, then the data set grows by 144M new seg-
ments every day. Such trajectory data sets can be used in a
number of ways, including analyzing factors that contribute
to accidents and examining factors that lead to missed de-
livery targets. If the trajectory data is combined with data
from other instruments in the vehicle, such as the odometer,
the braking system, and the fuel gauge, then this informa-
tion could be used to identify factors that contribute to poor
fuel consumption.

Indexing techniques have been used very effectively for
managing large data sets in other application domains, and
it is natural to expect that indexing techniques will play a
crucial role in managing trajectory data sets too. In this
paper we address the issue of efficiently indexing large tra-
jectory data sets. We propose and present a new indexing
structure called SETI, a Scalable and Efficient Trajectory
Index, that decouples the indexing of the spatial dimen-
sions from the time dimension. SETI partitions the spa-
tial dimension into static, non-overlapping partitions, and
for each partition, it builds a sparse index over the time
dimension. Any spatial index can be used for this sparse
index, including the R-tree [12], and its variants like the
R*-tree [4].

The SETI indexing technique has the following key fea-
tures and advantages over other trajectory indexing tech-
niques:

• Since the objects that are actually indexed are one-
dimensional time lines, the indexing structure does not
suffer from the curse of dimensionality [5], which causes
the performance of indexing structures to degrade rapidly
as the number of dimensions increases.

A straightforward way of indexing trajectories is to store
each trajectory segment in a 3D R-tree [12], and then
use standard R-tree search algorithms. Based on an im-
plementation in SHORE [7], we show that SETI clearly
outperforms this indexing approach.

We have also implemented a recently proposed trajectory
indexing structure, the TB-tree [21], in SHORE, and in
this paper we present the results comparing the perfor-
mance of SETI with the TB-tree. The performance com-

parisons show that SETI also convincingly outperforms
the TB-tree.

• Updates to trajectories tend to be append operations that
add new segments to the ends of existing trajectories. To
support high append rates, SETI keeps the last location of
each object in an in-memory front-line structure. When a
new location update for an object is available, we look up
the last position of that object in the front-line structure
and add the trajectory segment to the SETI index. Since
we only use a sparse R*-tree index on the time dimen-
sion, such updates are very fast.

• The index scales well to handle large trajectory data sets
because of the use of multiple sparse indices. We show
that SETI scales well both with increasing number of
mobile objects (actual users or devices) and increasing
trajectory sizes (i.e. increasing number of segments per
trajectory).

• Finally, SETI can be viewed as a logical indexing struc-
ture that can be built on top of an existing spatial index-
ing techniques, such as an R-tree. Consequently, imple-
menting SETI is much easier than implementing a new
physical indexing structure. In addition, existing tech-
niques for concurrency control that have been developed
for R-trees [15, 16] can be directly used by SETI.

The remainder of this paper is organized as follows: The
problem definition and related work are presented in Sec-
tion 2. The SETI indexing mechanism is presented in Sec-
tion 3. Section 4 presents the experimental results based on
an actual implementation of SETI, 3D R-trees and the TB-
tree. Finally, Section 5 contains our conclusions and plans
for future work.

2 Problem Definition and Related Work

2.1 Data Model

Trajectory data for moving objects is continuously chang-
ing between any two successive updates of the location of
the mobile object. This poses a problem in representing
the location of the object at all times because most conven-
tional models for data representations are static in nature.
A commonly used model for representing trajectory data
approximates the motion of an object as a straight line seg-
ment between two consecutive updates [11, 14, 19, 21, 22,
24]. In this paper, we also use this model for representing
trajectories. The position of a moving object is sampled
at discrete times, and a series of straight lines connecting
successive positions represents the movement of the ob-
ject. Here after in this paper, this line is referred to as a
segment, and the sequence of the connected segments for a
single moving object is referred to as a trajectory. Further-
more, in this paper we will assume that an object moves



in a two-dimensional space, although extensions to higher-
dimensions are fairly straightforward.

Stated more formally, a trajectory is represented as
trj(tid, 〈u0, u1, u2 . . . un . . .〉), where tid is a unique tra-
jectory id, and 〈u0, u1, u2 . . . un . . .〉 is a sequence of
points reflecting the positions of the moving object. Each
point ui is a three-tuple ui(xi, yi, ti), where xi and yi rep-
resent the spatial position of the object along the x and y
dimensions respectively, at time ti. The only restriction
on the sequence is that ui < ui+1 to ensure that the time
parameter in the trajectory sequence is monotonically in-
creasing.

A trajectory segment is represented as
si(tid, sidi, ui−1, ui), where sidi is a unique seg-
ment number for this segment of the trajectory (trivially
one can set sidi to i), and ui−1 and ui are the two update
end-points. The model can be easily extended to associate
additional variables with each segment or update point; for
example, in a trajectory data set of moving vehicles, each
update point may have an additional reading recording the
engine temperature at the time of the update.

2.2 Query Types

Queries on moving data can be broadly classified into two
categories: queries that ask questions about the future po-
sitions of moving points, and queries that ask questions
about the historical positions of moving objects. The
former class of queries can be answered by storing cur-
rent position, speed and the direction of the moving ob-
jects [1, 14, 24, 25]. For the second class of queries, Pfoser
et al. [21] further classify historical queries into two differ-
ent sub-classes: coordinate-based queries and trajectory-
based queries. Coordinate-based queries include (a) time-
interval, which select all objects within a given area and
give time period, (b) time-slice queries, which select all the
objects present in a given area at a time instant, and (c)
nearest neighbor queries. Trajectory-based queries involve
information about a trajectory such as topology and veloc-
ity.

In this paper, we focus on coordinate-based queries in
general, and time-interval and time-slice queries in partic-
ular.

2.3 Related Work

An efficient indexing structure for trajectory data sets
should essentially be scalable both in the number of mov-
ing objects it supports and the update rate of the objects.
Most of the previous access structures in the literature are
based on variations of the R-tree [12], and do not address
scalability specifically. The earliest of these structures is
the RT-tree which stores time in the nodes of a regular 2D
R-tree [32]. Any temporal query has to search the entire R-
tree as there is no discrimination in the index search along
the temporal dimension. 3D R-trees [29] treat the temporal

property simply as an additional dimension. The weakness
of 3D R-tree is that the temporal dimension is treated in
the same manner as the spatial dimensions. Since a bound-
ing box in the index now also includes the time dimension,
the overlap amongst the keys increases, and the dead space
also increases. Consequently, the performance of the 3D
R-tree degrades rapidly as the data set size increases. MR-
trees [32] and HR-trees [17] are similar, as both maintain
a separate R-tree for each time stamp. Duplication of un-
changed nodes in consecutive R-trees is avoided to reduce
the storage space. These indexing structures are efficient
for evaluating time-slice queries, but search performance
degenerates for time-interval queries. In addition, the stor-
age space required by HR-trees is typically very high [18].

The MV3R-tree [27] is a hybrid structure that uses a
multi-version R-tree (MVR) for time-stamp queries, and
a small 3D R-tree for time-interval queries. MVR tree is
three dimensional extension of multi-version B-trees [3].
A 3D R-tree is built on the leaf nodes of the MVR-tree. To
keep the space requirement manageable, the two indices
share the same leaf pages, which leads to a rather complex
insert algorithm. In addition, the MVR-tree models tem-
poral change as a discrete event; moving objects maintain
the same position until the new position is updated. For
the discrete event data model, the MV3R tree outperforms
other indexing structures, such as the 3D R-tree and the HR
tree. But the main drawback of this model is that it can not
be used to represent the gradual change of position, which
is required in the trajectory model that we use in this paper
(see Section 2.1).

The TB-tree [21] is a trajectory bundle tree that is based
on the R-tree. The main idea of the TB-tree indexing
method is to bundle segments from the same trajectory into
the leaf nodes of the R-tree. The R-tree insert algorithm is
modified so that leaf nodes contain trajectory segments be-
longing to only one moving object. If segments of a single
trajectory need more than one leaf node for representing the
segments, then the leaf nodes that store the trajectory bun-
dles for the same trajectory are connected by forward and
backward pointers. This design aims to reduce the node
accesses for retrieving a complete trajectory. Trajectory re-
trieval becomes very easy with this structure, which is im-
portant for topological queries. However, since the R-tree
insertion is based solely on trajectory id rather than proxim-
ity in both the space and time dimensions, one can expect
large overlaps among the minimum bounding box (MBB)
keys in the internal nodes of the R-tree. However, updates
to the index are made in chronological order thus reducing
the overlap.

In many spatio-temporal data management systems, ag-
gregate data is maintained rather than the actual data (e.g.
traffic flow patterns). This aggregated data representation
may also be used to address privacy concerns. Papadias et
al. [19], propose the aggregate R-B-tree (aRB-tree) which
maintains the spatial regions in a R-tree, and uses a B-tree



for each of the regions in the R-tree on the temporal dimen-
sion. The aggregate values for time stamps are maintained
in the B-trees. Volatile regions are handled using Historical
R-trees. By the very nature of aggregate indexes, aRB-trees
are limited in the types of queries that they can support, and
can not be extended to support the ones that we consider in
this paper.

Song and Roussopoulos [26] consider the problem
of updates for a large number of moving objects in a
system that stores only the latest location information.
They assume that only approximate location information
is required, and partition the working space into non-
overlapping cells. They solve the update problem by stor-
ing only the cell number for each object, and updating the
cell number associated with an object only if the object
moves to a different cell. This approach is not adequate
for dealing with trajectory data sets for two reasons: it does
not provide accurate position information, and it does not
support spatio-temporal queries since it does not store the
detailed trajectory data of moving objects.

To the best of our knowledge, previous works on tra-
jectory indexing have not considered the efficiency of the
index operation that appends new segments to existing tra-
jectories.

3 SETI

3.1 Description

Trajectory data sets of line segments exhibit characteris-
tics that are different from general three dimensional data
sets. Rather than using an R-tree for storing 3-D line seg-
ments, these differences can be exploited to design a more
efficient indexing structure. In a 3D R-tree, the temporal
and the spatial dimensions are treated equally. However,
for trajectory data sets, there are important differences in
the characteristics of these dimensions. More specifically,
the boundaries of the spatial dimensions remain constant or
change very slowly over the lifetime of the trajectory data
set growth, whereas the time dimension is continually in-
creasing. Since the extent of the spatial dimensions does
not change, an indexing structure could partition the spa-
tial dimensions statically (see Section 3.5 for a discussion
on adapting dynamic partitioning). Within each spatial par-
tition, the indexing structure only needs to index lines in
a 1-D (time) dimension. Consequently, such an approach
will not exhibit the rapid degradation in index performance
that is generally observed for 3-D indexing techniques. The
SETI indexing mechanism capitalizes on this observation
to achieve good spatial and temporal discrimination1.

In SETI, spatial discrimination is maintained by logi-
cally partitioning the spatial extent into a number of non-
overlapping spatial cells. Each cell contains only those tra-

1The term discrimination has frequently been used in the literature be-
fore and refers to the effectiveness of an indexing structure in identifying
a candidate set of index entries with few false positives.

Figure 1: Schematic Diagram of the Insert Procedure

jectory segments that are completely within the cell. If a
trajectory segment crosses a spatial partitioning boundary
then that segment is split at the boundary, and inserted into
both cells (see Section 3.2 for more details).

Each trajectory segment is stored as a tuple in a data file,
with the restriction that any single data page only contains
trajectory segments that belong to the same spatial cell. The
lifetime of a data page is defined as the minimum time in-
terval that completely covers the time-spans of all the seg-
ments stored in that page. The lifetime values of all pages
that are logically mapped to a spatial cell are indexed using
an R*-tree. These temporal indices are sparse indices as
only one entry for each data page is maintained instead of
one entry for each segment. Using sparse indices has two
distinct advantages: smaller index overheads and improved
insert performance. The temporal indices also provide the
temporal discrimination in searches.

In most of the trajectory applications, location updates
arrive in chronological order. This order of updates essen-
tially makes the R-tree indices clustered, with the entries
being clustered by the end-times of the trajectory segments.
This clustering property results in additional index efficien-
cies when fetching trajectories that overlap with a time-
range specified in a query. Note that even if the trajectory
updates arrive in near-chronological order, the resulting in-
dex is nearly clustered, and has most of the performance
benefits of a fully clustered index.

3.2 Insert

Figure 1 illustrates the insert procedure in SETI. The key to
the performance of the insert algorithm in SETI is the use of
an in-memory structure, called the front-line, which main-
tains the last updated location of all moving objects. The
front-line is a cache of the last positions of all objects, and
these positions are organized in a hash structure indexed
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Figure 2: Movement of the Front-Line Structure

on the unique id associated with the moving object. When
a new update for a moving object is presented to the sys-
tem, the front-line structure is consulted to pull out the last
known location for the moving object. Then a trajectory
segment based on the previous and the new location is con-
structed and inserted into the SETI index. The front-line
structure is updated with the new location of the moving
object.

If persistence of the front-line structure is important, the
front-line structure can be implemented using a persistent
index structure, such as a hash or a B+-tree index.

3.2.1 Example of the Insert Procedure

We now illustrate the insert procedure using the example
shown in Figure 2. This figure shows four trajectories that
belong to four different moving objects. Point A is the lat-
est location information for moving object O, maintained in
the front-line structure. When the object O moves to a new
location, A’, an update request is sent to the insert module
shown in Figure 1. Now the segment AA’ represents the
movement of object O between the two updates. The insert
module then determines the particular spatial cell that the
location A’ belongs to using the partitioning module.

If the segment AA’ spans multiple spatial cells, it is split
into a number of smaller segments as shown in the Fig-
ure 3. In the figure, the spatial extent is partitioned using
regular hexagons, which are shown in dashed lines. (As
discussed later in Section 3.5, other adaptive spatial parti-
tioning strategies can also be used with SETI).

The long segment AA’ is broken into two smaller seg-
ments: AX and XA’, with location X being the intersection
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Figure 3: Splitting Segments During Insert

of the segment AA’ with the cell partition boundary. Lo-
cation X becomes a logical update location, whereas loca-
tions A and A’ are actual update points. The segments AX
and XA’ are inserted into the corresponding spatial cells.
Note that this techniques does not alter the location data
for the moving object because logically the two stored seg-
ments, AX and XA’, still represent the single segment AA’.
The original segment can be retrieved by merging AX and
XA’ which will have the same segment identifier (see Sec-
tion 2.1).

Even though Figure 3 shows the split in two dimensions,
in actuality the segment is split in three dimensions, includ-
ing the temporal dimension. The time of the logical update
at the spatial boundary is determined by interpolating the
times between the two successive updates (locations A and
A’).

3.3 Search

Figure 4 shows the steps in the search algorithm. The input
to the search algorithm for a time-interval query is a three
dimensional query box, which consists of a spatial predi-
cate box and a temporal predicate range. For a time-slice
query, the temporal predicate range consists of only a sin-
gle value.

The search algorithm executes the following steps:

1. Spatial Filtering: In this step the spatial partitions that
overlap with the spatial predicate box is computed and
a candidate cell list is produced.

2. Temporal Filtering: For each of the cells in the can-
didate cell list, the corresponding temporal index is
probed with the temporal predicate range. This step
generates a list of pages whose lifetimes overlap
with the temporal predicate. For time-slice queries,
those data pages whose lifetimes contain the predicate
timestamp are fetched.

3. Refinement Step: Each page in the candidate list of
pages is processed as follows. If the page belongs
to a spatial cell that is completely inside the spatial
predicate box, then only the temporal predicate range
is applied. If the temporal predicate range contains
the lifetime of the page, then all the segments on the
page qualify for the result, and no additional refine-
ment steps are needed. For all the other pages query



predicates are applied for each segment on the page.
This step produces a list of segments that overlap with
the query box.

4. Duplicate Elimination: The set of segments produced
in the refinement step may have multiple segments be-
longing to the same trajectory (or moving object). If
only unique trajectory identifiers are required as part
of the result, then the duplicates must be eliminated.
This is done by maintaining a bitmap of trajectory id’s.
Each bit in the bitmap corresponds to a unique trajec-
tory id. If a segment is qualified through the refine-
ment step, the corresponding trajectory id bit is set in
the bitmap. If the bit is already set, the segment is dis-
carded. At the end of this step, the bitmap is scanned
producing a list of trajectory ids corresponding to bit
positions that are turned on.

If the search algorithm needs to produce both the tra-
jectory id and the segment number of the matching
segment, the (trajectory id, segment number) pairs are
written out to a file, which is then sorted to eliminate
duplicates.

Figure 4: Schematic Diagram of the Search Algorithm

3.4 Deletes and Updates

There are two types of deletions: either a complete tra-
jectory is deleted, or a particular segment of trajectory is
deleted. If a segment is deleted, then a time-interval query
is issued using the bounding box of the particular segment
as the predicate. This operation retrieves the required seg-
ment data, which is then deleted from the data page. If the
lifetime of the data pages changes, the corresponding entry
in the temporal R-tree is updated.

To delete an entire trajectory, all the segments of that tra-
jectory must be identified. This information is maintained

using an auxiliary composite B+-tree index on the trajec-
tory id and the segment number of the trajectory. Once all
the segments of the trajectory are identified, they are then
deleted one at time as outlined above.

Modifications to entire trajectories are treated as dele-
tion followed by an insertion.

3.5 Spatial Partitioning and Spatial Skew

A good spatial partitioning is one in which the number
of moving objects per cell is fairly uniform. Producing a
good partitioning strategy is challenging as the distribu-
tion of the objects may be non-uniform, and the distribu-
tion may change over time. Partitioning strategies may be
static or dynamic. In a static partitioning strategy, as de-
scribed above, the partition boundaries are fixed, whereas
in a dynamic partitioning strategy the partition boundaries
may change over time.

A crucial parameter for any partitioning strategy is the
number of partitioning cells, which in turn affects the area
covered by the spatial cells. If the spatial cells cover
large areas, then the spatial discrimination of the index
is reduced, which can adversely affect the search perfor-
mance. On the other hand, if the spatial extent in parti-
tioned very finely, then then number of segments that cross
a cell boundary increases, which in turn increases the par-
titioning overhead.

Intuitively one might expect a static partitioning of the
space to become inefficient when the underlying object
densities (the number of moving objects per cell) is skewed.
As some cells become overloaded, the performance of the
corresponding temporal R-tree is expected to deteriorate.
However, this inefficiency does not usually arise because
the temporal R-Tree are sparse indexes. As a result, the
temporal indices can grow to index a large number data
pages with only a small deterioration in the performance
of the index. In addition, the chronological (or near-
chronological) update order makes the R-Tree grow in one
direction, resulting in key values at the leaf level that have
very little overlap. In general, the performance of an R-
Tree starts to degrade if the overlap amongst the keys be-
comes very large, which then requires traversing multiple
paths during the search operation. However, in SETI, such
degradation is usually not seen for the temporal R-trees, be-
cause of the chronological arrival order. With the chrono-
logical arrival order, even as the data set being indexed by
a temporal R-tree increases rapidly, the overlap among the
keys in the index does not increase as rapidly, reducing the
impact of any partitioning skew.

Under other circumstances, such as random arrival of
updates or topological change of the spatial extent, we may
need to repartition the spatial dimensions. There are a num-
ber of alternatives available. The simplest is to split the
partitions that are heavily populated, and rebuild the corre-
sponding temporal R-tree indices. The resulting spatial cell



boundaries are now not uniform, and can be indexed using
a spatial index structure like a Quad-tree [9]. Another more
complex alternative is to keep track of the history of splits
on the spatial partitions using a structure like the Historical
R-Tree [17]. Existing R-tree indices on the time dimension
are not rebuilt, but future appends to the cells that are split
are inserted into new temporal R-tree indices. With small
changes, the search algorithm for SETI can be adapted to
handle this dynamic partitioning strategy.

3.6 Other Spatial Partitioning Methods

While in the previous section, we have described a static,
uniform, non-overlapping partition of the spatial dimen-
sion, it is fairly straight-forward to adapt SETI to accom-
modate other spatial partitioning strategies, such as parti-
tioning into non-uniform cells and overlapping spatial par-
titioning strategies. In the interest of space, we do not con-
sider these options further in this paper.

4 Experimental Evaluation

In this section we present the experimental results evaluat-
ing the behavior of SETI and two other trajectory indexing
structures: the 3D R*-tree and the TB-tree [21]. The 3D
R*-tree simply stores each trajectory segment as a 3-D line
segment in a R*-tree. The TB-tree is essentially an R-tree
index, with the modification that the leaf nodes only con-
tain trajectory segments from the same trajectory.

4.1 Implementation Details and Experimental Plat-
form

The experimental platform is a Intel Pentium III 600MHz
machine that is configured with 384 MB of main memory,
and a 60GB IBM Deskstar 7200 RPM Ultra ATA/100 disk,
running Debian Linux version 2.4.13.

The software that we use for our experiment is a sys-
tem, called COMET, that we are currently building to re-
search issues in continuous management of evolving tra-
jectory data sets. This system uses SHORE [7] is its stor-
age manager, and all indexing techniques that we examine
in this section are implemented in SHORE. SHORE cur-
rently supports 2D R*-trees, so the R*-tree key definition
in SHORE was modified in a fairly straight-forward fash-
ion to support the 3D R*-trees. We implemented the TB-
trees as an additional indexing mechanism in SHORE. Fi-
nally, SETI is implemented using the existing 2D R*-trees
in SHORE. The spatial extent is partitioned using a uni-
form rectangular grid, and the front-line structure is imple-
mented using a hash index that is mapped to a single large
SHORE object for persistence. In all our experiments, we
use a buffer pool of 64MB. The disk page size used in all
the experiments is 2KB. Values in all the dimensions, in-
cluding the time dimension, are represented using 4-byte
integers.

All trajectory segments are stored as separate tuples in a
single SHORE file. Each tuple has a unique trajectory id,
a segment number, and the two end points of the trajectory
segments.

4.2 Data Sets and Queries

Since no real trajectory data sets are currently freely avail-
able, we generated synthetic data sets using two different
methods: the first method uses the GSTD [28] data gener-
ator, and the second method uses the network data genera-
tor [6].

The GSTD data generator produces trajectory data sets
for a specified number of moving objects, with a specified
number of segments per moving object. The GSTD gen-
erator has numerous knobs for changing the distribution of
the initial positions of the moving objects, the direction of
the movements, trajectory segment length, etc. We exper-
imented with a number of data sets produced by varying
some of these parameters, and found that the results us-
ing the default uniform distributions were representative of
these other data sets too. In the interest of space, we only
present results for GSTD data sets that were generated us-
ing the default data generation parameter values.

The network data generator models the movements of
users moving in a network of paths (such as roads). It
takes as input a map data set and then generates trajecto-
ries for users moving in the paths in the map. The network
data set that we use in this paper was generated using the
TIGER [30] data files for the road network in San Joaquin
County, CA. In this data set, the distribution of the moving
objects is based on the density of the road networks, with a
larger population of mobile objects in areas of dense road
networks.

In the real world, mobile users often remain stationary at
a specific location for a long period of time. The resulting
trajectory segment has a long span on the temporal dimen-
sion, which increases the life times of data pages that are
indexed by the temporal R-trees. Intuitively, this character-
istic should lead to a deterioration in the performance of the
temporal indices. To explore the effect of such data sets, we
modified the network data generator to simulate cell phone
users. The simulation time period was thirty days, and in
each day every user moves along the San Joaquin County
road network for roughly the first eight hours of the day.
For the remaining part of the day, the users remain station-
ary. The number of users is varied from one to ten thou-
sand, which produces data sets with a half million to five
million trajectory segments.

Most of the results presented in this section use data sets
generated with GSTD2. However, we also present two re-
sults using the San Joaquin network data set.

2We make this choice since GSTD has been extensively used in most
previous work in this area, making it easier for a reader to put these results
in perspective.
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For the GSTD data sets, we use a number of different
data sets to examine the effect of increasing the number
of mobile users, and the effect of increasing the number
of trajectory segments per mobile object. We denote the
GSTD data sets using the nomenclature GSTD(nT , nS)
where nT is the number of trajectories (moving objects) in
the data set, and nS is the total number of trajectory seg-
ments in the data set. Similarly, NetSJ(nT , nS) is used to
represent the network data set, and NetSJ-CP(nT , nS) is
used to represent the data set with cell phone users moving
in the SanJoaquin County road network.

In the experiments, we use two types of queries: time-
interval queries and time-stamp queries. The predicate in a
time-interval query is a 3D box of equal normalized widths
in each dimension. Since the extent along each dimension
can be different, the range of the query box in each dimen-
sion is normalized by the actual extent of that dimension.
The selectivity of a time-interval query is equal to the vol-
ume of the query box in a universe of unit length in each
dimension. In this paper we present results using query se-
lectivities of 0.01%, 0.1% and 1%. Note that a 1% query
corresponds to a range predicate with a selectivity of 21.6%
along any single dimension.

For a time-slice query, the time interval is a single time-
stamp value, and the range along each of the spatial dimen-
sion is the same. The selectivity of the query is the area of
the spatial predicate box in a universe of unit length along
each of the spatial dimensions.

For each of the data points in the query performance
graphs presented below, we generated a set of hundred
random queries. Each query in a set has the same selec-
tivity, but the starting values of the predicates are chosen
randomly. We ran each of these thousand queries starting
with a cold buffer pool, and then computed the average per
query execution time. The graphs presented below show
this average query execution time.

4.3 Effect of Number of Spatial Partitions

In the first experiment, we examine the effect of the num-
ber of spatial partitions on the search performance of SETI.
Figure 5 shows these results for the GSTD(1K, 4M) data
set and a 0.1% time-interval query.

For a small number of cells, less than 250 in Figure 5,
each cell covers a large portion of the spatial extent. Con-
sequently, many moving objects are mapped to each cell,
which reduces the spatial discrimination of the index. As
a result, the search process produces a large number of
false positives in the filter steps, which leads to poor perfor-
mance. As the number of cells increases, spatial discrimi-
nation increases, improving the performance of the index.
However, as the number of cells increases, the probability
that a trajectory segment will cross a spatial cell boundary
also increases. This behavior leads to an increase in the
replication in the index, which then starts to degrade the
performance of the index. In addition, as the number of
cells increases, the number of R-trees and the total space
consumed by all the R-trees also increases, which leads to
greater competition for buffer pool space. However, within
the range of 200-1200, the degradation in performance is
very gradual as the the number of cells is increased. The in-
dex performs best when the number of partitions is around
600 cells, and in the range 200-1200 cells, the performance
of the search is within 20% of the best case.

We observed a similar behavior for other queries and
other data sets, and in the interest of space we omit these
additional results. For the remaining experiments presented
in this paper, we keep the number of cells constant at 400
(20x20).

4.4 Index Sizes

Figure 6 shows the sizes of SETI, TB-tree and 3D R-tree
indexes for the three GSTD data sets: GSTD(1K, 1M),
GSTD(1K, 2M), and GSTD(1K, 4M). The three data sets
shown in Figure 6 correspond to increasing number of seg-
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ments per trajectory. The sizes shown in the figure only
include the size of the index file. The size of the data file
for the three data sets is 32MB, 64MB and 128MB respec-
tively. For SETI, about 8% of the segments were split as
they crossed some spatial partition boundaries, so the data
file sizes are about 8% larger than for the other indices (as
described in Section 3.2 the logical split points are stored
in the data file).

As seen in Figure 6, SETI index sizes are smaller than
the TB-tree because SETI uses sparse indices, and the R-
trees in SETI only index on the time dimension. The 3D
R-tree requires the most amount of space because average
page occupancy is about 68%. The TB-tree has close to a
100% page occupancy. For SETI, the average page occu-
pancy is between 55-65%, with the leaf pages having close
to a 100% occupancy.

4.5 Insert Performance

In this section, we evaluate the performance of an index
operation that appends new segments to existing trajecto-
ries. For this experiment we use the GSTD(1K, 4M) data
set. After building the indices, we inserted 10K additional
segments. Figure 7 shows the average time taken to insert
a single trajectory segment over these 10K inserts.

As seen in Figure 7, inserts in SETI are nearly five times
faster than the TB-tree and nineteen times faster than the
3D R-tree. For the TB-tree, the insert operation is executed
in two steps. First, the last leaf node for the trajectory is
located to check if there is space to accommodate the new
trajectory segment in that leaf node. Then, the new trajec-
tory segment is inserted either into the last leaf node, or in
a newly created leaf node. Since the TB-tree index is not a
sparse index, splits at the leaf nodes are more frequent than
in SETI, leading to poor relative performance. Inserts into
the 3D R-tree are costly because of the page splits. The key
representation in the 3D R-tree is also larger than in SETI,
leading to a smaller fanout and larger number of splits.

4.6 Time-interval Queries

In this section, we present the performance of the index
structures when evaluating time-interval queries.

4.6.1 Varying Number of Segments

For this experiment we generated a number of GSTD data
sets, each with 1K number of moving objects, and varied
the total number of segments from 1M to 17M. Figures 8, 9
and 10 plot the performance of the indices for the query
selectivities of 0.01%, 0.1% and 1%.

As shown in these figures, the 3D R-tree has the worst
performance of the three indexing structures. The 3D rep-
resentation of the segments in the 3D R-tree index results
in large dead space in the keys used to represent the leaf
nodes, and large amounts of overlap among the keys in the
internal nodes. As a result, the search performance de-
grades as multiple paths have to be traversed to evaluate
the query. The performance degradation is more rapid with
larger query selectivities (observe the rapid performance
degradation in Figure 10). The 3D R-tree also take a longer
time to build the index for the same reasons. For data sets
with more that 4M segments, the index build time was over
six hours, and we aborted these tests. Since it is clear from
this experiment that the 3D R-tree performs poorly, for the
rest of the paper we do not consider the 3D R-trees.

Going back to Figures 8, 9 and 10, we observe that SETI
also outperforms the TB-tree. One of the reasons for this
behavior is that the R-trees in SETI are more efficient that
the R-tree in the TB-tree. The R-trees in SETI only index
on the time dimension, whereas the keys in the R-tree of the
TB-tree are 3-dimensional. With higher dimensional keys,
the dead space and overlap in the R-tree increases, which
degrades the search performance. In addition, the sparse
index of SETI is more I/O efficient.

SETI also has a significant advantage over the TB-tree
with respect to the CPU cost. For the temporal indices that
correspond to spatial cells that are fully contained in the
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query box, only the temporal predicates need to be checked
(refer to Section 3.3). CPU costs have been shown to con-
stitute a big portion of spatial query evaluation when us-
ing 2D spatial objects [20], and not surprisingly, the CPU
component is also very significant when working with 3D
trajectory data sets.

The CPU and the I/O contributions for both SETI and
the TB-tree are shown in Figure 11 for a sample 0.1% time-
interval query on the GSTD(1K, 4M) data set. This figure
shows that the CPU costs are much higher for the TB-tree.
We observed a similar trend for other query sizes and data
sets.

4.6.2 Network Data Set

Figure 12 shows the results for network based data set
NetSJ(1K, X), where X is varied from 1M to 8M. For this
experiment we use a 0.1% time-interval query. The results
are similar for other queries, and in the interest of space
additional results are omitted in this presentation.

The results follow the same trend as the GSTD data
set. Unlike the GSTD data set where all the objects are
moving with an uniform speed at all times, in this data
set users vary speed and the update rate. The concentra-
tion of users also varies, as the road network is not dis-
tributed uniformly. There are slow moving objects in ur-
ban areas (where the road density is high) and fast moving
objects on the freeways and the country side roads. This
experiment demonstrates that SETI continues to be effec-
tive for non-uniformly distributed trajectory data sets too.
The main reason for this counterintuitive result is that even
though the index looses spatial discrimination (because of
many objects being clustered in a spatial cell), the tempo-
ral discrimination increases. Since dense cells have many
more objects than an average cell, they also generate many
more updates. Each update produces a trajectory segment
that is indexed by the temporal R-tree for that cell. With
many more of these trajectory segments in a dense cell, the
segments tend to be be better clustered in the time dimen-

sion. Consequently, the lifetimes of pages in dense pages is
generally smaller, which leads to better temporal discrim-
ination. Thus for dense cells, the decrease in performance
due to larger R-trees is offset by the improvement in search
performance caused by the increase in temporal discrimi-
nation.

Figure 13 shows the results for the data set simulating
cell phone users moving in the Joaquin County road net-
work. Recall from Section 4.2 that this data set has many
segment with long time spans. This characteristic affects
the performance of temporal indices by increasing the life-
times of data pages in which this segment is stored. The
result in Figure 13 shows that SETI temporal indices do
not deteriorate with the introduction of long segments. For
the time periods in which the objects are stationary, only
one segment is inserted into the index for each object. The
lifetimes of the pages that contain such segments with long
time spans is also very long. However, there are many more
pages with short time spans, and as a result, the degrada-
tion in the search performance is not severe. However, the
performance of the TB-Tree deteriorates because the lower-
level non-leaf nodes and the leaf nodes contain large mini-
mum bounding box keys. As a result, the searches are slow,
and a large number of false positives are produced, which
leads to poor search performance.

4.6.3 Varying Number of Objects

We also examined the scalability of the index search per-
formance when the number of moving objects is increased
(in contrast to increasing the number of trajectory segments
per moving object as was done in the experiments pre-
sented in Section 4.6.1). In this experiment, the number of
mobile objects range from 10K to 160K, and the number
of segments per trajectory is kept constant at 100, which
results in the total number of segments increasing from 1M
to 16M. In the interest of space, we only present the re-
sult for a 0.1% time-interval query, which is representative
of the performance that we observed with other queries too.
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Figure 15: Scaling with Number of Segments,
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This result is shown in Figures 14. This experiment demon-
strates that SETI continues to outperform the TB-tree index
when the data set has a large number of trajectories.

4.7 Time-slice Queries

In this section, we evaluate the performance of the index
structures for evaluating time-slice queries. While we ran
experiment with an number of time-slice queries with se-
lectivities between 0.1% and 4%, in the interest of space
we only present the results for a 1% time-slice query. The
results for the other queries are similar.

Figures 15 plots the performance of SETI and the TB-
tree for a 1% time-slice queries, for a number of differ-
ent GSTD data sets. This figure show that SETI outper-
forms the TB-tree index even for the time-slice query, in
which the temporal discrimination affects query perfor-
mance more than the spatial discrimination. SETI perfor-
mance advantages come from both I/O and CPU efficien-
cies. Across the data points in this experiment, the number
of disk I/Os incurred by SETI is 45-80% lower than that
for the TB-tree, and SETI’s portion of the CPU costs are
53-80% lower than that for the TB-tree.

5 Conclusions and Future Work

In this paper we have proposed and evaluated a new trajec-
tory indexing mechanism, called SETI. Unlike previously
proposed trajectory indexing mechanisms, SETI decouples
the indexing of the spatial and the time dimensions which
leads to greater search and update efficiencies. Based on
an implementation in SHORE, we have demonstrated that
SETI outperforms a 3D R-tree and the TB-tree for both
time-interval and time-slice queries. SETI is also capable
of supporting faster rates for operations that append new
segments to existing trajectories. SETI has the added ad-
vantage of being a logical indexing structure that can be
easily built over existing spatial indexing structures, such
as the R-tree. This property makes it much easier for any
database developer to implement SETI.

As part of the future work, we plan on investigating
the impact on performance of various adaptive partitioning
strategies. We also plan on investigating the use of SETI for
evaluating trajectory queries, which require fetching entire
trajectories, and computing derived values such as average
speed. The work presented in this paper has focused only
on historical queries, and as part of our future work, we
plan on investigating extensions to the front-line structure
in SETI to answer queries on the future positions of moving
objects.
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