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Abstract 

Model management is a new approach to meta data 
management that offers a higher level programming 
interface than current techniques. The main abstrac-
tions are models (e.g., schemas, interface defini-
tions) and mappings between models. It treats these 
abstractions as bulk objects and offers such opera-
tors as Match, Merge, Diff, Compose, Apply, and 
ModelGen. This paper extends earlier treatments of 
these operators and applies them to three classical 
meta data management problems: schema integra-
tion, schema evolution, and round-trip engineering. 

1 Introduction 
Many information system problems involve the design, 
integration, and maintenance of complex application 
artifacts, such as application programs, databases, web 
sites, workflow scripts, formatted messages, and user 
interfaces. Engineers who perform this work use tools to 
manipulate formal descriptions, or models, of these 
artifacts, such as object diagrams, interface definitions, 
database schemas, web site layouts, control flow 
diagrams, XML schemas, and form definitions. This 
manipulation usually involves designing transformations 
between models, which in turn requires an explicit 
representation of mappings, which describe how two 
models are related to each other. Some examples are:  

•  mapping between class definitions and relational 
schemas to generate object wrappers,  

•  mapping between XML schemas to drive message 
translation, 

•  mapping between data sources and a mediated schema 
to drive heterogeneous data integration, 

•  mapping between a database schema and its next 
release to guide data migration or view evolution, 

•  mapping between an entity-relationship (ER) model 
and a SQL schema to navigate between a database 

design and its implementation, 
•  mapping source makefiles into target makefiles, to 

drive the transformation of make scripts from one 
programming environment to another, and 

•  mapping interfaces of real-time devices to the 
interfaces required by a system management environ-
ment to enable it to communicate with the device. 

Following conventional usage, we classify these as meta 
data management applications, because they mostly 
involve manipulating descriptions of data, rather than the 
data itself. 

Today’s approach to implementing such applications is 
to translate the given models into an object-oriented 
representation and manipulate the models and mappings 
in that representation. The manipulation includes 
designing mappings between the models, generating a 
model from another model along with a mapping between 
them, modifying a model or mapping, interpreting a 
mapping, and generating code from a mapping. Database 
query languages offer little help for this kind of 
manipulation. Therefore, most of it is programmed using 
object-at-a-time primitives. 

We have proposed to avoid this object-at-a-time 
programming by treating models and mappings as 
abstractions that can be manipulated by model-at-a-time 
and mapping-at-a-time operators [6]. We believe that an 
implementation of these abstractions and operators, called 
a model management system, could offer an order-of-
magnitude improvement in programmer productivity for 
meta data applications.  

The approach is meant to be generic in the sense that a 
single implementation is applicable to all of the data 
models in the above examples. This is possible because 
the same modeling concepts are used in virtually all mod-
eling environments, such as UML, extended ER (EER), 
and XML Schema. Thus, an implementation that uses a 
representation of models that includes most of those 
concepts would be applicable to all such environments. 

There are many published approaches to the list of meta 
data problems above and others like them. We borrow 
from these approaches by abstracting their algorithms into 
a small set of operators and generalizing them across 
applications and, to some extent, across data models. We 
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thereby hope to offer a more powerful database platform 
for such applications than is available today. 

In a model management system, models and mappings 
are syntactic structures. They are expressed in a type 
system, but do not have additional semantics based on a 
constraint language or query language. Despite this 
limited expressiveness, model management operators are 
powerful enough to avoid most object-at-a-time pro-
gramming in meta data applications. And it is precisely 
this limited expressiveness that makes the semantics and 
implementation of the operators tractable.  

Still, for a complete solution, meta data problems often 
require some semantic processing, typically the manipula-
tion of formulas in a mathematical system, such as logic 
or state machines. To cope with this, model management 
offers an extension mechanism to exploit the power of an 
inferencing engine for any such mathematical system. 

Before diving into details, we offer a short preview to 
see what model management consists of and how it can 
yield programmer productivity improvements. First, we 
summarize the main model management operators: 

•  Match – takes two models as input and returns a 
mapping between them 

•  Compose – takes a mapping between models A and B 
and a mapping between models B and C, and returns a 
mapping between A and C 

•  Diff – takes a model A and mapping between A and 
some model B, and returns the sub-model of A that 
does not participate in the mapping 

•  ModelGen – takes a model A, and returns a new 
model B based on A (typically in a different data 
model than A’s) and a mapping between A and B  

•  Merge – takes two models A and B and a mapping 
between them, and returns the union C of A and B 
along with mappings between C and A, and C and B. 

Second, to see how the operators might be used, consi-
der the following example [7]: Suppose we are given a 
mapping map1 from a data source S1 to a data warehouse 
SW, and want to map a second source S2 to SW, where S2 is 
similar to S1. See Figure 1. (We use S1, SW, and S2 to 
name both the schemas and databases.) First we call 
Match(S1, S2) to obtain a mapping map2 between S1 and 
S2, which shows where S2 is the same as S1. Second, we 
call Compose(map1, map2) to obtain a mapping map3 
between S2 and SW, which maps to SW those objects of S2 
that correspond to objects of S1. To map the other objects 
of S2 to SW, we call Diff(S2, map3) to find the sub-model 
S3 of S2 that is not mapped by map3 to SW, and map4 to 
identify corresponding objects of S2 and S3. We can then 
call other operators to generate a warehouse schema for S3 
and merge it into SW. The latter details are omitted, but we 
will see similar operator sequences later in the paper.  

The main purpose of this paper is to define the seman-
tics of the operators in enough detail to make the above 
sketchy example concrete, and  to  present  additional  ex- 

 

Figure 1 Using model management to help generate a 
data warehouse loading script 

amples to demonstrate that model management is a credi-
ble approach to solving problems of this type. Although 
this paper is not the first overview of model management, 
it is the most complete proposal to date. Past papers pre-
sented a short vision [5,6], an example of applying model 
management to a data warehouse loading scenario [7], an 
application of Merge to mediated schemas [22], and an 
initial mathematical semantics for model management [1]. 
We also studied the match operator [23], which has 
developed into a separate research area. This paper offers 
the following new contributions to the overall program: 
•  The first full description of all of the model 

management operators. 
•  New details about two of the operators, Diff and 

Compose, and a new proposed operator, ModelGen. 
•  Applications of model management to three well 

known meta data problems: schema integration, 
schema evolution, and round-trip engineering. 

We regard the latter as particularly important, since they 
offer the first detailed demonstration that model manage-
ment can help solve a wide range of meta data problems. 

The paper is organized as follows: Section 2 describes 
the two main structures of model management, models 
and mappings. Section 3 describes the operators on 
models and mappings. Section 4 presents walkthroughs of 
solutions to schema integration, schema evolution, and 
round-trip engineering. Section 5 gives a few thoughts 
about implementing model management. Section 6 
discusses related work. Section 7 is the conclusion. 

2 Models and Mappings 
2.1 Models 
For the purposes of this paper, the exact choice of model 
representation is not important. However, there are 
several technical requirements on the representation of 
models, which the definitions of mappings and model 
management operators depend on.  

First, a model must contain a set of objects, each of 
which has an identity. A model needs to be a set so that 
its content is well-defined (i.e., some objects are in the set 
while others are not). By requiring that objects have iden-
tity, we can define a mapping between models in terms of 
mappings between objects or combinations of objects. 

Second, we want the expressiveness of the representa-
tion of models to be comparable to that of EER models. 
That is, objects can have attributes (i.e., properties), and 

S1 SW

S2 S3

map1

1. map2 2. map3

3. map4 

Given: S1, S2, map1, SW 
1. map2 = Match(S1, S2) 
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           Compose(map1, map2) 
3. < S3 ,map4> =  
           Diff(S2, map3)



 

 

can be related by is-a (i.e., generalization) relationships, 
has-a (i.e., aggregation or part-of) relationships, and asso-
ciations (i.e., relationships with no special semantics). As 
well, there may be some built-in types of constraints, such 
as the min and max cardinality of set-valued properties.  

Third, since a model is an object structure, it needs to 
support the usual object-at-a-time operations to create or 
delete an object, read or write a property, and add or 
remove a relationship.  

Fourth, we expect objects, properties and relationships 
to have types. Thus, there are (at least) three meta-levels 
in the picture. Using conventional meta data terminology, 
we have: instances, which are models; a meta-model that 
consists of the type definitions for the objects of models; 
and the meta-meta-model, which is the representation 
language in which models and meta-models are express-
ed. We avoid using the term “data model,” because it is 
ambiguous in the meta data world. In some contexts, it 
means the meta-meta-model, e.g., in a relational database 
system, the relational data model is the meta-meta-model. 
In other contexts, it means the meta-model; for example, 
in a model management system, a relational schema (such 
as the personnel schema) is a model, which is an instance 
of the relational meta-model (which says that a relational 
schema consists of table definitions, columns definitions, 
etc.), where both the model and meta-model are repre-
sented in the meta-meta-model (such as an EER model). 

Since a goal of model management is to be as generic as 
possible, a rich representation is desirable so that when a 
model is imported from another data model, little or no 
semantics is lost. However, to ensure model management 
operators are implementable, some compromises are 
inevitable between expressiveness and tractability.  

To simplify the discussion in this paper, we define a 
model to be a set objects, each of which has properties, 
has-a relationships, and associations. We assume that a 
model is identified by its root object and includes exactly 
the set of objects reachable from the root by paths of has-
a relationships. In an implementation, we would expect a 
richer model comparable to EER models. 

2.2 Mappings 
Given two models M1 and M2, a morphism over M1 and 
M2 is a binary relation over the objects of the two models. 
That is, it is a set of pairs <o1, o2> where o1 and o2 are in 
M1 and M2 respectively. A mapping between models M1 
and M2 is a model, map12, and two morphisms, one be-
tween map12 and M1 and another between map12 and M2. 
Thus, each object m in mapping map12 can relate a set of 
objects in M1 to a set of objects in M2, namely the objects 
that are related to m via the morphisms. For example, in 
Figure 2, Mapee is a mapping between models Emp and 
Employee, where has-a relationships are represented by 
solid lines and morphisms by dashed lines.  

In effect, a mapping reifies the concept of a relationship 
between models. That is, instead of representing the 
relationship as a set of pairs (of objects), a mapping repre- 

 
Figure 2 An example of a mapping 

sents it as a set of objects (each of which can relate 
objects in the two models). In our experience, this 
reification is often needed for satisfactory expressiveness. 
For example, if the mapping in Figure 2 were represented 
as a relationship, it would presumably include the pairs 
<Name, FirstName> and <Name, LastName>, which 
loses the structure in Mapee that shows FirstName and 
LastName as components of Name.  

In addition to enabling more structural expressiveness, 
reifying a mapping also allows us to attach custom se-
mantics to it. We can do this by having a property called 
Expression for each object m in a mapping, which is an 
expression whose variables include the objects that m 
directly or indirectly references in M1 and M2. For exam-
ple, in Figure 2 we could associate an expression with 
object 2 that says Name equals the concatenation of First-
Name and LastName. We will have more to say about the 
nature of these expressions at the end of Section 3.  

Despite these benefits of reifying mappings as models, 
we expect there is value in specializing model manage-
ment operators to operate directly on morphisms, rather 
than mappings. However, such a specialization is outside 
the scope of this paper. Thus, the operators discussed here 
work on models and mappings, but not on morphisms 
(separately from the mappings that contain them).  

3 Model Management Algebra 
3.1 Match 
The operator Match takes two models as input and returns 
a mapping between them. The mapping identifies combi-
nations of objects in the input models that are either equal 
or similar, based on some externally provided definition 
of equality and similarity. In some cases, the definition is 
quite simple. For example, the equality of two objects 
may be based on equality of their identifiers or names. In 
other cases, it is quite complex and perhaps subjective. 
For example, the equality of database schema objects for 
databases that were independently developed by different 
enterprises may depend on different terminologies used to 
name objects. 

 This range of definitions of equality leads to two 
versions of the match operator: Elementary Match and 
Complex Match. Elementary Match is based on the 
simple definition of equality. It is used where that simple 
definition is likely to yield an accurate mapping, e.g., 
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when one model is known to be an incremental 
modification of another model. 

 Complex Match is based on complex definitions of 
equality. Although it need not set the Expression property 
on mapping objects, it should at least distinguish sets of 
objects that are equal (=) from those that are only similar 
(≅ ). By similar, we mean that they are related but we do 
not express exactly how. For example, in Figure 3, object 
1 says that Emp# and EmployeeID are equal, while object 
2 says that Name is similar to a combination of FirstName 
and LastName. A human mapping designer might update 
object 2’s Expression property to say that Name equals 
the concatenation of FirstName and LastName.  

 
Figure 3 A mapping output from Complex Match 

In practice, Complex Match is not an algorithm that 
returns a mapping but rather is a design environment to 
help a human designer develop a mapping. It potentially 
benefits from using technology from a variety of fields: 
graph isomorphism to identify structural similarity in 
large models; natural language processing to identify 
similarity of names or to analyze text documentation of a 
model; domain-specific thesauri; and machine learning 
and data mining to use similarity of data instances to infer 
the equality of model objects. A recent survey of 
approaches to Complex Match is [23]. 

3.2 Diff 
Intuitively, the difference between two models is the set 
of objects in one model that do not correspond to any 
object in the other model. One part of computing a 
difference is determining which objects do correspond. 
This is the main function of Match. Rather than repeating 
this semantics as part of the diff operator, we compute a 
difference relative to a given mapping, which may have 
been computed by an invocation of Match. Thus, given a 
mapping map1 between models M1 and M2, the operator 
Diff(M1, map1) returns the objects of M1 that are not 
referenced in map1’s morphism between M1 and map1. 

There are three problems with this definition of Diff, 
which require changing it a bit. First, the root of map1 
always references an object (often the root) of M1, so the 
result of Diff(M1, map1) would not include that object. 
This is inconvenient, because it makes it hard to align the 
result of Diff with M1 in subsequent operations. We will 
see examples of this in Section 4. Therefore, we alter the 
definition of Diff to require that the result includes the 
object of M1 referenced by map1’s root. 

Second, recall that a model is the set of objects reach-
able by paths of has-a relationships from the root. Since 
the result of Diff may equal any subset of the objects of 
M1, some of those objects may not be connected to the 
Diff result’s root. If they are not, the result of Diff is not a 
model. For example, consider Diff(Employee, Mapee) on 
the models and mapping in Figure 4. Since FirstName and 
LastName are not referenced by Mapee’s morphism 
between Employee and Mapee, they are in the result. 
However, Name is not in the result, so FirstName and 
LastName are not connected to the root, Employee, of the 
result and therefore are not in that model. This is undesir-
able, since such objects cannot be subsequently processed 
by other operators, all of which expect a model as input. 
Therefore, to ensure that the result of Diff is a well-
formed model, for every object o in the result, we require 
the result to include all objects O on a path of has-a 
relationships from the M1 object referenced by map1’s 
root to o. Objects in O that are referenced in map1’s 
morphism to M1 are called support objects, because they 
are added only to support the structural integrity of the 
model. For example, in Figure 5, Name is a support object 
in the result of Diff(Employee, Mapee). 

 
Figure 4 Diff(Employee, mapee ) includes FirstName 
and LastName but not Name 

Having made this decision, we now have a third 
problem, namely, in the model that is returned by Diff, 
how to distinguish support objects from objects that are 
meant to be in the result of Diff (i.e., that do not 
participate in map1)? We could simply mark support 
objects in the result. But this introduces another structure, 
namely a marked model. To avoid this complication, we 
use our two existing structures to represent the result, 
namely, model and mapping. That is, the result of Diff is 
a pair <M1′, map2>, where  

•  M1′ includes a copy of: the M1 object r referenced by 
map1’s root; the set S of objects in M1 that are not 
referenced by map1’s morphism between map1 and 
M1; all support objects, i.e., those on a path of has-a 
relationships from r to an object in S that are not 
otherwise required in M1′; every has-a relationship 
between two objects of M1 that are also in M1′; and 
every association between two objects in S or between 
an object in S and an object outside of M1. 
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Figure 5 The result of Diff(Employee, Mapee) is 
<Employee′′′′ , Mapee′′′′> 

•  map2 connects the root of M1′ to r in M1 and connects 
each object of S to the corresponding object of M1′. 

For example, given Employee and Mapee in Figure 4, the 
result of Diff(Employee, Mapee) is <Employee′, Mapee′> 
as shown in Figure 5. 

3.3 Merge 
The merge operation returns a copy of all of the objects 

of the input models, except that objects of the input 
models that are equal are collapsed into a single object in 
the output. Stating this more precisely, given two models 
M1 and M2 and a mapping map1 between them, 
Merge(M1, M2, map1) returns a model M3 such that  

•  M3 includes a copy of all of the objects of M1, M2, and 
map1, except that for each object m of map1 that 
declares objects of M1 and M2 to be equal, those equal 
objects are dropped from M3 and their properties and 
relationships are added to m. The root of map1 must 
declare the roots of M1 and M2 to be equal. 

•  All relationships in M1, M2, and map1 are copied to the 
corresponding objects in M3. For example, in Figure 6 
Emp′ is the result of Merge(Emp, Employee, Mapee) 
on the models and mappings of Figure 2. 

•  Merge also returns two mappings, map13 between M1 
and M3 and map23 between M2 and M3, which relate 
each object of M3 to the objects from which it was 
derived. Thus, the output of Merge is a triple <M3, 
map13, map23>. For example, Figure 7 shows the map 
pings between the merge result in Figure 6 and the 
two input models of the merge, Emp and Employee.  

 
Figure 6 The result of Merge applied to Figure 2 

The effect of collapsing objects into a single object can 
cause the output of Merge to violate basic constraints that 
models must satisfy. For example, suppose map1 declares 
objects m1 of M1 and m2 of M2 to be equal, and suppose 
m1 is of type integer and m2 is of type image. The type of 
the merged object m3 is both integer and image. If a 
constraint on models is that each object is allowed to have 
at most one type, then m3 manifests a constraint violation 
that must be repaired, either as part of Merge or in a post-
processing step. A solution to this specific problem 
appears in [9]. A more general discussion of constraint 
violations in merge results appears in [15]. 

3.4 Compose 
The composition operator, represented by • , creates a 
mapping by combining two other mappings. If map1 
relates models M1 and M2, and map2 relates M2 and M3, 
then the composition map3 = map2 •  map1  is a mapping 

that relates M1 and M3 (i.e., map3(M1) ≡ map2(map1(M1)). 
To explain the semantics of composition, we will use 

mathematical function terminology: For each object m1 in 
map1, we refer to the objects that m1 references in M1 as 
its domain, and those that m1 references in M2 as its 
range. That is, domain(m1) ⊆  M1 and range(m1) ⊆  M2. 
Similarly, for each object m2 in map2, domain(m2) ⊆  M2 
and range(m2) ⊆  M3. 

In principle, a composition can be driven by either the 
left mapping (map1) or right mapping (map2). However, 
in this paper we restrict our attention to right 
compositions, since that is enough for the examples in 
Section 4. In a right composition, the structure of map2 
determines the structure of the output mapping. 

 

Figure 7 The merge result, Emp′′′′ , of Figure 2 with its mappings to the input models Emp and Employee 
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To compute the composition, for each object m2 in map2, 
we identify each object m1 in map1 where range(m1) ∩ 
domain(m2) ≠ ∅ , which means that range(m1) can supply 
at least one object to domain(m2). For example, in Figure 
8, the ranges of 4, 5, and 6 in map1 can each supply one 
object to domain(11) in map2. Suppose objects m11, …, 
m1n in map1 together supply all of domain(m2), and each 
m1i (1≤i≤n) supplies at least one object to domain(m2). 
That is, ( ) ( )211

mdomainmrange
ni i ⊇

≤≤
U  and (range(m1i) ∩ 

domain(m2)) ≠ ∅  for 1≤i≤n. Then m2 should generate an 
output object m3 in map3 such that range(m3) = range(m2) 
and domain(m3) = ( )U

ni
imdomain

≤≤1
1 . 

 For example, in Figure 8, range(4) and range(5) can 
supply all of domain(11). That is, range(4) ∪  range(5) = 
{7, 8, 9} ⊇  domain(11) = {7, 9}. Then object 11 should 
generate an output object m3 in map3 (not shown in the 
figure), such that range(m3) = range(m2) = {13} and 
domain(m3) = domain(4) ∪  domain(5) = {1,2}. 

 

Figure 8 Mappings map1 and map2 can be composed 

There is a problem, though: for a given m2 in map2, 
there may be more than one set of objects m11, …, m1n in 
map1 that can supply all of domain(m2). For example, in 
Figure 8, {4, 5} and {4, 6} can each supply all of 
domain(11). When defining composition, which set do we 
choose? In this paper, rather than choosing among them, 
we use all of them. That is, we compose each m2 in map2 
with the union of all objects m1 in map1 where range(m1) 
∩ domain(m2) ≠ ∅  ({4,5,6} in the example). This seman-
tics supports all of the application scenarios in Section 4. 

Given this decision, we define the right composition 
map3 of map1 and map2 constructively as follows:  
1. (Copy) Create a copy map3 of map2. Note that map3 

has the same morphisms to M2 and M3 as map2 and, 
therefore, the same domains and ranges. 

2. (Precompute Input) For each object m3 in map3, let 
Input(m3) be the set of all objects m1 in map1 such 
that range(m1) ∩ domain(m2) ≠ ∅ . 

3.  (Define domains) For each m3 in map3,  
a. if ( ) ( )3)( 131

mdomainmrange
mInputm ii

⊇∈U , then set 

domain(m3) = ( )U )( 131 mInputm ii
mdomain∈ . 

b. else if m3 is not needed as a support object (be-
cause none of its descendants satisfies (3a)), then 
delete it, else set domain(m3) = range(m3) = ∅ . 

Step 3 defines the domain of each object m3 in map3. 
Input(m3) is the set of all objects in map1 whose range 
intersects the domain of m3. If the union of the ranges of 
Input(m3) contains the domain of m3, then the union of the 
domains of Input(m3) becomes the domain of m3. Other-
wise, m3 is not in the composition, so it is either deleted 
(if it is not a support object, required to maintain the well-
formed-ness of map3), or its domain and range are cleared 
(since it does not compose with objects in map1). 

Sometimes it is useful to keep every object of map2 in 
map3 even though its Input set does not cover its domain. 
This is called a right outer composition, because all 
objects of the right operand, map2, are retained. Its 
semantics is the same as right composition, except that 
step 3b is replaced by “else set domain(m3) = ∅ .” 

A definition of composition that allows a more flexible 
choice of inputs to m2 is in [7]. It is more complex than 
the one above and is not required for the examples in 
Section 4, so we omit it here. 

3.5 Apply 
The operator Apply takes a model and an arbitrary 
function f as inputs and applies f to every object of the 
model. In many cases, f modifies the model, for example, 
by modifying certain properties and relationships of each 
object. The purpose of Apply is to reduce the need for 
application programs to do object-at-a-time navigation 
over a model. There can be variations of the operator for 
different traversal strategies, such as pre-order or post-
order over has-a relationships with the proviso that it does 
not visit any object twice (in the event of cycles). 

3.6 Copy 
The operator Copy takes a model as input and returns a 
copy of that model. The returned model includes all of the 
relationships of the input model, including those that 
connect its objects to objects outside the model.  

One variation of Copy is of special interest to us, 
namely DeepCopy. It takes a model and mapping as 
input, where the mapping is incident to the model. It 
returns a copy of both the model and mapping as output. 
In essence, DeepCopy treats the input model and mapping 
as a single model, creating a copy of both of them 
together. To see the need for DeepCopy, consider how 
complicated it would be to get its effect without it, by 
copying the model and mapping independently. Several 
other variations of Copy are discussed in [6]. 

3.7 ModelGen 
Applications of model management usually involve the 
generation of a model in one meta-model from a model in 
another meta-model. Examples are the generation of a 
SQL schema from an ER diagram, interface definitions 
from a UML model, or HTML links from a web site map. 
A model generator is usually meta-model specific. For 
example, the behavior of an ER-to-SQL generator very 
much depends on the source and target being ER and 
SQL models respectively. Therefore, one would not 
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expect model generation to be a generic, i.e., meta-model-
independent, operator.  

Still, there is some common structure across all model 
generators worth abstracting. One is that the generation 
step should produce not only the output model but also a 
mapping from the input model to the output model. This 
allows later operators to propagate changes from one 
model to the other. For example, if an application devel-
oper modifies a SQL schema, it helps to know how the 
modified objects relate to the ER model, so the ER model 
can be made consistent with the revised SQL schema. 
This scenario is developed in some detail in Section 4.3. 

A second common structure is that most model genera-
tors simply traverse the input model in a predetermined 
order, much like Apply, and generate output model 
objects based on the type of input object it is visiting. For 
example, a SQL generator might generate a table defini-
tion for each entity type, a column definition for each 
attribute type, a foreign key for each 1:n relationship type, 
and so on. In effect, the generator is a case-statement, 
where the case-statement variable is the type of the object 
being visited. If the case-statement is encapsulated as a 
function, it can be executed using the operator Apply. 

Since the case-statement is driven by object types, one 
can go a step further in automating model generation by 
tagging each meta-model object (which is a type 
definition) by the desired generation behavior for model 
objects of that type, as proposed in [10]. Using it, model 
generation could be encapsulated as a model management 
operator, which we call ModelGen. 

3.8 Enumerate 
Although our goal is to capture as much model manipula-
tion as possible in model-at-a-time operators, there will be 
times when iterative object-at-a-time code is needed. To 
simplify application programming in this case, we offer 
an operator called Enumerate, which takes a model as 
input and returns a “cursor” as output. The operator Next, 
when applied to a cursor, returns an object in the model 
that was the input to Enumerate, or null when it hits the 
end of the cursor. Like Apply, Enumerate may offer 
variations for different traversal orderings. 

3.9 Other Data Manipulation Operators 
Since models are object structures, they can be manipu-
lated by the usual object-at-a-time operators: read an 
attribute; traverse a relationship, create an object, update 
an attribute, add or remove a relationship, etc. In addition, 
there are two other bulk database operators of interest: 
•  Select – Return the subset of a model that satisfies a 

qualification formula. The returned subset includes 
additional support objects, as in Diff. Like Diff, it also 
returns a mapping between the returned model and the 
input model, to identify the non-support objects. 

•  Delete – This deletes all of the objects in a given 
model, except for those that are reachable by paths of 
has-a relationships from other models. 

3.10 Semantics 
The model management operators defined in Section 3 
are purely syntactic. That is, they treat models and 
mappings as graph structures, not as schemas that are 
templates for instances. The syntactic orientation is what 
enables model and mapping manipulation operators to be 
relatively generic. Still, in most applications, to be useful, 
models and mappings must ultimately be regarded as 
templates for instances. That is, they must have 
semantics. Thus, there is a semantic gap between model 
management and applications that needs to be filled. 

The gap can be partially filled by making the meta-
meta-model described in Sections 2.1 more expressive 
and extending the behavior of the operators to exploit that 
extra expressiveness. So, rather than knowing only about 
has-a and association relationships, the meta-meta-model 
should be extended to include is-a, data types, keys, etc. 

Another way to introduce semantics is to use the 
Expression property in each mapping object m. Recall 
that such an expression’s variables are the objects 
referenced by m in the two models being related. To 
exploit these expressions, the model management 
operators that generate mappings should be extended to 
produce expressions for any mapping objects they 
generate. For example, when Compose combines several 
objects from the two input mappings into an output 
mapping object m, it would also generate an expression 
for m based on the expressions on the input mapping 
objects. Similarly, for Diff and Merge. 

The expression language is meta-model-specific, e.g., 
for the relational data model, it could be conjunctive 
queries. Therefore, the extensions to model management 
operators that deal with expressions must be meta-model-
specific too and should be performed by a meta-model-
specific expression manipulation engine. For example, the 
expression language extension for Compose would call 
this engine to generate an expression for each output 
mapping object it creates [16]. Some example walk-
throughs of these extensions for SQL queries are given in 
[7]. However, a general-purpose interface between model 
management operators and expression manipulation 
engines has not yet been worked out.  

Another approach to adding semantics to mappings is to 
develop a design tool for the purpose, such as Clio 
[17,27]. 

4 Application Scenarios 
In this section, we discuss three common meta data 
management problems that involve the manipulation of 
models and mappings: schema integration, schema 
evolution, and round-trip engineering. We describe each 
problem in terms of models and mappings and show how 
to use model management operators to solve it. 

4.1 Schema Integration 
The problem is to create: a schema S3 that represents all 
of the information expressed in two given database 



 

 

map23

schemas, S1 and S2; and mappings between S1 and S3 and 
between S2 and S3 (see Figure 9). The schema integration 
literature offers many algorithms for doing this [1,8,23]. 
They all consist of three main activities: identifying 
overlapping information in S1 and S2; using the identified 
overlaps to guide a merge of S1 and S2; and resolving 
conflict situations (i.e., where the same information was 
represented differently in S1 and S2) during or after the 
merge. The main differentiator between these algorithms 
is in the conflict resolution approaches.  

 
Figure 9 The schema integration problem 

If each schema is regarded as a model, then we can 
express the first two activities using model management 
operators as follows: 
1. map12 = Match(S1, S2). This step identifies the equal 

and similar objects in S1 and S2. Since Match is 
creating a mapping between two independently 
developed schemas, this is best done with a Complex 
Match operator (rather than Elementary Match). 

2. <S3, map13, map23> = Merge(S1, S2, map12). Given the 
mapping created in the previous step, Merge produces 
the integrated schema S3 and the desired mappings. 

For example, in Figure 10, Mapee could be the result of 
Match(Emp, Employee). Notice that this is similar to 
Figure 3, except that Emp has an additional object 
Address and Employee has an additional object Phone, 
neither of which are mapped to objects in the other model. 

 

Figure 10 The result of matching Emp and Employee 

Figure 11 shows the result of merging Emp and 
Employee with respect to Mapee. (The mappings between 
Emp′ and Emp and between Emp′ and Employee are 
omitted, to avoid cluttering the figure.) Since Mapee says 
that the Emp# and EmployeeID objects are equal, they are 
collapsed into a single object Emp#. The two objects have 
different names; Merge chose the name of the left object, 
Emp#, one of the many details to nail down in a complete 
specification of Merge’s semantics. Since Address and 
Phone are not referenced by Mapee, they are simply 
copied to the output. Since Mapee says that Name is 

similar to FirstName and LastName, these objects are 
partially integrated in S12 under an object labeled ≅ , which 
is a placeholder for an expression that relates Name to 
FirstName and LastName. 

 

Figure 11 The result of merging Emp and Employee 
based on Mapee in Figure 10 

The sub-structure rooted by “≅ ” represents a conflict 
between the two input schemas. A schema integration 
algorithm needs rules to cope with such conflicts. In this 
case it could consult a knowledge base that explains that 
first name concatenated with last name is a name. It could 
use this knowledge to replace the sub-structure rooted by 
≅  either by FirstName and LastName, since together they 
subsume Name, or by a nested structure Name with sub-
objects FirstName and LastName. The latter is probably 
preferable in a data model that allows nested structures, 
such as XML Schema. The former is probably necessary 
when nested structures are not supported, as in SQL. 
Overall, the resolution strategy depends on the capabili-
ties of the knowledge base and on the expressiveness of 
the output data model. So this activity is not captured by 
the generic model management operators. Instead, it 
should be expressed in an application-specific function.  

When application-specific conflict resolution functions 
are used, the apply operator can help by executing a 
conflict resolution rule on all objects of the output of 
Merge. The rule tests for an object that is marked by ≅ , 
and if so applies its action to that object and its sub-
structure (knowledge-base lookup plus meta-model-
specific merge). This avoids the need for the application-
specific code to include logic to navigate the model. 

To finish the job, the mappings map12 and map13 that 
are returned by Merge must be translated into view defini-
tions. To do this, the models and mappings can no longer 
be regarded only as syntactic structures. Rather, they need 
semantics. Thus, creating view definitions requires 
semantic reasoning: the manipulation of expressions that 
explain the semantics of mappings. In Section 3.10 we 
explained in broad outline how to do this, though as we 
said there, the details are beyond the scope of this paper. 

4.2 Schema Evolution 
The schema evolution problem arises when a change to a 
database schema breaks views that are defined on it [3, 
12]. Stated more precisely, we are given a base schema 
S1, a set of view schemas V1 over S1, and a mapping map1 
that maps objects of S1 to objects of V1. (See Figure 12.) 
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For example, if S1 and V1 are relational schemas, then we 
would expect each object m of map1 to contain a 
relational view definition that tells how to derive a view 
relation in V1 from some of the relations in S1; the 
morphisms of m would refer to the objects of S1 and V1 
that are mentioned in m’s view definition. Then, given a 
new version S2 of S1, the problem is to define a new 
version V2 of V1 that is consistent with S2 and a mapping 
map2 from S2 to V2.  

 

Figure 12 The schema evolution problem 

We can solve this problem using model management 
operators as follows (Figure 13):  
1. map3 = Match(S1, S2). This returns a mapping between 

S1 and S2 that identifies what is unchanged in S2 
relative to S1. If we know that S2 is an incremental 
modification of S1, then this can be done by Elemen-
tary Match. If not, then Complex Match is required. 

2. map4 = map1 •  map3. This is a right composition. In-
tuitively, each mapping object in map4 describes a part 
of map1 that is unaffected by the change from S1 to S2. 
A mapping object m in map1 survives the composition 
(i.e., becomes an object of map4) if every object in S1 
that is connected to m is also connected to some object 
of S2 via map3. If so, then m is transformed into m′ in 
map4 by replacing each reference from m to an object 
of S1 by a reference to the corresponding objects in S2. 

  

Figure 13 Result of schema evolution solution 

Some objects of V1 may now be “orphans” in the sense 
that they are not incident to map4. An orphan arises 
because it maps via map1 to an object in S1 that has no 
corresponding object in S2 via map3. One way to deal with 
orphans is to eliminate them. Since doing this would 
corrupt map1, we first make a copy of V1 and then delete 
the orphans from the copy: 
3. <V2, map2> = DeepCopy(V1, map4). This makes a 

copy V2 of V1 along with a copy map2 of map4.  

4. <V2′, map5> = Diff(V2, map2). Identify the orphans. 

5. For each e in Enumerate(map5), delete domain(e) from 
V2. This enumerates the orphans and deletes them. 
Notice that we are treating map5 as a model. 

At this point we have successfully completed the task. 
An alternative to steps 4 and 5 is to be more selective in 
deleting view objects, based on knowledge about the 
syntax and semantics of the mapping expressions. For 
example, suppose the schemas and views are in the 
relational data model and S2 is missing an attribute that is 
used to populate an attribute of a view in V2. In the 
previous approach, if each view is defined by one object 
in map1, then the entire view would be an orphan and 
deleted. Instead, we could drop the attribute from the 
view without dropping the entire view relation that con-
tains it. To get this effect, we could replace Step 2 above 
by a right outer composition, so that all objects of map1 
are copied to map4, even if they connect to S1 objects that 
have no counterpart in S2. Then we can write a function f 
that encapsulates the semantic knowledge necessary to 
strip out parts of a view definition and replace steps 4 and 
5 by Apply(f, map2). Thus, f gives us a way of exploiting 
non-generic model semantics while still working within 
the framework of the model management algebra. 

4.3 Round-Trip Engineering 
Consider a design tool that generates a compiled version 
of a high-level specification, such as an ER modeling tool 
that generates SQL DDL or a UML modeling tool that 
generates C++ interfaces. After a developer modifies the 
generated version of such a specification (e.g., SQL 
DDL), the modified generated version is no longer 
consistent with its specification. Repairing the specifica-
tion is called round-trip engineering, because the tool 
forward-engineers the specification into a generated 
version after which the modified generated version is 
reverse-engineered back to a specification. 

Stating this scenario more precisely, we are given a 
specification S1, a generated model G1 that was derived 
from S1, a mapping map1 from S1 to G1, and a modified 
version G2 of G1. The problem is to produce a revised 
specification S2 that is consistent with G2 and a mapping 
map2 between S2 and G2. See Figure 14. Notice that 
diagrammatically, this is isomorphic to the schema evolu-
tion problem; it is exactly like Figure 12, with S1 and S2 
replacing V1 and V2, and G1 and G2 replacing S1 and S2.  

 

Figure 14 The round-trip engineering problem 

As in schema evolution, we start by matching G1 and 
G2, composing the resulting mapping with map1, and 
doing a deep copy of the mapping produced by Compose: 
1. map3 = Match(G1, G2). This returns a mapping that 

identifies what is unchanged in G2 relative to G1. 
Since G2 is an incremental modification of G1, 
Elementary Match should suffice. See Figure 15a. 
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2. map4 = map1 •  map3. Mapping map4, between S1 and 
G2, includes a copy of each object in map1 all of whose 
incident G1 objects are still present in G2. 

3. <S3, map5> = DeepCopy(S1, map4). This makes a copy 
S3 of S1 along with a copy map5 of map4.  

Steps 2 and 3 eliminate from the specification S3 all 
objects that do not correspond to generated objects in G2. 
One could retain these objects by replacing the composi-
tion in step 2 by outer composition. The remaining steps 
in this section would then proceed without modification. 

Next, we need to reverse engineer the new objects that 
were introduced in G2 and merge them with S3. Here is 
one way to do it (see Figure 15a): 

4. <G2′, map6> = Diff(G2, map3). This produces a model 
G2′ that includes objects of G2 that do not participate 
in the mapping map3, which are exactly the new 
objects of G2, plus support objects O that are needed 
to keep G2′ well-formed. Mapping map6 maps each ob-
ject of G2′ not in O to the corresponding object of G2. 

 
Figure 15 Result of round-trip engineering solution 

For example, suppose G2 and G2′ are SQL schemas, and 
G2′ introduced a new column C into table T. In the model 
management representation G2 of the schema, C is an 
object that is a child of object T. Since C is new, it is not 
connected via map3 to G1, so it is in the result of Diff. 
However, to keep G2′ connected, since C is a child of T, T 
is also in the result of Diff as a support object, though it is 
not connected to G2 via map6. 
5. <S3′, map7> = ModelGen(G2′). In this case, ModelGen 

is customized to reverse engineer each object of G2′ 
into an object of the desired form for integration into 
S2. For example, if G2′ is a SQL schema and the Si’s 
are ER models, then ModelGen maps each SQL 

column into an ER attribute, each table into either an 
entity type or relationship type (depending on the key 
structure of the table), etc. 

We need to merge S3 and S3′ into a single model S2, 
which is half of the desired result. (The other half is map2, 
coming soon.) To do this, we need to create a mapping 
between S3 and S3′ that connects objects of S3 and S3′ that 
represent the same thing. Continuing the example after 
step 4 above, where G2′ introduces a new column C into 
table T, the desired mapping should connect the reverse 
engineered object for T in S3′ (e.g., an entity type) with 
the original object for T in S3 (e.g., the entity type that 
was used to generate T in G2 in the first place). By 
contrast, the reverse engineered object for C in S3′ will not 
map to any object in S3 because it is a new object that was 
introduced in G2′, and therefore was not present S3. We 
can create the desired mapping by a Match followed by 
two compositions, after which we can do the merge, as 
follows (see Figure 15b): 

6. map8 = Match(G2, G2′). This matches every object in 
G2′ with its corresponding copy in G2. Unlike map6, 
map8 connects to all objects in G2′, including support 
objects. 

7. map9 = map7 •  map8. This right composition creates a 
mapping map9 between the objects of G2 that are also 
in G2′ and their corresponding objects of S3′. Since 
map8 is incident to all objects of G2′, every object of 
map7 generates a map9 object that connects to G2. 

8. map10 = map5 •  map9. If there are mapping objects of 
map5 and map9 that connect an object of G2 (e.g., T) to 
both S3 and S3′, then those mapping objects compose 
and the corresponding objects of S3 and S3′ are related 
by map10. This should be an “inner” Compose, which 
only returns objects that connect to both S3 and S3′. 

9. <S2, map11, map11′> = Merge(S3, S3′, map10). This 
merges the reverse engineered objects of S3′ (which 
came from the new objects introduced in G2) with S3, 
producing the desired model S2 (cf. Figure 14). 

Finally, we need to produce the desired mapping map2 
between G2 and S2. This is the union (i.e., merge) of 
map11 •  map5 and map11′•  map9. To see why this is what 
we want, recall that G2′ contains the objects of G2 that do 
not map to S3 via map5. Mapping map7 connects those ob-
jects to S3′, as does map9, except on the original objects in 
G2 rather than on the copies in G2′. Hence, every object in 
G2 connects to a mapping object in either map5 or map9.  

So to start, we need to compute these compositions: 

10. map2′ = map11 •  map5 
11. map2″ = map11′ •  map9 

Next, we need the union of map2′ and map2″. But there 
is a catch: an object of G2 could be connected to objects 
in both map5 and map9. Continuing our example, table T 
is such an object because it is mapped to S3 as well as re-
verse engineered to S3′. Such objects have two mappings 
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to G2 via the union of the compositions, which is probably 
not what is desired. Getting rid of the duplicates is a bit of 
effort. One way is to merge the mappings. To do this, we 
need to match map2′ and map2″ from steps 10 and 11 to 
find the duplicates (which we can do because mappings 
are models), and then merge the mappings based on the 
match result. Here are the steps (not shown in Figure 15): 

12. map12 = Match(map2′, map2″). Objects m2′ in map2′ 
and m2″ in map2″ match if they connect to exactly the 
same objects of G2 and S2. To use this matching 
condition, one needs to regard the morphisms of map2′ 
and map2″ as parts of each map’s model; e.g., the 
morphisms could be available as relationships on each 
map’s model. Using this simple match criterion, 
Elementary Match suffices. 

13. map2 = Merge(map2′, map2″, map12). The morphisms 
of map2′ and map2″ should be merged like ordinary 
relationships. That is, if map12 connects m2′ in map2′ 
and m2″ in map2″, then Merge collapses m2′ and m2″ 
into a single object m2. Object m2 should have only 
one copy of the mapping connections that m2′ and m2″ 
had to G2 and S2. 

We now have map2 and S2, so we’re done! Cf. Figure 14. 

5 Implementation 
We envision an implementation of models, mappings, and 
model management operators on a persistent object-
oriented system. Given technology trends, an object-
relational system is likely to be the best choice, but an 
XML database system might also be suitable. The system 
consists of four layers: 
Models and mappings – This layer supports the model 
and mapping abstractions, each implemented as an object-
oriented structure, both on disk and heavily cached for 
fast navigation. The representation of models should be 
extensible, so that the system can be specialized to more 
expressive meta-meta-models. And it should be semi-
structured, so that models can be imported from more 
expressive representations without loss of information. 
This layer supports: 
•  Models – We need the usual object-at-a-time opera-

tions on objects in models, plus GetSubmodels (of a 
given model) and DeleteSubmodel, where a submod-
el is a model rooted by an object in another model. 
Also Copy (deep and shallow) is supported here. 

•  Mappings - CreateMapping returns a model and two 
morphisms. GetSource and GetTarget return the 
morphisms of a given mapping. 

•  Morphisms – These are accessible and updatable like 
normal relationships. 

Algebraic operators – This layer implements Match, 
Merge, Diff, Compose, Apply, ModelGen, and Enumer-
ate. It should have an extension mechanism for handling 
semantics, such as an expression manipulation engine as 
discussed in Section 3.10. 

Model-driven generator of user interface – Much like 
an advanced drawing tool, one can tag meta-model 
objects with descriptions of objects and their behavior 
(e.g., a table definition is a blue rectangle and a column 
definition is a line within its table’s rectangle).  

Generic tools over models and mappings – browser, 
editor, catalog, import/export, scripting. 

6 Related Work 
Although the model management approach is new, much 
of the existing literature on meta data management offers 
either algorithms that can be generalized for use in model 
management or examples that can be studied as chal-
lenges for the model management operators. This litera-
ture is too large to cite here, but we can highlight a few 
areas where there is obvious synergy worth exploring. 
Some of them were mentioned earlier: schema matching 
(see the survey in [23]); schema integration [1,8,15,25], 
which is both an example and a source of algorithms for 
Match and Merge; and adding semantics to mappings 
[7,17,21,27]. Others include: 
•  Data translation [24];  
•  Differencing [11,19,26]; and 
•  EER-style representations and their expressive 

power, which may help select the best representation 
for models and mappings [2,14,15,18,20]. 

7 Conclusion 
In this paper, we described model management — a new 
approach to manipulating models (e.g., schemas) and 
mappings as bulk objects using operators such as Match, 
Merge, Diff, Compose, Apply, Copy, Enumerate, and 
ModelGen. We showed how to apply these operators to 
three classical meta data management problems: schema 
integration, schema evolution, and round-trip engineering. 
We believe these example solutions strongly suggest that 
an implementation of model management would provide 
major programming productivity gains for a wide variety 
of meta data management problems. Of course, to make 
this claim compelling, an implementation is needed. If 
successful, such an implementation could be the 
prototype for a new category of database system products. 

In addition to implementation, there are many other 
areas where work is needed to fully realize the potential 
of this approach. Some of the more pressing ones are: 

•  Choosing a representation that captures most of the 
constructs of models and mappings of interest, yet is 
tractable for model management operators. 

•  More detailed semantics of model management opera-
tors. There is substantial work on Match. Merge, 
Compose, and ModelGen are less well developed. 

•  A mathematical semantics of model management. The 
beginnings of a category-theoretic approach appears 
in [1], but there is much left to do. A less abstract 
analysis that can speak to the completeness of the set 



 

 

of operators would help define the boundary of useful 
model management computations. 

•  Mechanisms are needed to fill the gap between 
models and mappings, which are syntactic structures, 
and their semantics, which treat models as templates 
for instances and mappings as transformations of 
instances. Various theories of conjunctive queries are 
likely to be helpful. 

•  Trying to apply model management to especially chal-
lenging meta data management problems, to identify 
limits to the approach and opportunities to extend it. 

This is a broad agenda that will take many years and 
many research groups to develop. Although it will be a lot 
of work, we believe the potential benefits of the approach 
make the agenda well worth pursuing. 
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