

Applying Model Management to Classical Meta Data Problems
Philip A. Bernstein

Microsoft Research
One Microsoft Way

Redmond, WA 98052-6399
philbe@microsoft.com

Abstract

Model management is a new approach to meta data
management that offers a higher level programming
interface than current techniques. The main abstrac-
tions are models (e.g., schemas, interface defini-
tions) and mappings between models. It treats these
abstractions as bulk objects and offers such opera-
tors as Match, Merge, Diff, Compose, Apply, and
ModelGen. This paper extends earlier treatments of
these operators and applies them to three classical
meta data management problems: schema integra-
tion, schema evolution, and round-trip engineering.

1 Introduction
Many information system problems involve the design,
integration, and maintenance of complex application
artifacts, such as application programs, databases, web
sites, workflow scripts, formatted messages, and user
interfaces. Engineers who perform this work use tools to
manipulate formal descriptions, or models, of these
artifacts, such as object diagrams, interface definitions,
database schemas, web site layouts, control flow
diagrams, XML schemas, and form definitions. This
manipulation usually involves designing transformations
between models, which in turn requires an explicit
representation of mappings, which describe how two
models are related to each other. Some examples are:

• mapping between class definitions and relational
schemas to generate object wrappers,

• mapping between XML schemas to drive message
translation,

• mapping between data sources and a mediated schema
to drive heterogeneous data integration,

• mapping between a database schema and its next
release to guide data migration or view evolution,

• mapping between an entity-relationship (ER) model
and a SQL schema to navigate between a database

design and its implementation,
• mapping source makefiles into target makefiles, to

drive the transformation of make scripts from one
programming environment to another, and

• mapping interfaces of real-time devices to the
interfaces required by a system management environ-
ment to enable it to communicate with the device.

Following conventional usage, we classify these as meta
data management applications, because they mostly
involve manipulating descriptions of data, rather than the
data itself.

Today’s approach to implementing such applications is
to translate the given models into an object-oriented
representation and manipulate the models and mappings
in that representation. The manipulation includes
designing mappings between the models, generating a
model from another model along with a mapping between
them, modifying a model or mapping, interpreting a
mapping, and generating code from a mapping. Database
query languages offer little help for this kind of
manipulation. Therefore, most of it is programmed using
object-at-a-time primitives.

We have proposed to avoid this object-at-a-time
programming by treating models and mappings as
abstractions that can be manipulated by model-at-a-time
and mapping-at-a-time operators [6]. We believe that an
implementation of these abstractions and operators, called
a model management system, could offer an order-of-
magnitude improvement in programmer productivity for
meta data applications.

The approach is meant to be generic in the sense that a
single implementation is applicable to all of the data
models in the above examples. This is possible because
the same modeling concepts are used in virtually all mod-
eling environments, such as UML, extended ER (EER),
and XML Schema. Thus, an implementation that uses a
representation of models that includes most of those
concepts would be applicable to all such environments.

There are many published approaches to the list of meta
data problems above and others like them. We borrow
from these approaches by abstracting their algorithms into
a small set of operators and generalizing them across
applications and, to some extent, across data models. We

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment.
Proceedings of the 2003 CIDR Conference

thereby hope to offer a more powerful database platform
for such applications than is available today.

In a model management system, models and mappings
are syntactic structures. They are expressed in a type
system, but do not have additional semantics based on a
constraint language or query language. Despite this
limited expressiveness, model management operators are
powerful enough to avoid most object-at-a-time pro-
gramming in meta data applications. And it is precisely
this limited expressiveness that makes the semantics and
implementation of the operators tractable.

Still, for a complete solution, meta data problems often
require some semantic processing, typically the manipula-
tion of formulas in a mathematical system, such as logic
or state machines. To cope with this, model management
offers an extension mechanism to exploit the power of an
inferencing engine for any such mathematical system.

Before diving into details, we offer a short preview to
see what model management consists of and how it can
yield programmer productivity improvements. First, we
summarize the main model management operators:

• Match – takes two models as input and returns a
mapping between them

• Compose – takes a mapping between models A and B
and a mapping between models B and C, and returns a
mapping between A and C

• Diff – takes a model A and mapping between A and
some model B, and returns the sub-model of A that
does not participate in the mapping

• ModelGen – takes a model A, and returns a new
model B based on A (typically in a different data
model than A’s) and a mapping between A and B

• Merge – takes two models A and B and a mapping
between them, and returns the union C of A and B
along with mappings between C and A, and C and B.

Second, to see how the operators might be used, consi-
der the following example [7]: Suppose we are given a
mapping map1 from a data source S1 to a data warehouse
SW, and want to map a second source S2 to SW, where S2 is
similar to S1. See Figure 1. (We use S1, SW, and S2 to
name both the schemas and databases.) First we call
Match(S1, S2) to obtain a mapping map2 between S1 and
S2, which shows where S2 is the same as S1. Second, we
call Compose(map1, map2) to obtain a mapping map3
between S2 and SW, which maps to SW those objects of S2
that correspond to objects of S1. To map the other objects
of S2 to SW, we call Diff(S2, map3) to find the sub-model
S3 of S2 that is not mapped by map3 to SW, and map4 to
identify corresponding objects of S2 and S3. We can then
call other operators to generate a warehouse schema for S3
and merge it into SW. The latter details are omitted, but we
will see similar operator sequences later in the paper.

The main purpose of this paper is to define the seman-
tics of the operators in enough detail to make the above
sketchy example concrete, and to present additional ex-

Figure 1 Using model management to help generate a
data warehouse loading script

amples to demonstrate that model management is a credi-
ble approach to solving problems of this type. Although
this paper is not the first overview of model management,
it is the most complete proposal to date. Past papers pre-
sented a short vision [5,6], an example of applying model
management to a data warehouse loading scenario [7], an
application of Merge to mediated schemas [22], and an
initial mathematical semantics for model management [1].
We also studied the match operator [23], which has
developed into a separate research area. This paper offers
the following new contributions to the overall program:
• The first full description of all of the model

management operators.
• New details about two of the operators, Diff and

Compose, and a new proposed operator, ModelGen.
• Applications of model management to three well

known meta data problems: schema integration,
schema evolution, and round-trip engineering.

We regard the latter as particularly important, since they
offer the first detailed demonstration that model manage-
ment can help solve a wide range of meta data problems.

The paper is organized as follows: Section 2 describes
the two main structures of model management, models
and mappings. Section 3 describes the operators on
models and mappings. Section 4 presents walkthroughs of
solutions to schema integration, schema evolution, and
round-trip engineering. Section 5 gives a few thoughts
about implementing model management. Section 6
discusses related work. Section 7 is the conclusion.

2 Models and Mappings
2.1 Models
For the purposes of this paper, the exact choice of model
representation is not important. However, there are
several technical requirements on the representation of
models, which the definitions of mappings and model
management operators depend on.

First, a model must contain a set of objects, each of
which has an identity. A model needs to be a set so that
its content is well-defined (i.e., some objects are in the set
while others are not). By requiring that objects have iden-
tity, we can define a mapping between models in terms of
mappings between objects or combinations of objects.

Second, we want the expressiveness of the representa-
tion of models to be comparable to that of EER models.
That is, objects can have attributes (i.e., properties), and

S1 SW

S2 S3

map1

1. map2 2. map3

3. map4

Given: S1, S2, map1, SW
1. map2 = Match(S1, S2)
2. map3 =
 Compose(map1, map2)
3. < S3 ,map4> =
 Diff(S2, map3)

can be related by is-a (i.e., generalization) relationships,
has-a (i.e., aggregation or part-of) relationships, and asso-
ciations (i.e., relationships with no special semantics). As
well, there may be some built-in types of constraints, such
as the min and max cardinality of set-valued properties.

Third, since a model is an object structure, it needs to
support the usual object-at-a-time operations to create or
delete an object, read or write a property, and add or
remove a relationship.

Fourth, we expect objects, properties and relationships
to have types. Thus, there are (at least) three meta-levels
in the picture. Using conventional meta data terminology,
we have: instances, which are models; a meta-model that
consists of the type definitions for the objects of models;
and the meta-meta-model, which is the representation
language in which models and meta-models are express-
ed. We avoid using the term “data model,” because it is
ambiguous in the meta data world. In some contexts, it
means the meta-meta-model, e.g., in a relational database
system, the relational data model is the meta-meta-model.
In other contexts, it means the meta-model; for example,
in a model management system, a relational schema (such
as the personnel schema) is a model, which is an instance
of the relational meta-model (which says that a relational
schema consists of table definitions, columns definitions,
etc.), where both the model and meta-model are repre-
sented in the meta-meta-model (such as an EER model).

Since a goal of model management is to be as generic as
possible, a rich representation is desirable so that when a
model is imported from another data model, little or no
semantics is lost. However, to ensure model management
operators are implementable, some compromises are
inevitable between expressiveness and tractability.

To simplify the discussion in this paper, we define a
model to be a set objects, each of which has properties,
has-a relationships, and associations. We assume that a
model is identified by its root object and includes exactly
the set of objects reachable from the root by paths of has-
a relationships. In an implementation, we would expect a
richer model comparable to EER models.

2.2 Mappings
Given two models M1 and M2, a morphism over M1 and
M2 is a binary relation over the objects of the two models.
That is, it is a set of pairs <o1, o2> where o1 and o2 are in
M1 and M2 respectively. A mapping between models M1
and M2 is a model, map12, and two morphisms, one be-
tween map12 and M1 and another between map12 and M2.
Thus, each object m in mapping map12 can relate a set of
objects in M1 to a set of objects in M2, namely the objects
that are related to m via the morphisms. For example, in
Figure 2, Mapee is a mapping between models Emp and
Employee, where has-a relationships are represented by
solid lines and morphisms by dashed lines.

In effect, a mapping reifies the concept of a relationship
between models. That is, instead of representing the
relationship as a set of pairs (of objects), a mapping repre-

Figure 2 An example of a mapping

sents it as a set of objects (each of which can relate
objects in the two models). In our experience, this
reification is often needed for satisfactory expressiveness.
For example, if the mapping in Figure 2 were represented
as a relationship, it would presumably include the pairs
<Name, FirstName> and <Name, LastName>, which
loses the structure in Mapee that shows FirstName and
LastName as components of Name.

In addition to enabling more structural expressiveness,
reifying a mapping also allows us to attach custom se-
mantics to it. We can do this by having a property called
Expression for each object m in a mapping, which is an
expression whose variables include the objects that m
directly or indirectly references in M1 and M2. For exam-
ple, in Figure 2 we could associate an expression with
object 2 that says Name equals the concatenation of First-
Name and LastName. We will have more to say about the
nature of these expressions at the end of Section 3.

Despite these benefits of reifying mappings as models,
we expect there is value in specializing model manage-
ment operators to operate directly on morphisms, rather
than mappings. However, such a specialization is outside
the scope of this paper. Thus, the operators discussed here
work on models and mappings, but not on morphisms
(separately from the mappings that contain them).

3 Model Management Algebra
3.1 Match
The operator Match takes two models as input and returns
a mapping between them. The mapping identifies combi-
nations of objects in the input models that are either equal
or similar, based on some externally provided definition
of equality and similarity. In some cases, the definition is
quite simple. For example, the equality of two objects
may be based on equality of their identifiers or names. In
other cases, it is quite complex and perhaps subjective.
For example, the equality of database schema objects for
databases that were independently developed by different
enterprises may depend on different terminologies used to
name objects.

 This range of definitions of equality leads to two
versions of the match operator: Elementary Match and
Complex Match. Elementary Match is based on the
simple definition of equality. It is used where that simple
definition is likely to yield an accurate mapping, e.g.,

Emp

Emp#

Name

Employee

EmployeeID

FirstName

LastName

Mapee

1

2

4 3
A morphism between
Emp and Mapee

when one model is known to be an incremental
modification of another model.

 Complex Match is based on complex definitions of
equality. Although it need not set the Expression property
on mapping objects, it should at least distinguish sets of
objects that are equal (=) from those that are only similar
(≅). By similar, we mean that they are related but we do
not express exactly how. For example, in Figure 3, object
1 says that Emp# and EmployeeID are equal, while object
2 says that Name is similar to a combination of FirstName
and LastName. A human mapping designer might update
object 2’s Expression property to say that Name equals
the concatenation of FirstName and LastName.

Figure 3 A mapping output from Complex Match

In practice, Complex Match is not an algorithm that
returns a mapping but rather is a design environment to
help a human designer develop a mapping. It potentially
benefits from using technology from a variety of fields:
graph isomorphism to identify structural similarity in
large models; natural language processing to identify
similarity of names or to analyze text documentation of a
model; domain-specific thesauri; and machine learning
and data mining to use similarity of data instances to infer
the equality of model objects. A recent survey of
approaches to Complex Match is [23].

3.2 Diff
Intuitively, the difference between two models is the set
of objects in one model that do not correspond to any
object in the other model. One part of computing a
difference is determining which objects do correspond.
This is the main function of Match. Rather than repeating
this semantics as part of the diff operator, we compute a
difference relative to a given mapping, which may have
been computed by an invocation of Match. Thus, given a
mapping map1 between models M1 and M2, the operator
Diff(M1, map1) returns the objects of M1 that are not
referenced in map1’s morphism between M1 and map1.

There are three problems with this definition of Diff,
which require changing it a bit. First, the root of map1
always references an object (often the root) of M1, so the
result of Diff(M1, map1) would not include that object.
This is inconvenient, because it makes it hard to align the
result of Diff with M1 in subsequent operations. We will
see examples of this in Section 4. Therefore, we alter the
definition of Diff to require that the result includes the
object of M1 referenced by map1’s root.

Second, recall that a model is the set of objects reach-
able by paths of has-a relationships from the root. Since
the result of Diff may equal any subset of the objects of
M1, some of those objects may not be connected to the
Diff result’s root. If they are not, the result of Diff is not a
model. For example, consider Diff(Employee, Mapee) on
the models and mapping in Figure 4. Since FirstName and
LastName are not referenced by Mapee’s morphism
between Employee and Mapee, they are in the result.
However, Name is not in the result, so FirstName and
LastName are not connected to the root, Employee, of the
result and therefore are not in that model. This is undesir-
able, since such objects cannot be subsequently processed
by other operators, all of which expect a model as input.
Therefore, to ensure that the result of Diff is a well-
formed model, for every object o in the result, we require
the result to include all objects O on a path of has-a
relationships from the M1 object referenced by map1’s
root to o. Objects in O that are referenced in map1’s
morphism to M1 are called support objects, because they
are added only to support the structural integrity of the
model. For example, in Figure 5, Name is a support object
in the result of Diff(Employee, Mapee).

Figure 4 Diff(Employee, mapee) includes FirstName
and LastName but not Name

Having made this decision, we now have a third
problem, namely, in the model that is returned by Diff,
how to distinguish support objects from objects that are
meant to be in the result of Diff (i.e., that do not
participate in map1)? We could simply mark support
objects in the result. But this introduces another structure,
namely a marked model. To avoid this complication, we
use our two existing structures to represent the result,
namely, model and mapping. That is, the result of Diff is
a pair <M1′, map2>, where

• M1′ includes a copy of: the M1 object r referenced by
map1’s root; the set S of objects in M1 that are not
referenced by map1’s morphism between map1 and
M1; all support objects, i.e., those on a path of has-a
relationships from r to an object in S that are not
otherwise required in M1′; every has-a relationship
between two objects of M1 that are also in M1′; and
every association between two objects in S or between
an object in S and an object outside of M1.

Emp

Emp#

Employee

EmployeeID

LastName

Mapee

1

2 Name

FirstName

Name

Emp

Emp#

Name

Employee

EmployeeID

FirstName

LastName

Mapee

=

1
=

2
≅

Figure 5 The result of Diff(Employee, Mapee) is
<Employee′′′′ , Mapee′′′′>

• map2 connects the root of M1′ to r in M1 and connects
each object of S to the corresponding object of M1′.

For example, given Employee and Mapee in Figure 4, the
result of Diff(Employee, Mapee) is <Employee′, Mapee′>
as shown in Figure 5.

3.3 Merge
The merge operation returns a copy of all of the objects

of the input models, except that objects of the input
models that are equal are collapsed into a single object in
the output. Stating this more precisely, given two models
M1 and M2 and a mapping map1 between them,
Merge(M1, M2, map1) returns a model M3 such that

• M3 includes a copy of all of the objects of M1, M2, and
map1, except that for each object m of map1 that
declares objects of M1 and M2 to be equal, those equal
objects are dropped from M3 and their properties and
relationships are added to m. The root of map1 must
declare the roots of M1 and M2 to be equal.

• All relationships in M1, M2, and map1 are copied to the
corresponding objects in M3. For example, in Figure 6
Emp′ is the result of Merge(Emp, Employee, Mapee)
on the models and mappings of Figure 2.

• Merge also returns two mappings, map13 between M1
and M3 and map23 between M2 and M3, which relate
each object of M3 to the objects from which it was
derived. Thus, the output of Merge is a triple <M3,
map13, map23>. For example, Figure 7 shows the map
pings between the merge result in Figure 6 and the
two input models of the merge, Emp and Employee.

Figure 6 The result of Merge applied to Figure 2

The effect of collapsing objects into a single object can
cause the output of Merge to violate basic constraints that
models must satisfy. For example, suppose map1 declares
objects m1 of M1 and m2 of M2 to be equal, and suppose
m1 is of type integer and m2 is of type image. The type of
the merged object m3 is both integer and image. If a
constraint on models is that each object is allowed to have
at most one type, then m3 manifests a constraint violation
that must be repaired, either as part of Merge or in a post-
processing step. A solution to this specific problem
appears in [9]. A more general discussion of constraint
violations in merge results appears in [15].

3.4 Compose
The composition operator, represented by • , creates a
mapping by combining two other mappings. If map1
relates models M1 and M2, and map2 relates M2 and M3,
then the composition map3 = map2 • map1 is a mapping

that relates M1 and M3 (i.e., map3(M1) ≡ map2(map1(M1)).
To explain the semantics of composition, we will use

mathematical function terminology: For each object m1 in
map1, we refer to the objects that m1 references in M1 as
its domain, and those that m1 references in M2 as its
range. That is, domain(m1) ⊆ M1 and range(m1) ⊆ M2.
Similarly, for each object m2 in map2, domain(m2) ⊆ M2
and range(m2) ⊆ M3.

In principle, a composition can be driven by either the
left mapping (map1) or right mapping (map2). However,
in this paper we restrict our attention to right
compositions, since that is enough for the examples in
Section 4. In a right composition, the structure of map2
determines the structure of the output mapping.

Figure 7 The merge result, Emp′′′′ , of Figure 2 with its mappings to the input models Emp and Employee

Employee

EmployeeID

Name

Employee′

LastName

Name

FirstName

Mapee′

1

2 LastName

FirstName

Emp

Emp#

Name

Employee

EmployeeID

FirstName

LastName

Emp′

Emp#

Name

FirstName LastName

MapEmp-Emp′ MapEmp′-Employee

Emp′

Emp#

Name

FirstName LastName

To compute the composition, for each object m2 in map2,
we identify each object m1 in map1 where range(m1) ∩
domain(m2) ≠ ∅ , which means that range(m1) can supply
at least one object to domain(m2). For example, in Figure
8, the ranges of 4, 5, and 6 in map1 can each supply one
object to domain(11) in map2. Suppose objects m11, …,
m1n in map1 together supply all of domain(m2), and each
m1i (1≤i≤n) supplies at least one object to domain(m2).
That is, () ()211

mdomainmrange
ni i ⊇

≤≤
U and (range(m1i) ∩

domain(m2)) ≠ ∅ for 1≤i≤n. Then m2 should generate an
output object m3 in map3 such that range(m3) = range(m2)
and domain(m3) = ()U

ni
imdomain

≤≤1
1 .

 For example, in Figure 8, range(4) and range(5) can
supply all of domain(11). That is, range(4) ∪ range(5) =
{7, 8, 9} ⊇ domain(11) = {7, 9}. Then object 11 should
generate an output object m3 in map3 (not shown in the
figure), such that range(m3) = range(m2) = {13} and
domain(m3) = domain(4) ∪ domain(5) = {1,2}.

Figure 8 Mappings map1 and map2 can be composed

There is a problem, though: for a given m2 in map2,
there may be more than one set of objects m11, …, m1n in
map1 that can supply all of domain(m2). For example, in
Figure 8, {4, 5} and {4, 6} can each supply all of
domain(11). When defining composition, which set do we
choose? In this paper, rather than choosing among them,
we use all of them. That is, we compose each m2 in map2
with the union of all objects m1 in map1 where range(m1)
∩ domain(m2) ≠ ∅ ({4,5,6} in the example). This seman-
tics supports all of the application scenarios in Section 4.

Given this decision, we define the right composition
map3 of map1 and map2 constructively as follows:
1. (Copy) Create a copy map3 of map2. Note that map3

has the same morphisms to M2 and M3 as map2 and,
therefore, the same domains and ranges.

2. (Precompute Input) For each object m3 in map3, let
Input(m3) be the set of all objects m1 in map1 such
that range(m1) ∩ domain(m2) ≠ ∅ .

3. (Define domains) For each m3 in map3,
a. if () ()3)(131

mdomainmrange
mInputm ii

⊇∈U , then set

domain(m3) = ()U)(131 mInputm ii
mdomain∈ .

b. else if m3 is not needed as a support object (be-
cause none of its descendants satisfies (3a)), then
delete it, else set domain(m3) = range(m3) = ∅ .

Step 3 defines the domain of each object m3 in map3.
Input(m3) is the set of all objects in map1 whose range
intersects the domain of m3. If the union of the ranges of
Input(m3) contains the domain of m3, then the union of the
domains of Input(m3) becomes the domain of m3. Other-
wise, m3 is not in the composition, so it is either deleted
(if it is not a support object, required to maintain the well-
formed-ness of map3), or its domain and range are cleared
(since it does not compose with objects in map1).

Sometimes it is useful to keep every object of map2 in
map3 even though its Input set does not cover its domain.
This is called a right outer composition, because all
objects of the right operand, map2, are retained. Its
semantics is the same as right composition, except that
step 3b is replaced by “else set domain(m3) = ∅ .”

A definition of composition that allows a more flexible
choice of inputs to m2 is in [7]. It is more complex than
the one above and is not required for the examples in
Section 4, so we omit it here.

3.5 Apply
The operator Apply takes a model and an arbitrary
function f as inputs and applies f to every object of the
model. In many cases, f modifies the model, for example,
by modifying certain properties and relationships of each
object. The purpose of Apply is to reduce the need for
application programs to do object-at-a-time navigation
over a model. There can be variations of the operator for
different traversal strategies, such as pre-order or post-
order over has-a relationships with the proviso that it does
not visit any object twice (in the event of cycles).

3.6 Copy
The operator Copy takes a model as input and returns a
copy of that model. The returned model includes all of the
relationships of the input model, including those that
connect its objects to objects outside the model.

One variation of Copy is of special interest to us,
namely DeepCopy. It takes a model and mapping as
input, where the mapping is incident to the model. It
returns a copy of both the model and mapping as output.
In essence, DeepCopy treats the input model and mapping
as a single model, creating a copy of both of them
together. To see the need for DeepCopy, consider how
complicated it would be to get its effect without it, by
copying the model and mapping independently. Several
other variations of Copy are discussed in [6].

3.7 ModelGen
Applications of model management usually involve the
generation of a model in one meta-model from a model in
another meta-model. Examples are the generation of a
SQL schema from an ER diagram, interface definitions
from a UML model, or HTML links from a web site map.
A model generator is usually meta-model specific. For
example, the behavior of an ER-to-SQL generator very
much depends on the source and target being ER and
SQL models respectively. Therefore, one would not

M1 M2 M3

1

2

3

map1

4

5

6

map2

10

11

12

13

7

8

9

expect model generation to be a generic, i.e., meta-model-
independent, operator.

Still, there is some common structure across all model
generators worth abstracting. One is that the generation
step should produce not only the output model but also a
mapping from the input model to the output model. This
allows later operators to propagate changes from one
model to the other. For example, if an application devel-
oper modifies a SQL schema, it helps to know how the
modified objects relate to the ER model, so the ER model
can be made consistent with the revised SQL schema.
This scenario is developed in some detail in Section 4.3.

A second common structure is that most model genera-
tors simply traverse the input model in a predetermined
order, much like Apply, and generate output model
objects based on the type of input object it is visiting. For
example, a SQL generator might generate a table defini-
tion for each entity type, a column definition for each
attribute type, a foreign key for each 1:n relationship type,
and so on. In effect, the generator is a case-statement,
where the case-statement variable is the type of the object
being visited. If the case-statement is encapsulated as a
function, it can be executed using the operator Apply.

Since the case-statement is driven by object types, one
can go a step further in automating model generation by
tagging each meta-model object (which is a type
definition) by the desired generation behavior for model
objects of that type, as proposed in [10]. Using it, model
generation could be encapsulated as a model management
operator, which we call ModelGen.

3.8 Enumerate
Although our goal is to capture as much model manipula-
tion as possible in model-at-a-time operators, there will be
times when iterative object-at-a-time code is needed. To
simplify application programming in this case, we offer
an operator called Enumerate, which takes a model as
input and returns a “cursor” as output. The operator Next,
when applied to a cursor, returns an object in the model
that was the input to Enumerate, or null when it hits the
end of the cursor. Like Apply, Enumerate may offer
variations for different traversal orderings.

3.9 Other Data Manipulation Operators
Since models are object structures, they can be manipu-
lated by the usual object-at-a-time operators: read an
attribute; traverse a relationship, create an object, update
an attribute, add or remove a relationship, etc. In addition,
there are two other bulk database operators of interest:
• Select – Return the subset of a model that satisfies a

qualification formula. The returned subset includes
additional support objects, as in Diff. Like Diff, it also
returns a mapping between the returned model and the
input model, to identify the non-support objects.

• Delete – This deletes all of the objects in a given
model, except for those that are reachable by paths of
has-a relationships from other models.

3.10 Semantics
The model management operators defined in Section 3
are purely syntactic. That is, they treat models and
mappings as graph structures, not as schemas that are
templates for instances. The syntactic orientation is what
enables model and mapping manipulation operators to be
relatively generic. Still, in most applications, to be useful,
models and mappings must ultimately be regarded as
templates for instances. That is, they must have
semantics. Thus, there is a semantic gap between model
management and applications that needs to be filled.

The gap can be partially filled by making the meta-
meta-model described in Sections 2.1 more expressive
and extending the behavior of the operators to exploit that
extra expressiveness. So, rather than knowing only about
has-a and association relationships, the meta-meta-model
should be extended to include is-a, data types, keys, etc.

Another way to introduce semantics is to use the
Expression property in each mapping object m. Recall
that such an expression’s variables are the objects
referenced by m in the two models being related. To
exploit these expressions, the model management
operators that generate mappings should be extended to
produce expressions for any mapping objects they
generate. For example, when Compose combines several
objects from the two input mappings into an output
mapping object m, it would also generate an expression
for m based on the expressions on the input mapping
objects. Similarly, for Diff and Merge.

The expression language is meta-model-specific, e.g.,
for the relational data model, it could be conjunctive
queries. Therefore, the extensions to model management
operators that deal with expressions must be meta-model-
specific too and should be performed by a meta-model-
specific expression manipulation engine. For example, the
expression language extension for Compose would call
this engine to generate an expression for each output
mapping object it creates [16]. Some example walk-
throughs of these extensions for SQL queries are given in
[7]. However, a general-purpose interface between model
management operators and expression manipulation
engines has not yet been worked out.

Another approach to adding semantics to mappings is to
develop a design tool for the purpose, such as Clio
[17,27].

4 Application Scenarios
In this section, we discuss three common meta data
management problems that involve the manipulation of
models and mappings: schema integration, schema
evolution, and round-trip engineering. We describe each
problem in terms of models and mappings and show how
to use model management operators to solve it.

4.1 Schema Integration
The problem is to create: a schema S3 that represents all
of the information expressed in two given database

map23

schemas, S1 and S2; and mappings between S1 and S3 and
between S2 and S3 (see Figure 9). The schema integration
literature offers many algorithms for doing this [1,8,23].
They all consist of three main activities: identifying
overlapping information in S1 and S2; using the identified
overlaps to guide a merge of S1 and S2; and resolving
conflict situations (i.e., where the same information was
represented differently in S1 and S2) during or after the
merge. The main differentiator between these algorithms
is in the conflict resolution approaches.

Figure 9 The schema integration problem

If each schema is regarded as a model, then we can
express the first two activities using model management
operators as follows:
1. map12 = Match(S1, S2). This step identifies the equal

and similar objects in S1 and S2. Since Match is
creating a mapping between two independently
developed schemas, this is best done with a Complex
Match operator (rather than Elementary Match).

2. <S3, map13, map23> = Merge(S1, S2, map12). Given the
mapping created in the previous step, Merge produces
the integrated schema S3 and the desired mappings.

For example, in Figure 10, Mapee could be the result of
Match(Emp, Employee). Notice that this is similar to
Figure 3, except that Emp has an additional object
Address and Employee has an additional object Phone,
neither of which are mapped to objects in the other model.

Figure 10 The result of matching Emp and Employee

Figure 11 shows the result of merging Emp and
Employee with respect to Mapee. (The mappings between
Emp′ and Emp and between Emp′ and Employee are
omitted, to avoid cluttering the figure.) Since Mapee says
that the Emp# and EmployeeID objects are equal, they are
collapsed into a single object Emp#. The two objects have
different names; Merge chose the name of the left object,
Emp#, one of the many details to nail down in a complete
specification of Merge’s semantics. Since Address and
Phone are not referenced by Mapee, they are simply
copied to the output. Since Mapee says that Name is

similar to FirstName and LastName, these objects are
partially integrated in S12 under an object labeled ≅ , which
is a placeholder for an expression that relates Name to
FirstName and LastName.

Figure 11 The result of merging Emp and Employee
based on Mapee in Figure 10

The sub-structure rooted by “≅ ” represents a conflict
between the two input schemas. A schema integration
algorithm needs rules to cope with such conflicts. In this
case it could consult a knowledge base that explains that
first name concatenated with last name is a name. It could
use this knowledge to replace the sub-structure rooted by
≅ either by FirstName and LastName, since together they
subsume Name, or by a nested structure Name with sub-
objects FirstName and LastName. The latter is probably
preferable in a data model that allows nested structures,
such as XML Schema. The former is probably necessary
when nested structures are not supported, as in SQL.
Overall, the resolution strategy depends on the capabili-
ties of the knowledge base and on the expressiveness of
the output data model. So this activity is not captured by
the generic model management operators. Instead, it
should be expressed in an application-specific function.

When application-specific conflict resolution functions
are used, the apply operator can help by executing a
conflict resolution rule on all objects of the output of
Merge. The rule tests for an object that is marked by ≅ ,
and if so applies its action to that object and its sub-
structure (knowledge-base lookup plus meta-model-
specific merge). This avoids the need for the application-
specific code to include logic to navigate the model.

To finish the job, the mappings map12 and map13 that
are returned by Merge must be translated into view defini-
tions. To do this, the models and mappings can no longer
be regarded only as syntactic structures. Rather, they need
semantics. Thus, creating view definitions requires
semantic reasoning: the manipulation of expressions that
explain the semantics of mappings. In Section 3.10 we
explained in broad outline how to do this, though as we
said there, the details are beyond the scope of this paper.

4.2 Schema Evolution
The schema evolution problem arises when a change to a
database schema breaks views that are defined on it [3,
12]. Stated more precisely, we are given a base schema
S1, a set of view schemas V1 over S1, and a mapping map1
that maps objects of S1 to objects of V1. (See Figure 12.)

S2
S2

S3

S1

map13

S1

Emp

Emp#

Name

Employee

EmployeeID

FirstName

LastName

Mapee

1
=

2
≅ Address

Phone

Emp′

Emp#
Name

Address

Phone

FirstName

LastName

≅

For example, if S1 and V1 are relational schemas, then we
would expect each object m of map1 to contain a
relational view definition that tells how to derive a view
relation in V1 from some of the relations in S1; the
morphisms of m would refer to the objects of S1 and V1
that are mentioned in m’s view definition. Then, given a
new version S2 of S1, the problem is to define a new
version V2 of V1 that is consistent with S2 and a mapping
map2 from S2 to V2.

Figure 12 The schema evolution problem

We can solve this problem using model management
operators as follows (Figure 13):
1. map3 = Match(S1, S2). This returns a mapping between

S1 and S2 that identifies what is unchanged in S2
relative to S1. If we know that S2 is an incremental
modification of S1, then this can be done by Elemen-
tary Match. If not, then Complex Match is required.

2. map4 = map1 • map3. This is a right composition. In-
tuitively, each mapping object in map4 describes a part
of map1 that is unaffected by the change from S1 to S2.
A mapping object m in map1 survives the composition
(i.e., becomes an object of map4) if every object in S1
that is connected to m is also connected to some object
of S2 via map3. If so, then m is transformed into m′ in
map4 by replacing each reference from m to an object
of S1 by a reference to the corresponding objects in S2.

Figure 13 Result of schema evolution solution

Some objects of V1 may now be “orphans” in the sense
that they are not incident to map4. An orphan arises
because it maps via map1 to an object in S1 that has no
corresponding object in S2 via map3. One way to deal with
orphans is to eliminate them. Since doing this would
corrupt map1, we first make a copy of V1 and then delete
the orphans from the copy:
3. <V2, map2> = DeepCopy(V1, map4). This makes a

copy V2 of V1 along with a copy map2 of map4.

4. <V2′, map5> = Diff(V2, map2). Identify the orphans.

5. For each e in Enumerate(map5), delete domain(e) from
V2. This enumerates the orphans and deletes them.
Notice that we are treating map5 as a model.

At this point we have successfully completed the task.
An alternative to steps 4 and 5 is to be more selective in
deleting view objects, based on knowledge about the
syntax and semantics of the mapping expressions. For
example, suppose the schemas and views are in the
relational data model and S2 is missing an attribute that is
used to populate an attribute of a view in V2. In the
previous approach, if each view is defined by one object
in map1, then the entire view would be an orphan and
deleted. Instead, we could drop the attribute from the
view without dropping the entire view relation that con-
tains it. To get this effect, we could replace Step 2 above
by a right outer composition, so that all objects of map1
are copied to map4, even if they connect to S1 objects that
have no counterpart in S2. Then we can write a function f
that encapsulates the semantic knowledge necessary to
strip out parts of a view definition and replace steps 4 and
5 by Apply(f, map2). Thus, f gives us a way of exploiting
non-generic model semantics while still working within
the framework of the model management algebra.

4.3 Round-Trip Engineering
Consider a design tool that generates a compiled version
of a high-level specification, such as an ER modeling tool
that generates SQL DDL or a UML modeling tool that
generates C++ interfaces. After a developer modifies the
generated version of such a specification (e.g., SQL
DDL), the modified generated version is no longer
consistent with its specification. Repairing the specifica-
tion is called round-trip engineering, because the tool
forward-engineers the specification into a generated
version after which the modified generated version is
reverse-engineered back to a specification.

Stating this scenario more precisely, we are given a
specification S1, a generated model G1 that was derived
from S1, a mapping map1 from S1 to G1, and a modified
version G2 of G1. The problem is to produce a revised
specification S2 that is consistent with G2 and a mapping
map2 between S2 and G2. See Figure 14. Notice that
diagrammatically, this is isomorphic to the schema evolu-
tion problem; it is exactly like Figure 12, with S1 and S2
replacing V1 and V2, and G1 and G2 replacing S1 and S2.

Figure 14 The round-trip engineering problem

As in schema evolution, we start by matching G1 and
G2, composing the resulting mapping with map1, and
doing a deep copy of the mapping produced by Compose:
1. map3 = Match(G1, G2). This returns a mapping that

identifies what is unchanged in G2 relative to G1.
Since G2 is an incremental modification of G1,
Elementary Match should suffice. See Figure 15a.

S2 S1

V1

map3

map4

V2 V2′
map5

map1 map2

G2 G2

S2

G1

S1

map1 map2

S1 – original spec
G1 – generated schema
G2 – modified
 generated schema
S2 – modified spec
 for G2

S2 S2

V2

S1

V1

map1 map2

2. map4 = map1 • map3. Mapping map4, between S1 and
G2, includes a copy of each object in map1 all of whose
incident G1 objects are still present in G2.

3. <S3, map5> = DeepCopy(S1, map4). This makes a copy
S3 of S1 along with a copy map5 of map4.

Steps 2 and 3 eliminate from the specification S3 all
objects that do not correspond to generated objects in G2.
One could retain these objects by replacing the composi-
tion in step 2 by outer composition. The remaining steps
in this section would then proceed without modification.

Next, we need to reverse engineer the new objects that
were introduced in G2 and merge them with S3. Here is
one way to do it (see Figure 15a):

4. <G2′, map6> = Diff(G2, map3). This produces a model
G2′ that includes objects of G2 that do not participate
in the mapping map3, which are exactly the new
objects of G2, plus support objects O that are needed
to keep G2′ well-formed. Mapping map6 maps each ob-
ject of G2′ not in O to the corresponding object of G2.

Figure 15 Result of round-trip engineering solution

For example, suppose G2 and G2′ are SQL schemas, and
G2′ introduced a new column C into table T. In the model
management representation G2 of the schema, C is an
object that is a child of object T. Since C is new, it is not
connected via map3 to G1, so it is in the result of Diff.
However, to keep G2′ connected, since C is a child of T, T
is also in the result of Diff as a support object, though it is
not connected to G2 via map6.
5. <S3′, map7> = ModelGen(G2′). In this case, ModelGen

is customized to reverse engineer each object of G2′
into an object of the desired form for integration into
S2. For example, if G2′ is a SQL schema and the Si’s
are ER models, then ModelGen maps each SQL

column into an ER attribute, each table into either an
entity type or relationship type (depending on the key
structure of the table), etc.

We need to merge S3 and S3′ into a single model S2,
which is half of the desired result. (The other half is map2,
coming soon.) To do this, we need to create a mapping
between S3 and S3′ that connects objects of S3 and S3′ that
represent the same thing. Continuing the example after
step 4 above, where G2′ introduces a new column C into
table T, the desired mapping should connect the reverse
engineered object for T in S3′ (e.g., an entity type) with
the original object for T in S3 (e.g., the entity type that
was used to generate T in G2 in the first place). By
contrast, the reverse engineered object for C in S3′ will not
map to any object in S3 because it is a new object that was
introduced in G2′, and therefore was not present S3. We
can create the desired mapping by a Match followed by
two compositions, after which we can do the merge, as
follows (see Figure 15b):

6. map8 = Match(G2, G2′). This matches every object in
G2′ with its corresponding copy in G2. Unlike map6,
map8 connects to all objects in G2′, including support
objects.

7. map9 = map7 • map8. This right composition creates a
mapping map9 between the objects of G2 that are also
in G2′ and their corresponding objects of S3′. Since
map8 is incident to all objects of G2′, every object of
map7 generates a map9 object that connects to G2.

8. map10 = map5 • map9. If there are mapping objects of
map5 and map9 that connect an object of G2 (e.g., T) to
both S3 and S3′, then those mapping objects compose
and the corresponding objects of S3 and S3′ are related
by map10. This should be an “inner” Compose, which
only returns objects that connect to both S3 and S3′.

9. <S2, map11, map11′> = Merge(S3, S3′, map10). This
merges the reverse engineered objects of S3′ (which
came from the new objects introduced in G2) with S3,
producing the desired model S2 (cf. Figure 14).

Finally, we need to produce the desired mapping map2
between G2 and S2. This is the union (i.e., merge) of
map11 • map5 and map11′• map9. To see why this is what
we want, recall that G2′ contains the objects of G2 that do
not map to S3 via map5. Mapping map7 connects those ob-
jects to S3′, as does map9, except on the original objects in
G2 rather than on the copies in G2′. Hence, every object in
G2 connects to a mapping object in either map5 or map9.

So to start, we need to compute these compositions:

10. map2′ = map11 • map5
11. map2″ = map11′ • map9

Next, we need the union of map2′ and map2″. But there
is a catch: an object of G2 could be connected to objects
in both map5 and map9. Continuing our example, table T
is such an object because it is mapped to S3 as well as re-
verse engineered to S3′. Such objects have two mappings

map6G2 G1

S1

map3

map4

S3

(a) After Step 5

G2′

S3′

map7

map8
 G2 G1

S1

map3

S3

(b) After Step 8

G2′

S3′

map7 map5

map5

map9

map10

S2

map11 map11′

map4

map6

map1

S3 - deep copy
 of S1 objects
 that map to G2

G2′ - new objects
 of G2
S3′ - reverse eng’d
 spec for G2′
S2 - merge of S3
 and S3′ (= modi-
 fied spec for G2)

map1

to G2 via the union of the compositions, which is probably
not what is desired. Getting rid of the duplicates is a bit of
effort. One way is to merge the mappings. To do this, we
need to match map2′ and map2″ from steps 10 and 11 to
find the duplicates (which we can do because mappings
are models), and then merge the mappings based on the
match result. Here are the steps (not shown in Figure 15):

12. map12 = Match(map2′, map2″). Objects m2′ in map2′
and m2″ in map2″ match if they connect to exactly the
same objects of G2 and S2. To use this matching
condition, one needs to regard the morphisms of map2′
and map2″ as parts of each map’s model; e.g., the
morphisms could be available as relationships on each
map’s model. Using this simple match criterion,
Elementary Match suffices.

13. map2 = Merge(map2′, map2″, map12). The morphisms
of map2′ and map2″ should be merged like ordinary
relationships. That is, if map12 connects m2′ in map2′
and m2″ in map2″, then Merge collapses m2′ and m2″
into a single object m2. Object m2 should have only
one copy of the mapping connections that m2′ and m2″
had to G2 and S2.

We now have map2 and S2, so we’re done! Cf. Figure 14.

5 Implementation
We envision an implementation of models, mappings, and
model management operators on a persistent object-
oriented system. Given technology trends, an object-
relational system is likely to be the best choice, but an
XML database system might also be suitable. The system
consists of four layers:
Models and mappings – This layer supports the model
and mapping abstractions, each implemented as an object-
oriented structure, both on disk and heavily cached for
fast navigation. The representation of models should be
extensible, so that the system can be specialized to more
expressive meta-meta-models. And it should be semi-
structured, so that models can be imported from more
expressive representations without loss of information.
This layer supports:
• Models – We need the usual object-at-a-time opera-

tions on objects in models, plus GetSubmodels (of a
given model) and DeleteSubmodel, where a submod-
el is a model rooted by an object in another model.
Also Copy (deep and shallow) is supported here.

• Mappings - CreateMapping returns a model and two
morphisms. GetSource and GetTarget return the
morphisms of a given mapping.

• Morphisms – These are accessible and updatable like
normal relationships.

Algebraic operators – This layer implements Match,
Merge, Diff, Compose, Apply, ModelGen, and Enumer-
ate. It should have an extension mechanism for handling
semantics, such as an expression manipulation engine as
discussed in Section 3.10.

Model-driven generator of user interface – Much like
an advanced drawing tool, one can tag meta-model
objects with descriptions of objects and their behavior
(e.g., a table definition is a blue rectangle and a column
definition is a line within its table’s rectangle).

Generic tools over models and mappings – browser,
editor, catalog, import/export, scripting.

6 Related Work
Although the model management approach is new, much
of the existing literature on meta data management offers
either algorithms that can be generalized for use in model
management or examples that can be studied as chal-
lenges for the model management operators. This litera-
ture is too large to cite here, but we can highlight a few
areas where there is obvious synergy worth exploring.
Some of them were mentioned earlier: schema matching
(see the survey in [23]); schema integration [1,8,15,25],
which is both an example and a source of algorithms for
Match and Merge; and adding semantics to mappings
[7,17,21,27]. Others include:
• Data translation [24];
• Differencing [11,19,26]; and
• EER-style representations and their expressive

power, which may help select the best representation
for models and mappings [2,14,15,18,20].

7 Conclusion
In this paper, we described model management — a new
approach to manipulating models (e.g., schemas) and
mappings as bulk objects using operators such as Match,
Merge, Diff, Compose, Apply, Copy, Enumerate, and
ModelGen. We showed how to apply these operators to
three classical meta data management problems: schema
integration, schema evolution, and round-trip engineering.
We believe these example solutions strongly suggest that
an implementation of model management would provide
major programming productivity gains for a wide variety
of meta data management problems. Of course, to make
this claim compelling, an implementation is needed. If
successful, such an implementation could be the
prototype for a new category of database system products.

In addition to implementation, there are many other
areas where work is needed to fully realize the potential
of this approach. Some of the more pressing ones are:

• Choosing a representation that captures most of the
constructs of models and mappings of interest, yet is
tractable for model management operators.

• More detailed semantics of model management opera-
tors. There is substantial work on Match. Merge,
Compose, and ModelGen are less well developed.

• A mathematical semantics of model management. The
beginnings of a category-theoretic approach appears
in [1], but there is much left to do. A less abstract
analysis that can speak to the completeness of the set

of operators would help define the boundary of useful
model management computations.

• Mechanisms are needed to fill the gap between
models and mappings, which are syntactic structures,
and their semantics, which treat models as templates
for instances and mappings as transformations of
instances. Various theories of conjunctive queries are
likely to be helpful.

• Trying to apply model management to especially chal-
lenging meta data management problems, to identify
limits to the approach and opportunities to extend it.

This is a broad agenda that will take many years and
many research groups to develop. Although it will be a lot
of work, we believe the potential benefits of the approach
make the agenda well worth pursuing.
Acknowledgments
The ideas in this paper have benefited greatly from my
ongoing collaborations with Suad Alagi , Alon Halevy,
Renée Miller, Rachel Pottinger, and Erhard Rahm. I also
thank the many people whose discussions have stimulated
me to extend and sharpen these ideas, especially Kajal
Claypool, Jayant Madhavan, Sergey Melnik, Peter Mork,
John Mylopoulos, Arnie Rosenthal, Elke Rundensteiner,
Aamod Sane, and Val Tannen.

8 References
1. Alagic, S. and P.A. Bernstein, “A Model Theory for

Generic Schema Management,” Proc. DBPL 2001,
Springer Verlag LNCS.

2. Atzeni, Paolo and Riccardo Torlone: Management of
Multiple Models in an Extensible Database Design
Tool. EDBT 1996: 79-95

3. Banerjee, Jay, Won Kim, Hyoung-Joo Kim, Henry F.
Korth: Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. SIGMOD
Conference 1987: 311-322

4. Beeri, C. and T. Milo: Schemas for integration and
translation of structured and semi-structured data.
ICDT, 1999: 296-313,.

5. Bernstein, P.A.: Generic Model Management − A
Database Infrastructure for Schema Manipulation.
Springer Verlag LNCS 2172, CoopIS 2001: 1-6.

6. Bernstein, Philip A., Alon Y. Halevy, and Rachel A.
Pottinger. A vision of management of complex mod-
els. SIGMOD Record 29(4):55-63 (2000).

7. Bernstein, Philip A., Erhard Rahm: Data Warehouse
Scenarios for Model Management. ER 2000: 1-15.

8. Biskup, J. and B. Convent. A formal view integration
method. SIGMOD 1986: 398-407.

9. Buneman, P., S.B. Davidson, A. Kosky. Theoretical
aspects of schema merging. EDBT 1992: 152-167.

10. Cattell, R.G.G., D. K. Barry, M. Berler, J. Eastman,
D. Jordan, D. Russell, O. Schadow, T. Stanienda, and
F. Velez, editors: The Object Database Standard:
ODMG 3.0. Morgan Kaufmann Publishers, 2000.

11. Chawathe, Sudarshan S. and Hector Garcia-Molina:
Meaningful Change Detection in Structured Data.
SIGMOD 1997: 26-37.

12. Claypool, K. T., J. Jin, E. A. Rundensteiner: SERF:
Schema Evolution through an Extensible, Re-usable
and Flexible Framework. CIKM 1998: 314-321.

13. Claypool, K.T., E.A. Rundensteiner, X. Zhang, H.
Su, H.A. Kuno, W-C Lee, G. Mitchell: Gangam - A
Solution to Support Multiple Data Models, their
Mappings and Maintenance. SIGMOD 2001

14. Hull, Richard and Roger King: Semantic Database
Modeling:Survey, Applications, and Research Issues.
ACM Computing Surveys 19(3): 201-260 (1987)

15. Larson, James A., Shamkant B. Navathe, and Ramez
Elmasri. A theory of attribute equivalence in
databases with application to schema integration.
Trans. on Soft. Eng. 15(4):449-463 (April 1989).

16. Madhavan, J., P. A. Bernstein, P. Domingos, A.Y.
Halevy: Representing and Reasoning About
Mappings between Domain Models. 18th National
Conference on Artificial Intelligence (AAAI 2002).

17. Miller, R.J., L. M. Haas, M. A. Hernández: Schema
Mapping as Query Discovery. VLDB 2000: 77-88.

18. Miller, R. J., Y. E. Ioannidis, Raghu Ramakrishnan:
Schema equivalence in heterogeneous systems:
bridging theory and practice. Information Systems
19(1): 3-31 (1994)

19. Myers, E.: An O(ND) Difference Algorithm and its
Variations. Algorithmica 1(2): 251-266 (1986).

20. Mylopoulos, John, Alexander Borgida, Matthias
Jarke, Manolis Koubarakis: Telos: Representing
Knowledge About Information Systems. TOIS 8(4):
325-362 (1990).

21. Popa, Lucian, Val Tannen: An Equational Chase for
Path-Conjunctive Queries, Constraints, and Views.
ICDT 1999: 39-57.

22. Pottinger, Rachel A. and Philip A. Bernstein. Creat-
ing a Mediated Schema Based on Initial Correspon-
dences. IEEE Data Engineering Bulletin, Sept. 2002.

23. Rahm, Erhard and Philip A. Bernstein. A survey of
approaches to automatic schema matching. VLDB J.
10(4):334-350 (2001).

24. Shu, Nan C., Barron C. Housel, R. W. Taylor, Sakti
P. Ghosh, Vincent Y. Lum: EXPRESS: A Data
EXtraction, Processing, amd REStructuring System.
TODS 2(2): 134-174 (1977).

25. Spaccapietra, Stefano and Christine Parent. View
integration: A step forward in solving structural
conflicts. TKDE 6(2): 258-274 (April 1994).

26. J. T-L. Wang, D. Shasha, G. J-S. Chang, L. Relihan,
K. Zhang, G. Patel: Structural Matching and
Discovery in Document Databases. SIGMOD 1997:
560-563

27. Yan, Ling-Ling, Renée J. Miller, Laura M. Haas,
Ronald Fagin: Data-Driven Understanding and
Refinement of Schema Mappings. SIGMOD 2001.

