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Abstract 
This paper surveys distributed computing tech-
niques used in the implementation of BEA Web-
Logic Server. It discusses how application serv-
ers provide a distributed transactional infrastruc-
ture that extends outward from backend data-
bases. The basic treatment of data is character-
ized in terms of four types of clustered services 
that differ in the way they manage state in mem-
ory and on disk.  This paper also discusses how 
application servers support loosely-coupled cli-
ents, both at the transport level and at the higher 
level of server-to-server Web Services. Finally, 
this paper speculates about the development of a 
new application server persistence layer and its 
use in widely-distributed computing. 

1. Introduction 
Application servers provide a secure, transactional, and 
manageable environment for building enterprise applica-
tions. Application servers are fundamentally distributed 
systems both because they use clustering to meet enter-
prise scalability and availability requirements and because 
they integrate physically distributed elements within and 
across enterprises. BEA WebLogic Server™ [1] is a dis-
tributed implementation of the Java™ platform for appli-
cation servers, the Java™ 2 Enterprise Edition (J2EE™) 
[2]. WebLogic Server supports a variety of application 
programming interfaces, including ones for servlets, com-
ponents, messaging, database access, and naming. 

This paper examines how application servers provide 
a distributed transactional infrastructure that extends out-
ward from backend databases. It identifies four types of 

clustered services - stateless, conversational, cached, and 
singleton - that differ in the way they manage state in 
memory and on disk. By using these services appropri-
ately, strict ACID properties of the data can be relaxed to 
improve application performance, scalability, and avail-
ability [3]. This paper discusses how WebLogic Server 
implements the J2EE in terms of these service types.  

This paper also examines how application servers 
support loosely-coupled clients, which communicate us-
ing simple, industry-standard protocols such as HTTP [4] 
and SOAP [5]. At a transport level, such clients require 
careful treatment of front-end load balancers and Web 
Servers to provide routing and session management. Sev-
eral configurations supported by WebLogic Server are 
discussed. At a higher level, such clients engender a con-
versational, server-to-server programming model that 
unifies synchronous remote procedure calls with asyn-
chronous store-and-forward messaging. This paper dis-
cusses the formulation of this model in WSDL [6] and its 
implementation in BEA WebLogic Workshop™ [7]. 

Finally, this paper speculates about the future relation-
ship between application servers and databases. Applica-
tion servers create and manage significant amounts of 
data for which conventional relational databases are less 
than ideal. This paper argues for the development of a 
new persistence layer that is tightly integrated with the 
application server. This persistence layer should be fun-
damentally distributed and should take into account issues 
of data replication and consistency. This paper further 
argues that, to increase the acceptance of widely-
distributed computing models within the enterprise, appli-
cation servers should be given their own copy of backend 
data in the manner of data warehouses. This approach 
isolates the operational system from the load- and error-
handling requirements of widely-distributed applications 
and can eliminate the overhead of run-time data mapping, 
e.g., from relations to objects or XML. Permission to copy without fee all or part of this material is granted 

provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment.  To copy otherwise, or to 
republish, requires a fee and/or special permission from the Endowment 
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This paper is organized as follows.  Section 2 presents 
an overview of multi-tier cluster architectures for enter-
prise computing systems and compares application serv-
ers to their predecessors, distributed TP Monitors.  Sec-
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tion 3 characterizes application server treatment of data in 
terms of the four types of clustered services. Section 4 
discusses ways in which the basic application server in-
frastructure needs to be enhanced to support the server-to-
server programming model. Section 5 speculates about 
the new application server persistence layer and its use in 
widely-distributed computing. 

2. Enterprise Computing Systems 
Enterprise computing systems are primarily used for 
transaction processing, which entails fielding client re-
quests and coordinating their submission to backend data-
bases and other transactional subsystems.  Typical trans-
action processing applications, such as those for banking, 
transportation, and manufacturing, perform simple data 
entry and retrieval. In contrast, typical non-transactional 
applications, such as those for analytical processing [8] 
and scientific computing, are more compute-intensive. 

2.1 Multi-tier Cluster Architectures 

Enterprise computing systems are organized into logical 
tiers, each of which may contain multiple servers or other 
processes, as illustrated in Figure 1. The client tier con-
tains personal devices such as workstations or handheld 
units, embedded devices such as network appliances or 
office machines, or servers in other enterprise systems. 
The presentation tier manages interactions with these 
clients over a variety of protocols. Processes in the pres-
entation tier, such as Web Servers, do not run application 
code. The application tier contains application servers 
that run application code formulated in terms of servlet, 
component, connector, and messaging APIs. The applica-
tion tier may itself be divided, for example, into a servlet 
tier and a transaction tier. The persistence tier provides 
durable storage in the form of databases and file systems. 
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segregating server into tiers is to improve scalability by 
providing session concentration. The idea here is to 
place many smaller machines in the front end and multi-
plex socket connections to fewer, larger machines in the 
back end. The limit here occurs at the persistence tier, 
where a small number of powerful machines provide a 
reliable, shared foundation for the rest of the system.  In 
practice, session concentration in the front end is required 
only by systems that support tens of thousands of clients. 

A cluster is a group of servers that coordinate their ac-
tions to provide scalable, highly-available services. Scal-
ability is provided by allowing servers to be dynamically 
added to or removed from the cluster and by balancing the 
load of requests across these servers. High-availability is 
provided by ensuring that there is no single point of fail-
ure in the cluster and by migrating work off of failed 
servers. Ideally, a cluster offers a single system image so 
that clients remain unaware of whether they are commu-
nicating with one or many servers [9]. A cluster may be 
contained in a tier or may span several tiers. 

The standard transaction-oriented workload consists of 
many short-running requests. In this setting, parallelism is 
exploited most efficiently by processing each request on 
as few servers as possible, since the overhead for commu-
nication is relatively large. Consequently, it is preferable 
to minimize the number of physical tiers in the system, up 
to constraints such as firewalls, and to process a request 
on only one server in each tier. In addition,  simple round 
robin or random load balancing schemes are particularly 
effective and it is rarely worth the effort either to take 
actual server load into account or to redistribute on-going 
work when it occasionally becomes unbalanced. This is in 
contrast to practices commonly employed for compute-
intensive applications [10]. 

One limitation to the scalability of an enterprise com-
puting system is its ability to concentrate data in an indi-
vidual place, such as a backend database or the memory 
of a server. It is often possible to mitigate this problem by  
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the transaction-oriented architecture described above, 
such routing takes the form of data-dependent load bal-
ancing upon entry to a physical tier. 

2.2 Tightly- and Loosely-Coupled Clients 

The clients of an application server - personal devices, 
network appliances, or servers in other enterprise comput-
ing systems - may be tightly or loosely coupled with it.  

Tightly-coupled clients contain code from the appli-
cation server and communicate with it using proprietary 
protocols. For this reason, they generally offer more func-
tionality and better performance. Load balancing and 
failover for such clients is built into the application server 
infrastructure.  



WebLogic Server integrates load balancing and 
failover for tightly-coupled clients into its implementation 
of RMI, the basic Java API for remotely invoking meth-
ods of an object. The WebLogic RMI stub for a service 
obtains information about which members of the cluster 
are actively offering the service and uses it to make load 
balancing and failover decisions. The algorithm for ob-
taining this information and making these decisions is 
pluggable and is deployed along with the service. 

WebLogic Server distinguishes between internal and 
external tightly-coupled clients. Internal clients are ser-
vices that invoke other services from inside the applica-
tion tier. They obtain the information necessary to per-
form load-balancing and failover from the local server. 
External clients run in a client-side environment that may 
be more independently administered. They occasionally 
contact a member of the cluster to obtain load-balancing 
and failover information and cache it locally. 

Loosely-coupled clients, consisting of applet-free 
browsers and Web Services clients, do not contain code 
from the application server and communicate with it using 
only simple, industry-standard protocols such as HTTP 
and SOAP. Such clients tolerate a wider variety of evolu-
tionary changes to the server side of an application and 
are therefore easier to maintain. In addition, they may be 
developed more independently and are therefore better to 
use when crossing lines of administrative authority. 

For loosely-coupled clients, load balancing and 
failover must be performed by external IP-based mecha-
nisms, of which two are common. The first approach co-
lists the front-end servers under a single DNS name and 
allows the client to make the choice. This provides only 
coarse control over load balancing and failover. More-
over, it exposes details of the system so it is both less se-
cure and harder to reconfigure. The second approach uses 
a load balancing appliance that exposes a single IP ad-
dress and routes to the front-end servers behind it [12]. 
Such appliances can perform sophisticated forms of load 
balancing and failover, e.g., to support partitioning.  

Note that tightly- and loosely-coupled clients use dif-
ferent protocols and therefore invoke services using dif-
ferent APIs. 

2.3 Transaction Processing Monitors 

Transaction processing monitors, or TP monitors, were  
developed in the 1980s to provide an environment for 
building transactional applications [13]. Distributed TP 
monitors, such as BEA Tuxedo™ [14], run on a cluster of 
mid-sized server machines rather than a mainframe. Dis-
tributed TP monitors have evolved into application serv-
ers as they are today largely in order to meet new de-
mands imposed by the Internet and by programming lan-
guages based on virtual machines. 

TP monitors were originally designed to work with 
tightly-coupled clients. Distributed TP monitors  generally 
provide special processes in the presentation tier for this 

purpose. Tuxedo provides both workstation handlers, 
which route requests from workstation clients to servers 
in the application tier, and server gateways, which man-
age interactions between Tuxedo systems. Server gate-
ways control the import and export of services, concen-
trate traffic to improve scalability, and provide a locus for 
interposed transactions. Application servers could use-
fully provide such features, however the expectation 
nowadays is that most interactions with remote systems 
will be loosely-coupled. 

All of the widely-used application servers today are 
built on virtual machines such as the Java™ VM. The 
resulting systems are generally constructed out of small 
numbers of large, homogeneous processes.  Since it is 
usually not safe to restart individual failed services within 
a VM, such systems have a coarse granularity for failure. 
In contrast, TP monitors like Tuxedo are constructed out 
of large numbers of small, heterogeneous processes, such 
as workstation handlers and server gateways, and have a 
smaller granularity for failure.  In particular, Tuxedo 
maintains its execute queues in processes that do not con-
tain user code, decreasing the likelihood that failures will 
result in the loss of pending requests. Technological ad-
vances to decrease the overhead of incrementally adding 
VMs to a machine or to provide isolation within a VM 
will improve the reliability of application servers. 

TP Monitors are for the most part statically config-
ured, in keeping with a focus on stability and predictabil-
ity. This approach is suitable for “systematic” applica-
tions, which are carefully planned and rolled out. The 
associated workloads are fairly steady, or at least well-
known, and peak loads can be handled by over-
provisioning together with an internal server policy of 
“deny rather than degrade service”. The total cost of set-
ting up and tuning such a system may be high, but this is 
offset by the fact that it will be in operation with only 
small modifications for a long period of time.  

Along with systematic applications, application serv-
ers must handle “opportunistic” applications, which are 
rolled out quickly and modified often during their life-
times. In addition, application servers must handle traffic 
from unknown numbers of loosely-coupled clients across 
the Internet. As a result, application servers have a greater 
need to be self-tuning and to dynamically enlist comput-
ing resources to handle peak loads [15]. Such features can 
significantly reduce total cost of ownership and increase 
reliability by reducing the opportunity for operator errors 
during reconfiguration. 

3. Clustered Services 
This section characterizes basic application server treat-
ment of data in terms of four types of clustered services - 
stateless, conversational, cached, and singleton - that dif-
fer in the way they manage state in memory and on disk. 
It describes the way in which WebLogic Server imple-
ments certain J2EE APIs in terms of these services. 



3.1 Stateless Services 

A stateless service does not maintain state in memory 
between invocations. It may load state from a persistent 
store into memory, but only for the duration of an indi-
vidual invocation. A stateless service can be made scal-
able and highly-available simply by deploying multiple 
instances of it in a cluster. Load balancing and failover 
between these instances is straight-forward because any 
one of them is as good as any other. 

For tightly-coupled clients, application servers provide 
explicit stateless component APIs, such as EJB stateless 
session beans. They also provide stateless factories for 
accessing stateful components and connectors, such as 
EJB Entity Beans, JDBC database connections, and JMS 
messaging system connections. Finally, stateful compo-
nents such as EJB Entity Beans can be implemented in a 
stateless manner by writing out the state to shared storage 
between invocations.  

WebLogic Server implements clustered stateless ser-
vices for tightly-coupled clients as follows. Recall from 
section 2.2 that the RMI stub for a service obtains infor-
mation about which members of the cluster are actively 
offering the service and uses it to make load balancing 
and failover decisions. In the case of stateless services, the 
members of the cluster disseminate this information using 
a lightweight multicast protocol. To choose a server, the 
default load balancing algorithm uses a round-robin 
scheme with several important extensions. First, and this 
applies only to internal clients, the algorithm always pre-
fers a local instance of the service in order to minimize 
the number of servers involved in processing a request. 
Second, if a local instance is not available but a transac-
tion is in progress, the algorithm gives preference to serv-
ers that are already involved so as to limit the spread of 
the transaction. Finally, the default algorithm retries a 
failed operation only if it can be guaranteed that the op-
eration did not have side-effects, for example, because the 
request did not leave the server or the operation was de-
clared to be idempotent. 

For loosely-coupled clients, the basic APIs are either 
stateless or can be implemented in a stateless manner by 
writing out internal state to shared storage between invo-
cations. These options apply to servlets as well as Web 
Services. Load balancing and failover may be performed 
by external IP-based mechanisms, as described in Section 
2.2, or by application server code that resides in the pres-
entation tier. These issues are discussed in more detail in 
the context of conversational services in Section 3.2.  

3.2 Conversational Services 

A conversational service is an instance that is earmarked 
for processing only and all requests from a particular cli-
ent within a session. Conversational services maintain 
state in memory, and this state is generally lost in the 
event of failure. Conversational state may be paged out on 
an as-needed basis to free up memory. Performance need 

not be impacted in this case because updates are not ex-
pected to be individually written to the disk and the data is 
not expected to survive failures. Conversational services 
can be made scalable by distributing their instances across 
a cluster; the application server infrastructure must route 
all requests within a session to the appropriate instance.  

For tightly-coupled clients, application servers provide 
explicit conversational component APIs, such as EJB 
stateful session beans. In the WebLogic Server implemen-
tation of this API, load balancing occurs when a (state-
less) EJB home is chosen to create a stateful session bean. 
The associated RMI stub is hardwired to the chosen server 
so requests are naturally routed to the right place.  

To improve the availability of stateful session beans, 
WebLogic Server offers primary/secondary replication 
with the secondary instances also distributed across the 
cluster. The stub keeps track of the secondary as well as 
the primary and performs failover as required. The pri-
mary sends update deltas to the secondary on transaction 
boundaries, a scheme originally developed for the Tan-
dem NonStop Kernel’s process pairs [16]. Its use in this 
setting creates some anomalies because the internal state 
of a stateful session bean is not transactional, thus failure 
of the primary can result in unexpected roll back upon 
failover to the secondary. Customers universally prefer 
this behavior to the more expensive option of sending 
deltas on every update. 

For loosely-coupled clients, requests coming into an 
application server are often grouped into sessions. This 
practice applies to browser clients, which engage in 
browser sessions, as well as Web Service clients, which 
engage in conversations. A session is generally associated 
with a piece of state that must be maintained between 
requests: browser sessions are associated with servlet ses-
sion state and Web Services may be stateful.  

Session state may be written out to shared storage be-
tween invocations, in which case the service is stateless. If 
durability is not required however, then there are several 
alternatives that can improve performance and scalability. 
First, session state can be sent back and forth between the 
client and server under the covers, again resulting in a 
stateless service. This approach is not always feasible or 
desirable, particularly if there are large amounts of data. 
Second, and more commonly, session state may be left in 
memory on the server-side between requests, resulting in 
a conversational service. 

Load balancing of conversational services for loosely-
coupled clients requires some care because the underlying 
protocols assume everything is stateless. Load balancing 
should occur only when the session is first created and all 
subsequent requests should be routed to the chosen server. 
Such session affinity can be provided by external IP-
based mechanisms, either by relying on a client to stick 
with the first server it obtains from DNS or by appropri-
ately configuring a load balancer. Alternatively, it can be 
provided by application server code that resides in the 
presentation tier, as either a full client-handling process, 



 such as a Web Server, or a plug-in for such a processes. 
Common practice is to have the hosting server embed its 
location in a session cookie that the client returns with 
each new request. The application server code that resides 
in the presentation tier inspects this cookie and then routes 
the request to the appropriate place. Equivalent function-
ality can also be provided using URL rewriting. 

To improve the availability of in-memory servlet ses-
sion state, WebLogic Server offers primary/secondary 
replication with the secondary instances also distributed 
across the cluster. Requests are handled by the primary, 
which synchronously transmits a delta for any updates to 
the secondary before returning the response to the client. 
To support failover from the primary to the secondary, the 
identity of both the primary and secondary are embedded 
in the cookie. 

Figure 2 illustrates the case where the Web Server or 
its plug-in inspects the cookie and routes to the primary.   
If the primary is not reachable, it routes to the secondary, 
which then becomes the primary, creates a new secon-
dary, and rewrites the cookie. Figure 3 illustrates the case 
where routing is performed externally. The primary is 
initially created on the server where affinity has been set 
up. If the primary becomes unreachable, the external 
mechanisms switch affinity to some arbitrary member of 
the cluster. When the first request arrives there the servlet 
engine inspects the cookie, contacts the secondary to ob-
tain a copy of the state, becomes the primary, and then 
rewrites the cookie leaving the secondary unchanged. In 
both cases, establishment of a new primary and secondary 
after a failure are delayed until a new request arrives. This 
approach distributes the recovery work over time without 
reducing availability, since the new pair is effectively 
useless until the cookie can be rewritten. 

 
 
 
 
 

 

Fig
 

 
 
 
 
 
 
 
 
 
 
 

primary 

secondary 

e 

Web Server 
Servlet Engines

cookie 
A B 

r

 
 
 
 
 
 
 
 
 

 
e 

Web Server 
Servlet Engines

secondary 

primary 

cookie 
C B 

r

Figure 3 Replication with External Routing 
 
WebLogic uses a sophisticated algorithm to place sec-

ondaries in the cluster. As part of the configuration of a 
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The treatment of in-memory conversational state for 
Web Services is related to the above, however it is com-
plicated by the peer-to-peer nature of the interaction. This 
issue is discussed in more detail in Section 4. 
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vice can be made scalable and highly-available simply by 
deploying multiple instances of it in a cluster. Load bal-
ancing and failover between these instances is straight-
forward since any one of them is as good as any other.  

Implementations of cached services differ in the extent 
to which they ensure that the copies of cached data are 
consistent with each other and with the backend store. 
Increased consistency generally comes at the expense of 
scalability, performance, and/or functionality, and a vari-
ety of options should be provided to meet the needs of 
different applications.  

The simplest approach is to have each cache flush it-
self at regular intervals according to a configured time-to-
live value. This does not require any communication be-
tween the servers, so it scales well, but requires that the 
application tolerate a given window of staleness and in-
consistency. This approach is attractive when the backend 
data is frequently updated, e.g., from a real-time data 
stream, in which case keeping up with the changes would 
be tantamount to not caching at all. A step beyond this is 
to flush the caches after each update completes, but not 
within the updating transaction so a window of staleness 
and inconsistency will still exist. This approach is attrac-
tive when the backend data is infrequently updated, in 
which case the overhead for signalling the flushes will be 
insignificant.  

A third approach is to keep all copies of the data con-
sistent with the backend store using some form of concur-
rency control in the caches. If optimistic concurrency is 
used, the system should flush the caches after updates to 
reduce the possibility of concurrency exceptions. The use 
of pessimistic locking in this context is discussed in more 
detail in Section 3.4. 

An alternative to flushing the caches is to initially pre-
load them with specified slices of data and then to refresh 
the slices as updates occur. As with flushing, refreshing 
can occur at regular intervals, after updates but outside the 
transaction, or consistently with a backend store. Since 
the set of data in memory is known at all times, this ap-
proach facilitates querying through the cache in the man-
ner of in-memory databases [17]. The notion of storing 
slices of backend data on local disks in the middle tier is 
discussed in Section 5.  

Flush- and refresh-on-update both require identifying 
which pieces of data in the backend store are used to com-
pute which pieces of data in the cache. There is a trade off 
here associated with the granularity of tracking of the 
backend data: finer granularity results in longer caching 
but is harder to implement efficiently. If the associated 
queries are known in advance, then database view main-
tenance techniques [18] can be used. This problem is 
compounded in the presence of ad-hoc queries, particu-
larly if application-level processing of the backend data 
makes it unclear which queries are relevant.  

Flush- or refresh-on-update also require identifying 
when relevant data in the backend store has been updated. 
This is straight-forward if the updates go through the ap-

plication server itself. If the updates go through the 
“backdoor”, meaning other applications that share the 
data, then either triggers or log-sniffing must be used. 

Caching can occur in any tier of an enterprise comput-
ing system. As it moves closer to clients, the benefits of a 
cache hit increase in that round-trip times are reduced and 
a lighter load is placed on the backend infrastructure. On 
the other hand, the data may become tailored to the needs 
of particular clients so that it can be less-generally shared. 
More importantly, it becomes increasingly difficult to 
ensure the integrity of the data and to keep it consistent 
with the copy of record in the backend. For anything other 
than largely static files, it is probably best not to place 
caches beyond the firewall.  

WebLogic Server caches the HTML results of JSPs at 
either the whole page or fragment level. Fragment-level 
caching is useful when components of a page may be per-
sonalized for different users. A page or fragment may be 
tagged as being for an individual user or a group of users. 
Each page or fragment is assigned a time-to-live, after 
which it is flushed from the cache. 

WebLogic Server provides a full range of consistency 
options for cached EJB entity beans. An entity bean may 
be given a time-to-live in memory after it is loaded, dur-
ing which it can be freely used to satisfy read requests in 
subsequent transactions. The EJB container can also be 
configured to send out a bean-level cache flush signal 
using a light-weight multicast protocol. An instance of the 
container (a node in the cluster) sends this signal auto-
matically after it commits a transaction that contains up-
dates. In addition, an API is provided to allow application 
code to trigger a cache flush manually, e.g., in the event 
that the application observes a backdoor update.  

WebLogic Server also provides an option to keep 
cached entity beans consistent with the backend store us-
ing optimistic concurrency, but only for transactions that 
include writes. In addition to being used across transac-
tions, this option can be used within a single transaction to 
increase database concurrency, since no database locks 
are held. In either case, during a transaction, the container 
keeps track of the initial values of certain fields, either 
application-level version fields or actual data fields. At 
commit time, these values are compared with those in the 
database using an additional WHERE clause in the 
UPDATE statement, and a concurrency exception is 
thrown if they don’t match.   The container then sends a 
bean-level cache flush signal to minimize the likelihood 
of subsequent concurrency exceptions. Overall, although 
this approach does not ensure serializability, its behavior 
may be desirable in that it increases concurrency in ac-
ceptable ways. 

WebLogic Server also provides optimistic concur-
rency for disconnected RowSets, which are the table-
oriented results of relational database queries. A RowSet 
may be serialized into binary or XML format, sent across 
the network to a client, updated on that client, sent back to 
the server, and then submitted to the database. 



3.4 Singleton Services 

A singleton service is active on only one server in the 
cluster at a time and processes requests from multiple 
clients. A singleton service is usually backed by private, 
persistent data, which it caches in memory. It may also 
maintain transient state in memory, and this state is lost in 
the event of failure. The clustering infrastructure is re-
sponsible for creating and activating singleton services.  
After a singleton service is activated, it must establish its 
own internal state by accessing the backend store. 

A continuous singleton service is active on exactly 
one server at all times. As examples, continuous singleton 
services can be used to implement message queues, trans-
action managers, and administrative servers. Upon failure, 
a continuous singleton service must be pro-actively either 
restarted on the same server or migrated to a new server.  
Typically, an administrator specifies a list of possible 
servers for a continuous singleton service and the cluster-
ing infrastructure keeps it on the most-preferred server 
that is currently active. Clients of a continuous singleton 
service access it remotely. 

An on-demand singleton service is active on at most 
one server at a time. It may be activated on, or migrated 
to, the server where it is going to be used, or it may be 
accessed remotely. On-demand singleton services tend to 
be lighter in weight and greater in number than continu-
ous singleton service. As examples, on-demand singleton 
services can be used to implement shared conversational 
services, consistently-cached persistent components such 
as EJB entity beans, and information about users such as 
profile data and message subscriber data. The ability to 
adjust the location of  on-demand singleton services al-
lows the clustering infrastructure to adapt to meet the de-
mands of the workload. 

A large singleton service may be made more scalable 
by partitioning it into multiple instances, each of which 
handles a different slice of the backend data and its asso-
ciated requests. For example, a message queue might be 
partitioned along the lines of message producers or con-
sumers [19]. In this particular case, partitioning also im-
proves availability in that messages can continue to flow 
through the system after an instance of the queue has 
failed, although certain messages or users may be stalled 
until recovery occurs. Partitioning is not always appropri-
ate in that it may result in individual requests being proc-
essed on different servers, so there is a loss of co-locality. 
Moreover, it may not even be possible to arrange because 
there are no natural places to create the partitions. 

A group of singleton services may be aggregated into 
one singleton service to simplify administration and re-
duce bookkeeping overhead. For example, instead of im-
plementing each entity bean as its own on-demand single-
ton service, the entire EJB home might be implemented as 
a single continuous singleton service.  The overall key 
space might then be partitioned among several such 
homes to improve scalability. This approach is attractive 

for applications that can be end-to-end partitioned, e.g., 
by user ID number, so co-locality is not lost.  

Implementations of singleton services must avoid the 
classic distributed computing problem of “split-brain syn-
drome” during migration. Suppose a target server estab-
lishes ownership of a singleton service and initiates some 
associated operation in its own thread. Then suppose the 
target server temporarily freezes or is isolated from the 
cluster, and management servers migrate ownership of the 
service. Even if the target server immediately notices the 
ownership change, there is little it can do about the on-
going operation. Distributed consensus protocols [20] can 
ensure that other servers ignore subsequent messages 
from the target server, but don’t prevent it from sending 
messages to clients or updating a database. 

The general solution to this problem has the following 
form. The target server establishes its continuing avail-
ability with the management servers by performing some 
action, such as sending a heartbeat or responding to a 
health monitoring query, at regular intervals. If the man-
agement servers do not observe this action within some 
grace period, they (may) migrate ownership of the ser-
vice. The target server attempts to ensure that all of its 
operations associated with the service complete within the 
grace period, so that split-brain does not occur even if it 
loses contact with the management servers.  Finally, if 
possible, the management servers physically isolate the 
target server from clients and disks upon migration of the 
service. Such isolation greatly reduces the potential for 
errors if operations do not complete within the grace pe-
riod.  It therefore allows the grace period to be smaller, 
speeding up migration. Note that such isolation can be 
accomplished only in platform-dependent ways. 

A specific practical solution to this problem might 
have the following two-level form. First, continuous sin-
gleton services are directly implemented using either an 
HA framework [21] or some kind of distributed consensus 
protocol.  The latter approach can be used in conjunction 
with SNMP-based router-level fencing to provide isola-
tion.  In any case, such a solution will be fairly heavy-
weight and should be used for only a handful of services.  
Second, these baseline services are used to bootstrap a 
highly-available lease manager which grants leases to 
own services [22]. Lease owners must regularly perform a 
handshake with the lease manager to renew their leases. 
In the general terms presented above, this handshake es-
tablishes the target server’s availability and the lease pe-
riod corresponds to the grace period. The lease manager 
should support “push” leases for continuous singleton 
services and “pull” leases for on-demand singleton ser-
vices.  The lease table should be persistent, so it survive 
failures, in order to ensure that creation of a service oc-
curs only once. Leasing may also be used in conjunction 
with router-based fencing. 

WebLogic Server takes a multi-faceted approach to 
ensuring the availability of singleton services, work that is 
on-going. The first line of defence is to harden individual 



servers against failures. This is done, for example, by al-
lowing each server to have multiple network adapters to 
guard against network failures. Second, health monitoring 
and lifecycle APIs are provided to allow detection and 
restart of failed and ailing servers. Through these APIs, a 
server may be placed under the control of a WebLogic 
node manager process or a platform-specific HA frame-
work. Third, it is possible to do software upgrades without 
interrupting services; this applies to rolling upgrades of 
server software as well as hot redeploy of application 
software. Finally, it is possible to migrate singleton ser-
vices. Services may be deployed into named targets, each 
of which is migrated as a unit so that service co-location 
can be maintained. 

4. Cluster-to-Cluster Interactions 

This section discusses interactions between application 
clusters. A fundamental issue here is the degree to which 
the system as a whole has a centralized architectural and 
administrative authority. As control becomes more cen-
tralized, it becomes more feasible for the clusters to 
communicate using proprietary protocols, which generally 
offer more functionality and better performance.  

At one end of the spectrum, a single authority within 
an enterprise might create a collection of tightly-coupled 
clusters that communicate using only proprietary proto-
cols. This configuration might exist to distribute a single 
application across different branches of the company or to 
scale up a collection of tightly-coupled applications 
within one branch. For this purpose, Tuxedo offers clus-
ter-to-cluster gateways as described in section 2.3. Web-
Logic Server supports the notion of an administrative 
domain - the unit of startup, shutdown, configuration, and 
monitoring - which can contain multiple clusters.   As an 
example, Weblogic domains might be used to set up a 
multi-tiered system in which each tier is its own cluster. 

At the other end of the spectrum, the clusters might be 
in different enterprises with no coordination between 
them. This configuration might occur when trading part-
ners are being dynamically discovered and linked into 
business processes and workflows. In this case, industry-
standard Web Services protocols, such as SOAP over 
HTTP, are essential to ensure interoperability between the 
systems. SOAP uses XML to provide self-describing, 
extensible payloads, which make it easier to modify one 
system without effecting others. Perhaps more impor-
tantly, since it is low in functionality, SOAP is simple. As 
the protocol is extended to include more sophisticated 
features, such as transactions and transport independence, 
interoperability may well suffer. 

Between these two extremes, there might be a central 
authority that mandates the use of certain proprietary 
communication technologies, such as a messaging bus, 
over which XML messages flow. This authority might 
exist between departments in the same enterprise or be-
tween close EDI-style trading partners.  

Regardless of the degree of coupling, the server-to-
server programming model has several unique character-
istics. First, asynchronous communication is essential to 
support long-running business operations that flow back 
and forth between clusters. In particular, store-and-
forward messaging provides an attractive way of buffer-
ing work to handle temporarily disconnected or over-
loaded systems. In addition, store-and-forward messaging 
can be made reliable using simple ACKing protocols that 
are appropriate even for loosely-coupled systems. The 
alternative, transactional RPCs, is less attractive not only 
because the wire protocols are more complicated, but be-
cause it tightly couples resources on both sides. Note 
store-and-forward messaging is distinct from client/server 
messaging, where producer and consumer clients interact 
with a central server using transactional RPCs. For store-
and-forward messaging, the consumer of a message is 
often a process on the server itself. 

A second unique characteristic of the server-to-server 
programming model is the organization of work into peer-
to-peer conversations. Either participant can contact the 
other within a conversation and both must maintain state 
on its behalf.  In order to centralize the interface specify-
ing the methods that may be called within a conversation, 
a notion of callbacks is required. 

The server-to-server programming model is well char-
acterized by WSDL, the Web Services Description Lan-
guage. WSDL supports four types of operations, thereby 
providing a unified model for synchronous RPC and 
asynchronous messaging along with an explicit notion of 
callbacks.  

1. One-way Receive a message  
2. Request-response Receive a message and send a 

correlated message  
3. Solicit-response Send a message and receive a 

correlated message  
4. Notification Send a message 

A server offers a WSDL service and a client (of the 
service) initiates a one-on-one conversation with the 
server. All methods invoked as part of the conversation 
must be named in the server's WSDL. In particular, within 
the conversation, the server may asynchronously contact 
the client using one of the specified callbacks, but not by 
invoking a new service on the client. The server may ini-
tiate subordinate conversations with other servers, in-
cluding the client, but these are distinct conversations in 
which the server acts as a client. Note that this model is 
evolving and may ultimately support a higher-level notion 
of conversations that span multiple parties and multiple 
basic services. 

Both the client and server sides of a conversation must 
maintain state on its behalf. Unlike servlet session state, 
Web Service conversations are generally long-lived and 
support (per-method, server-demarcated) transactions. 
More significantly, the server side of a conversation must 
be linked to the client side of any subordinate conversa-
tions and this must be done in a way that isolates the dif-



ferent interfaces. As an example, illustrated in Figure 4, 
suppose that client A has a conversation with server B, 
which then acts as a client in a subordinate conversation 
with server C.   If B were to naively use the same object 
to handle requests for both conversations, then callbacks 
from C would be accessible as call-ins from A. Moreover, 
it would be problematic for B to create subordinate con-
versations with other services of the same type as C, since 
the source of callbacks would be ambiguous. Thus, either 
the object on B needs to handle callbacks differently from 
call-ins, or B must create a separate but dependent object 
for each subordinate conversation. In either case, a con-
versation may have several simultaneous users. This is 
again in contrast to servlet session state, where each ses-
sion has only one user. 

 
 
 
 
 
 
 
 

 
 

Figure 4 Subordinate Web Service Conversations and 
State Management 

 
While Web Service conversations will generally be 

long-running and durable, there are circumstances where 
it is acceptable to leave them in memory. Examples here 
include read-only applications, shopping-cart-style appli-
cations where only the last fulfilment step is crucial, and 
forwarding applications where reliability is provided by 
the external end-points. Any in-bound or out-bound asyn-
chronous messages for an in-memory conversation should 
be queued in-memory along with it. This approach pro-
vides a nice unit of failure in that the conversation and its 
messages are lost together. 

The hard part about implementing in-memory conver-
sations is locating them within a cluster. The current 
HTTP-based Internet infrastructure sets up session affin-
ity on the first request going into a cluster, but never on 
responses. Thus affinity will be set up for requests going 
from the client into the server but not for callbacks from 
the server to the client. In particular, affinity will be set up 
the first time such a callback occurs, and the chosen 
server may not match the location chosen by the client. 
Enhancements to load balancers may eventually handle 
this case. The other alternative for implementing in-
memory conversations is to embed the location of a con-
versation in its ID, the Web Service equivalent of servlet 
session cookies. It is possible that standards for managing 
Web Service conversations will eventually support the 
notion of a general-purpose “biscuit” that each side is 
expected to echo to the other. Short of this, location em-
bedding will be possible only at the point the conversation 

ID is created, which will generally occur on the client. 
The miracle here is that these two techniques can be used 
together to solve the problem: session affinity can be used 
to reach conversations on the server and conversation IDs 
can be used to locate and route to conversations on the 
client. 

The above approach does not allow a conversation to 
be moved after it has been established. Conversation mi-
gration is needed to support primary/secondary replication 
as well as to optimize the overall system around its most 
active participants. Since a conversation may have several 
simultaneous users, migration requires that conversations 
be implemented as on-demand singleton services, as dis-
cussed in section 3.4.  

While they can be directly implemented in terms of 
the J2EE, Web Services can benefit greatly from special 
packaging and optimizations, many of which are provided 
by BEA WebLogic Workshop. The J2EE has radically 
different models for synchronous programming (typed 
EJB) and asynchronous programming (untyped JMS), 
which does not match well with WSDL. It is more con-
venient for queuing to occur under the covers for void-
return methods of beans. The underlying implementation 
should support store-and-forward messaging as well as 
client/server messaging. Another useful feature is to pro-
vide a special bean variant for in-memory conversations. 
Such conversation beans should act partly like stateful 
session beans, in that they are kept in memory and paged 
out as needed, and partly like entity beans, in that they 
have transactional internal state and may be shared by 
multiple users. 

→ intoB() 
← fromB() 

→ intoC()
← fromC()

A B C

Client side Server side 

5. Future Directions 

5.1 A Middle-Tier Persistence Layer 

Application servers create and manage significant 
amounts of data for which conventional relational data-
bases are less than ideal. This data is often in object or 
XML form and is accessed only in limited ways, e.g., by 
key or through a sequential scan.  And it is often accessed 
only by clustered servers that coordinate their actions, 
obviating the need for further concurrency control. This 
suggests that a new persistence layer be developed with 
the specific needs of application servers in mind. 

A crucial requirement of this new persistence layer is 
that it be distributed across the middle tier so data is kept 
close to its use. Ideally, the persistence engine should be 
part of the application server itself to decrease communi-
cation costs and simplify administration. These considera-
tions argue against constructing the middle-tier persis-
tence layer out of conventional relational databases [23], 
which are heavyweight and physically separate from the 
application server.  

Messages, both in-bound and out-bound, are one of 
the most significant categories of middle-tier data. Gray 
argues that databases should be enhanced with TP-



 monitor-like features to handle messaging; for example, 
triggers and stored procedures should evolve into worker 
thread/process pools for servicing queue entries [24]. The 
counter-argument is that application servers should be 
enhanced with persistence, since they also provide much 
of the required infrastructure, including security, configu-
ration, monitoring, recovery, and logging.  

 
 
 
 
 
 
 Specialized file-based message stores are in fact 

common, for all of the reasons described above, and the 
important point is that these stores should be opened up to 
include other kinds of middle-tier data. Significant per-
formance gains can be realized by having these stores 
include the data needed to process in-bound messages, in 
particular, the conversational state associated with long-
running, cluster-to-cluster workflows. Co-location of this 
data can eliminate the need to perform two-phase commit 
between the messaging system and the database. Two-
phase commit is otherwise required even if the messaging 
system keeps all of its data in the database, because the 
messaging system needs to be made aware of the outcome 
of each transaction in order to adjust its internal data 
structures. 
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Figure 5 Multi-Cluster Architecture for Transactional 
and Analytic Applications 

 
This approach isolates the operational system from the 

distribution, load-handling, and error-handling require-
ments of remote applications. And the extraction, trans-
formation, and loading process can optimize the data for 
the needs of these applications. For example, relational 
data might be pre-digested into object or XML form to 
avoid runtime mapping. The middle-tier copies will in 
general be less up to date than the copy of record in the 
backend, and this might require changing the way certain 
business processes work. For example, this approach fits 
naturally with the airline reservation / shopping cart 
model, where a series of best-effort operations lead to a 
single critical fulfilment step which may fail. Optimistic 
concurrency techniques are ideal here. Not all business 
processes can be formulated in these terms, but those that 
can have the greatest chance of being successfully distrib-
uted. 

Another important category of middle-tier data is the 
internal information needed to administer the application 
server. Deployment, configuration, and security informa-
tion need to be distributed across servers in the cluster. 
Servers can start more rapidly and more autonomously if 
this information is stored on local disks. Monitoring, test-
ing, tracing, and auditing logs need to be collected from 
servers in the cluster and integrated together. 

5.2 Widely-Distributed Computing Acknowledgements 
The majority of enterprise computing systems today are 
integrated with the Internet only though web browsers. 
Application servers are used primarily to support this 
functionality, and they do so as relatively stand-alone 
“stovepipes” at the front end of the data center. Web Ser-
vices are intended to make Internet technologies suitable 
for more fundamental business processing, tying together 
backend systems within and across data centers. Web 
Services can also provide a basis for integrating the enter-
prise with application and storage service providers, peer-
to-peer computing technologies [25], and computational 
grids [26]. 

This paper reports on work that was carried out or influ-
enced by many talented people at BEA, in particular Juan 
Andrade, David Bau, Adam Bosworth, Rod Chavez, Ed 
Felt, Steve Felts, Eric Halpern, Anno Langen, Kyle 
Marvin, Adam Messinger, Prasad Peddada, Sam Pullara, 
Seth White, Rob Woollen, and Stephan Zachwieja.  This 
paper is dedicated to the memory of Ed Felt. 
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