
Haystack: A Customizable General-Purpose Information
Management Tool for End Users of Semistructured Data

David R. Karger∗ Karun Bakshi David Huynh Dennis Quan† Vineet Sinha

MIT Computer Science and AI Lab
32 Vassar St.

Cambridge, MA 02139
USA

{karger,kbakshi,dfhuynh,vineet}@mit.edu, dennisq@us.ibm.com

Abstract

We posit that a semistructured data model
offers the right balance of rich structure and
flexible (or lack of) schema allowing naive end
users to record information in whatever form
makes it easy for them to manage. We de-
scribe our Haystack system, which exposes the
richness and flexibility of the data model while
offering the user natural, traditional interfaces
that shield them from the specifics of schemas,
tuples, and database queries. We outline re-
search challenges that remain to be addressed.

1 Introduction

The Haystack project is driven by the idea that every
individual works with information in his or her own
way. All have different needs and preferences regarding

• which information objects need to be stored,
viewed, and retrieved;

• what relationships or attributes are worth storing
and recording to help find information later;

• how those relationship or attributes should be pre-
sented and manipulated when inspecting objects
and navigating the information space;

• how information should be gathered into coherent
workspaces in order to complete a given task.

∗Research supported by the Packard Foundation, The MIT-
NTT Alliance, MIT Project Oxygen, and the HP-MIT Alliance

† IBM T.J. Watson Research Center, 1 Rogers St., Cam-
bridge, MA 02139

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 2003 CIDR Conference

At present, it is usually left to developers to make such
decisions and hard-code them into applications: choos-
ing a particular class of objects that will be managed
by the application, deciding on what schemata those
objects meet, developing particular displays of those
information objects, and gathering them together into
a particular workspace. We posit that no developer
can predict all the ways a user will want to record,
view, annotate, and manipulate information, and that
as a result the hard-coded information designs inter-
fere with users’ ability to make the most effective use
of their information.

Haystack aims to give end users significant control
over all of the facets mentioned above. Haystack stores
(by reference) arbitrary objects of interest to the user.
It records arbitrary properties of and relationships be-
tween the stored information. Its user interface flexes
to present and to support manipulation of whatever
objects and properties are stored, in a meaningful fash-
ion.

To give users flexibility in what they store and re-
trieve, Haystack coins a uniform resource identifier
(URI) to name anything of interest—a digital docu-
ment, a physical document, a person, a task, a com-
mand or menu operation, or an idea. Once named,
the object can be annotated, related to other objects,
viewed, and retrieved.

To support retrieval, Haystack lets a user record ar-
bitrary (predefined or user-defined) properties to cap-
ture any attributes of or relationships between infor-
mation that the user considers important. The prop-
erties serve as useful query arguments, as facets for
metadata-based browsing, or as relational links to sup-
port the associative browsing typical of the World
Wide Web.

Haystack’s user interface is designed to flex with
the information space: instead of using predefined,
hard-coded layouts of information, Haystack inter-
prets “view prescriptions” that describe how different
types of information should be presented—for exam-



ple, which properties matter, and how they should be
(recursively) presented. The view prescriptions are
themselves customizable data in the system, so they
can be imported or modified by a user to handle new
types of information, new properties of that informa-
tion, or new ways of looking at old information. A
similar type of view prescription approach is used to
describe workspaces for a particular user task. In a
related vein, operations that manipulate the data are
reified into data that can similarly be modified by the
user to customize the way they manipulate informa-
tion.

In this paper we summarize the primary goals and
insights of the Haystack project, contextualizing vari-
ous prior publications on the project, and discuss var-
ious database-oriented open problems our approach
poses.

2 A Tour of Haystack

To lay the groundwork for our exploration of
Haystack’s design, we begin with a brief description
of an end-user’s view of Haystack. In Figure 1, we see
a screen shot of Haystack as it might be used to man-
age an individual’s incoming messages. As is typical
of an email application, Haystack shows the user’s in-
box in the primary browsing pane. The layout is tabu-
lar, with columns listing the sender, subject, and body
among other things. Less usual is the fourth “Recom-
mended categories” column which we will discuss later.
The collection includes a “preview” pane for viewing
selected items; it is currently collapsed. On the right
hand side of the screen is a “holding area” for arbitrary
items; it currently contains an email message (about
Google Scholars) and a person (Hari Balakrishnan).
Various aspects of the message are shown, including
the body, attachments (currently collapsed) and rec-
ommended categories. Attributes displayed about the
person include messages to and from them; others such
as address and phone number are scrolled out of view.

The bottom of the left panel shows that the “Email”
task is currently active, and lists various relevant ac-
tivities (composing a message) and items (the inbox)
that the user might wish to invoke or visit while per-
forming this task, as well as a history of items that
the user previously accessed while performing this task
(expanded in Figure 2). The tasks can be invoked, and
items visited, by clicking on them.

Indeed, the user can click on any item on the screen
in order to browse to a view of that item—the individ-
ual messages, the various individuals named as senders
and such, or the Inbox (already being visited). Sim-
ilarly, the user can right click on any visible item in
order to invoke a context menu of operations that can
be applied to that object. The user has right-clicked
on one of the people listed as a message sender; a menu
(and sub-menu) has opened up listing operations that
might be invoked on that person, such as sending him

an email message, initiating a chat, or entering him in
the address book.

Finally, the user can drag one item onto another in
order to “bind” those two items in an item-specific
way—for example, dragging an item onto a collec-
tion places the item into the collection, while drag-
ging an item into a dialog box argument (see Figure 2)
field binds that argument to the dragged item. These
three operations—click to browse, right click for con-
text menus, and drag and drop—are pervasive. They
can be invoked at any time upon any visible object in
a uniform fashion.

Unlike in a typical email client, some of the items
in the inbox are not email messages. There are stories
from RSS feeds, and even a person—perhaps placed
there as a reminder that the user needs to meet with
them. The RSS message has a sender and a date, but
the person does not. This is characteristic of Haystack:
rather than being inextricably bound to an “email
reader application”, the inbox is a collection like all
other Haystack collections, distinguished only as the
collection into which the user has specified incoming
email (and news) be placed. It is displayed using the
same collection view as all other collections. Any items
can be placed in the collection, and will be properly
displayed when the inbox is being viewed.

Also showed in the left pane is a “browsing advi-
sor” that suggests various “similar items” to those in
the collection—such as items created by Karger, or
of type message—and ways to “refine the collection”
being viewed—for example, limiting to emails whose
body contains certain words, or that were sent at a
certain time.

3 Motivation

Haystack aims to improve end-users’ ability to store,
examine, manipulate, and find their information. We
emphasize “their” because every individual’s informa-
tion and information needs are different. As we dis-
cussed in the introduction, today’s information man-
agement applications are designed to capture the in-
formation that developers consider important, and
present it in ways that those developers consider in-
formative. But no developer can predict all the ways
that users might wish to work with their information.
For example, consider that at present many people
make use of an email-reading client, a music manage-
ment tool, a photo album, a calendar, and an address
book. The email client and address book may be some-
what linked, but the other applications manage their
own “data fiefdoms.” Now consider the plight of an
entertainment reporter following the music industry.
They exchange email with musicians, schedule inter-
views with them, attend scheduled concerts where they
play certain songs, and write reviews and interviews.
It seems likely that such a user would want to



Figure 1: Haystack viewing a user’s Inbox collection. A person and an email message are displayed to the right.
The user has right clicked on the person “Robert Krauthgamer” to open a context menu of person-relevant
operations.

• Associate email about a certain interview with the
interview article they are writing;

• Link musicians to concerts they played, songs they
performed, and photographs they are in;

• “Caption” photographs of musicians with the
song being performed in the photo;

• Place songs or albums in a calendar according to
release date;

and so on. While each item of interest is managed
by some application, none is aware of the other item
types. The applications’ internal models are not ex-
pressive enough to refer to the other item types (ex-
cept possibly through English-language “comments”)
and their user interfaces do not display the linkages
that interest the user. The best the reporter can hope
for is to open all four relevant applications simulta-
neously, at which point the information they actually
care about is lost in a clutter of other information less
relevant to their particular task.

Closer to home, consider a user who would like to
record papers written by each of their colleagues in
their address book, or a user who would like to start
sorting and displaying emails according to the date
by which they must be dealt with instead of the ar-
rival date. In a sense, they wish to draw functionality
simultaneously from their email programs and calen-
dars, neither of which is equipped for the entire task.

4 The Data Model

One might argue that the problem could be solved by
storing all the user’s information in a single database,
instead of in the various application specific file struc-
tures currently used. And indeed this is an impor-
tant step in the right direction. A single database
would allow the desired cross-domain relationships to
be represented in the data model. But this step does
not address the question of how those relationships
could be shown to or manipulated by the user. It is a
truism that typical users cannot be expected to write



database queries, much less manipulate the database
schemata if they wish to define new relations.

Nonetheless, a database is the right first step, and
Haystack takes it. In Haystack, all information is rep-
resented in the Web Consortium’s Resource Descrip-
tion Framework (RDF) standard [MM03]. The RDF
model is a semantic network—a graph in which the
nodes denote the information items to be managed and
the edge are labeled with property names to represent
the relations we would like to record. Each node is re-
ferred to as a resource. The tail of the an edge is known
as the subject of the relationship, the head as the ob-
ject, the edge itself (which names a particular property)
as a predicate, and the (subject,predicate,object) triple
as a statement. A statement can only directly repre-
sent a binary relation, not one involving more than two
entities. However, the majority of relations we have
encountered are binary, and higher-arity relationships
can generally be represented by reifying the relation-
ship (creating a new resource to represent a partic-
ular relationship tuple, and using binary connections
from the tuple to the entities that participate in the
relationship), so this binary restriction has not been a
burden.

4.1 Why RDF?

One might question the choice of RDF as opposed to
either XML or a traditional table-per-property rela-
tional database representation. In many ways, this
question is unimportant. All three representations
have equal expressive power. It is true that un-
like traditional databases, RDF can be used with-
out any schemata. However, DAML [CvHH+01] and
OWL [MvH03] can be used to impose schemata on an
RDF model if we so choose. RDF has a standard repre-
sentation in XML (RDF-XML) and can also be stored
in a traditional database (with one table of triples, or
with one binary table per named property). Of course,
the choice of representation might have tremendous
consequences for the performance of the system as it
answers a variety of querier. However, the naive user
will likely neither know nor care which representation
lies under the covers of the user interface.

Nonetheless, a few features of RDF led us to se-
lect it. The lack of (enforced) schemata is an appeal-
ing feature we will discuss below. The use of URIs
(uniform resource identifiers) for all information ob-
jects provides a useful location-independent naming
scheme. Also appealing is the fact that RDF places
all information objects on a level playing field: each is
named by a URI and can become the subject or ob-
ject of arbitrary assertions. This contrasts (positively)
with XML’s hierarchical representation of information
objects, in which the root object is “special” and re-
lated objects are nested deep inside a particular root
object. RDF is more in keeping with our belief that
the information designer cannot predict which infor-

mation objects will be of greatest interest to a given
user. Shades of this same argument appear in Codd’s
paper [Cod70], where he argues that a hierarchical
representation of information that is not fundamen-
tally hierarchical introduces an undesirable data de-
pendence that can trip up database users. A similar
argument can be made regarding a relational database.
Defining a database table with many columns suggests
that those fields should be considered in aggregate,
but different users may be interested only in some of
those fields. We could offer to project onto a subset
of columns, but RDF surrenders from the start to the
idea that each individual column may be interesting in
its own right and deserve its own table, avoiding the
whole question of how to project.

The most important driver in our adoption of RDF
is its structural similarity to the World Wide Web.
The power of the web comes from its links, which let
users navigate from page to related page. As we ar-
gued in a recent study [TAAK04], corroborating much
prior evidence, human beings seek information by ori-
enteering. Rather than carefully formulating a query
that precisely defines the a desired information target,
users often prefer to start from a familiar location, or
a vague search, and “home in” on the desired informa-
tion through a series of associative steps. In RDF, the
statements connecting subject and object form natural
associative links along which a user can orienteer from
subject to object. As the reader may suspect, the var-
ious attributes displayed for each item in Figure 1 are
often just other information objects related by some
predicates to the displayed object. Haystack’s user in-
terface lets the user click on any of those information
objects in order to browse to them, providing support
for this essential orienteering activity.

As will become clear when we discuss the user in-
terface, RDF’s single notion of “predicate” is exposed
to the end user in a number of different ways. “Prop-
erties” or “attributes” of a given object and “relation-
ships” between pairs of objects are all represented by
predicates in the data model.

4.2 Importing Data

Though RDF is appealing, most data is presently not
in that form. Haystack generates RDF data by ap-
plying a collection of extractors to traditionally for-
matted data. At present we can incorporate directory
hierarchies, documents in various formats, music and
ID3 tags, email (through an IMAP or POP3 interface),
Bibtex files, LDAP data, photographs, RSS feeds, and
instant messages. Each is incorporated by an appro-
priate parser that is triggered when information of the
given type is absorbed into the system.

Another outstanding source of semistructured data
is the web itself. Many web sites use templating en-
gines to produce HTML representations of informa-
tion stored in back-end databases. We have studied



machine-learning techniques to automatically extract
such information from the web pages back into struc-
tured form in RDF [Hog04, HK04]. In our approach,
the user “demonstrates” the extraction process on a
single item by highlighting it and labeling its parts;
the system then attempts to induce the (tree-shaped)
structure of HTML tags and data elements that repre-
sent the object on the page. If successful, it can notice
that structure on future pages and automatically per-
form the same extraction. Of course, Haystack does
not care about where its RDF comes from, so other
extraction methods [MMK99] can easily be incorpo-
rated.

5 Viewing Information

Given the representational power of the data model,
the next question is how it should be presented to users
so that they can effectively perceive and manipulate
the stored information. Simply modifying traditional
applications to run atop the unified data model would
leave users as constrained as before by the developers’
sense of what information should be presented in what
contexts. Instead, we must make it simple for the user
interface to flex according to the data it is called upon
to display. We achieve this goal through a recursive
rendering architecture in which essentially each object
is asked to render itself and recursively makes the same
request of other objects to which it is related [HKQ02,
QK03].

5.1 Views

Most elementary information management applica-
tions present a hierarchical display of information on
the screen. To display a particular object in a certain
region of the screen, they subdivide that object’s re-
gion into (typically rectangular) subregions, and use
those subregions to display various attributes of the
given object and to display other objects to which the
object is related. Thus, a typical email application will
present an email message by creating a region show-
ing the sender, another region showing the subject,
another region showing the body, and so on. The mes-
sage might itself be in a subregion as part of a larger
display of, say, a collection of messages, using distinct
columns to present each message’s (relationship to a)
sender, subject, and date. A calendar view displays in
each day a list of appointments, and an address book
has a standard format for displaying an individual by
listing properties such as name, address, phone num-
ber, and notes in some nicely formatted layout. The
address itself may be a complex object with different
sub-properties such as street, city, and country that
need to be laid out.

When applications are targeted at specific domains,
they can assume a great deal about what is being dis-
played in their subregions. The sender of an email
address will be a person; they will have a name and

address that can be shown in the sender region of the
display. An address-book entry will describe a per-
son who has an address. In Haystack we do not wish
to make such assumptions: our Inbox above contains
RSS stories, which perhaps do not have the same sort
of sender as an email message. But we can still ap-
ply the recursive display principle. We can construct
a view of any object X by (i) decide which proper-
ties of X and relationships to other objects need to be
shown, (ii) requesting recursive rendering of views of
the objects required by X , and (iii) laying out those
recursively rendered views in a way that indicates X’s
relation to the viewed objects. As a concrete example,
when rendering a mail message we might consider it
important to render the sender; we do so by asking
recursively for a view of the sender and then laying
out that view of the sender somewhere in the view
of the mail message. The recursive call, in rendering
the sender, may recursively ask for a rendering of the
sender’s address for incorporation in the sender view.

The key benefit of this recursive approach is that
the root view only needs to know about the root object
it is responsible for displaying, and not about any of
the related objects that end up inside that display.
Incorporating RSS feeds into the inbox did not require
a wholesale rewrite of a mail application; it simply
required the definition of a view for individual RSS
messages. Once that view was defined, it could be
invoked at need by the collection view showing the
inbox.

5.2 View Prescriptions

Formally, views are defined by view prescriptions that
are themselves data in the model. A view prescription
is a collection of RDF statements describing how a dis-
play region should be divided up and which constants
(e.g. labels) and related objects should be shown
in each subdivision. It also describes graphical wid-
gets such as scrollbars and text boxes that should be
wrapped around or embedded in the display.

When a view prescription is invoked, it will require
some context in order to render properly. Most obvi-
ously, we need to know how much space the rendered
object should occupy. It is often useful to pass other
state, such as current colors and font sizes, down from
the parent view in order to get a consistent presen-
tation. This is done by dynamic scoping—the view
has access to an environment of variables set by the
ancestral view prescriptions in the recursive render-
ing process. It can examine those variables, as well as
modify them for its children.

The key task of Haystack’s interface layer is to de-
cide which view prescription should be used to render
an information object. At present, we take a very sim-
plistic approach: we select based on the type of object
being displayed and the size of the area in which it
will be shown. Each view prescriptions specifies (with



more RDF statements) the types and sizes for which
it is appropriate; when a rendering request is dele-
gated, Haystack uses a database query to determine
an appropriate prescription to apply. Type and size
are the most obvious attributes affecting the choice of
prescription; an open research question of great inter-
est is to expand the vocabulary (schema) for discussing
which views are appropriate in which contexts.

When matching against type, Haystack uses a type-
hierarchy on information objects and selects a view
appropriate to the most specific possible type. The
type hierarchy lets us define relatively general pur-
pose views, increasing the consistency of the user inter-
face and reducing the number of distinct prescriptions
needed. For example, RSS postings, email messages,
and instant messages are all taken to be subtypes of
a general “message” type for which we can expect a
sender, subject, and body [QBK03]. Thus, a single
view prescription applies to all three types. To ensure
that all information objects can be displayed in some
way, Haystack includes “last resort” views that are al-
ways applicable. The “small” last-resort view simply
displays the URI of the information object, while the
“large” view displays a tabular list of all the object’s
properties and values (rendered recursively).

One might argue that our view architecture is re-
markably impoverished, offering only rectangular hi-
erarchical decompositions and delegation based on
object type and size. While agreeing that this is
in impoverished architecture, we assert that it cap-
tures much of the presentational power of current
(equally impoverished) information management ap-
plication displays, and hold up Figure 1, which looks
like a typical mail client, as evidence. While matching
the presentational capabilities of existing applications,
our delegation architecture enables the easy incorpo-
ration of new data types and cross-domain linkage of
information.

One key improvement relative to existing applica-
tions is that views can be invoked anywhere. The
right panel of Figure 1 holds a “clipboard” of sorts,
into which any information object can be dragged for
display. Thus information about the individual “Hari
Balakrishnan” can be inspected without launching an
entire address book application; similarly, the email
about “Google Scholars” can remain in view even if
we choose to navigate away from our inbox and stop
“doing email”.

5.3 Lenses

While it may suffice to display a list of attributes of
a given object, the attributes often group naturally to
characterize certain “aspects” of the information being
presented. Such a grouping in Haystack is effecting by
defining a lens. Lenses add another layer of indirection
to the presentation of information. Like views, lenses
are described in the data model as being appropriate to

a certain type of object. The person and mail message
in the right pane of Figure 1 are being displayed in a
lens view. This lens view is applicable to all object
types. It simply identifies all the applicable lenses for
the given type, and displays each of them. Each lens
has a title describing the aspect it is showing.

Unlike recursively rendered views, these lenses are
“reified” in that the user can address each one, choos-
ing to expand or collapse it (with the small plus/minus
sign adjacent to the lens name). The choice is stateful:
the user’s choice of which lenses to show is remembered
each time the lens view is applied for that type of in-
formation object. This provides a certain level of view
customization. Furthermore, many of our lenses are
simple “property set lenses”—they are described sim-
ply by a list of which properties of the object they will
show, and those properties are shown in a list. Users
can easily modify these lenses by adding properties to
or removing them from the list. Thus, if a user chooses
to define a brand new property in their data model, it
is straightforward for them to adapt the user interface
to present that property to them.

Lenses can also be context sensitive. For exam-
ple, the “recommended categories” lens shown for the
Google Scholars email message is present only when
the user is performing the “organizing information”
task. More generally we envision that many lenses
will be present only when certain tasks are being per-
formed. For example, a “help” lens could aggregate
useful help information about any object, but should
be visible only when the user is actually seeking help.

Users can further customize their views of informa-
tion by manipulating lenses. For example, the fourth
“recommended categories” column in the view of the
inbox was created by dragging the “recommended cat-
egories” lens from the Google Scholars view onto the
header of the Inbox collection. This would be a useful
action if the user wanted to quickly skim and organize
their email based on the headers, without inspecting
the details of each. In general, any lens can be placed
in a column of this collection view, allowing the user to
construct a kind of “information spreadsheet” showing
whichever aspects the user cares to observe about the
objects in the collection.

5.4 Collections

Our view architecture also makes it straightforward to
offer multiple views of the same information object,
allowing the user to choose an appropriate view based
on their task. The center pane of Figure 1 offers a
“change view” drop down menu. From this menu, the
user can select any view annotated as appropriate for
the object being displayed. This is particularly impor-
tant for collections, which are perhaps the central non-
primitive data type in Haystack. Since collections are
used for so many different purposes, many views exist
for them. The figure shows the standard row-layout



for a collection, but also available are a calendar view
(in which each item of the collection is displayed ac-
cording to its date—this view is applied to the inbox
in Figure 2), a graphical view (in which objects are
shown as small tiles, and arrows linking the tiles are
used to indicate specific chosen relationships between
them), and the “last-resort” view showing all proper-
ties of the collection. Each view may be appropriate
at a different time. The standard view is effective for
traditional email reading. The graphical view can be
used to examine the threading structure of a lengthy
conversation. And the calendar view (currently incom-
pletely implemented) could be applied by the user to
rearrange email according to its due date instead of its
arrival time.

Yet another collection view is the menu. When a
collection is playing the role of a menu, a left click
drops down a “menu view” of the collection, which
allows quick selection of a member of the collection.
Implementing menus this way gives users the power to
customize their interfaces: by adding to and removing
from the collection, users modify the menu. Users can
similarly customize the pinned-in-place task menus in
the left pane (such as the Email task menu displayed in
Figure 1) in order to make new task-specific operations
and items available.

A particularly noteworthy collection view is the
“check-box view” being exhibited in the bottom right
of the display. This forms a somewhat inverted view of
collections, in that it shows which of the collections the
Google Scholars email is in. Checking and unchecking
a box will add or remove the item from the given col-
lection. Of course, the collection itself is live—items
can be placed in the collection by dragging them onto
the collection name, and the collection can be browsed
to by a click. But in a past study [QBHK03], we
demonstrated that presenting the collections to users
as checkable “categories” made a big difference in the
way they were used. Many email users are reluctant
to categorize email away into folders, fearing that any
email so categorized will be lost and forgotten from
their inboxes. Many mail tools allow a user to copy
and email message into a folder and leave a copy be-
hind in the inbox, but apparently users find this too
heavyweight an activity. Checkboxes, on the other
hand, feel like a way of annotating the message, rather
than a putting away, and therefore encourage multiple
categorization. In our study, users given the option to
categorize with checkboxes made use of it, and found
that it improved their ability to retrieve the informa-
tion later. In the underlying data model, of course,
the checkboxes are collections like all others that can
be browsed to for closer inspection (indeed, the inbox
itself is one of the checkable categories).

5.5 Creating New Views

We continue to explore ways to let users customize
their information presentation. We have created a
“view builder” tool that lets users design new views for
given information types [Bak04]. The users use menus
and dragging to specify a particular layout of screen
real estate, and specify which properties of the viewed
object should be displayed in each region and what
kind of view should be used to display them. The rep-
resentation of view prescriptions as data, rather than
as code that is invoked with arbitrary effects, makes
this kind of view definition feasible—it involves sim-
ple manipulation of the view data. This work is still
in its early stages; the system certainly has the view-
construction power we want, we continue to seek the
most intuitive interfaces exposing that power to users.
The current scheme requires users to talk explicitly
about properties, types, and views, which may be be-
yond the capabilities of many users. Ultimately, we
aim for users to edit the views “in place”, manipu-
lating the presentation of the information by dragging
appropriate view elements from place to place. Such
design “by example” is likely to be within the capabil-
ities of more users.

At a higher level, the same view construction
framework can be used to design entire workspaces—
collections of information objects laid out and pre-
sented in a specific way, to support the performance of
a particular task. As an example, a user working on
a paper about a particular research project may wish
to gather and lay out the relevant research data, use-
ful citations and documents, spell checking function-
ality, and mail-sending operations to their coauthors
(cf. Section 6 on customizing operations).

Even with ideals tools, many users will likely be
too lazy to design new views and workspaces. How-
ever, the description of views as data means that, like
other data, views can be sought out from elsewhere
and incorporated into the system. We imagine various
power users placing view prescriptions in RDF on web
sites where other users can find an incorporate them,
much the way individuals currently define “skins” for
applications such as MP3 players.

6 Manipulation

Besides viewing information, users need to be able
to manipulate it. Most of Haystack’s views offer on-
the-spot editing of the information they present, as
a way to change specific statements about an object.
More generally Haystack offers a general framework
for defining operations that can be applied to modify
information objects in arbitrary ways. Most opera-
tions are invoked by context menus that can be ac-
cessed by right clicking on objects. Particularly com-
mon operations are supported by a natural drag and
drop metaphor.



6.1 Operations

The basic manipulation primitive in Haystack is the
operation. Operations are arbitrary functions that
have been reified and exposed to the user. Each func-
tion takes some number of arguments. When the op-
eration is invoked, the system goes about collecting its
arguments. If the operation takes only one argument
and the operation is invoked in a context menu, the
argument is presumed to be the object being clicked.
If more than one argument is needed, a dialog box is
opened in the clipboard, and the user can use all of
Haystack’s navigation tools to seek and find the argu-
ments they wish to give to the operation before invok-
ing it. Like other data, operations can be customized
by the user. In particular the user can copy an op-
eration, fill in some of its arguments, and “curry” the
result as a new, more specialized operation [QHKM03].
For example, a user may take the standard “email an
object” operation and curry it into a “mail this to
my boss” operation. Since the curried operation takes
only one argument (the object to send), it can be in-
voked in a right-click context menu with no need for
any dialog box.

6.2 Invoking Operations

Context menus provide a standard way to access all
the operations germane to a given object. Statements
in the data model declare which operations are ap-
plicable to which types of objects; a right click leads
to a database query that creates the collection of op-
erations (and other items) that apply to the clicked
object.

Drag and drop provides a way for a user to asso-
ciate two information objects by dragging one onto
the other. Dragging onto a collection has the obvi-
ous semantics of placing the object in the collection.
Dragging onto a particular property displayed in a lens
has the effect of setting the dragged object as a value
for that property with respect to the object the lens is
showing. Dragging into a dialog box argument assigns
the dragged item as an argument to the operation be-
ing invoked. More generally, a view can specify the
operation that should be invoked when a specific type
of object is dragged into the view.

Like views, operations offer an opportunity for arbi-
trary, fine-grained extensions of Haystack. Operations
are defined in RDF, so can be created and offered up by
power users for download by any individuals who find
them useful. Some operations may simply be carefully
curried operations; others may include newly crafted
database queries, or even arbitrary code.

6.3 Example

Figure 2 shows what happens after a user invokes the
“send this item” operation on a particular object. A

dialog box in the right pane gathers the necessary ar-
guments, including the object to send (already filled
in) and the person to whom it should be sent. To
fill in that person, we show how the user might drop
down the email-specific history in the left pane, listing
items recently used in while handling email. Since the
desired recipient is not present, the user can perform
a search in the search box in the top navigation bar.
The (single) result matching this search appears in a
drop-down menu. From there it can be dragged and
dropped onto the dialog box in order to indicate that
it is the intended recipient. If the user has cause to be-
lieve that they will need to send this particular item to
other individuals, they can drop a context menu from
the dialog box (shown) and select “save this as an op-
eration” to create a new operation for which the item
to send is prespecified, and only the intended recipient
needs to be filled in.

7 Search

Beyond reading and writing information, search is
perhaps the key activity in information management.
Haystack offers a number of search tools in the sys-
tem. We aim to make search both pervasive and
lightweight—rather than dropping what they are do-
ing and initiating a search, we want users to think of
search as a no-overhead activity that is performed as
part of regular navigation activity.

As we argued above, orienteering is a natural search
mode. Should a plausible starting point be visible, we
expect users to “hyperlink” their way from object to
object, homing in on the one they are seeking. By plac-
ing user-definable task-specific collections of informa-
tion in the left panel, we aim to maximize the chances
that the user will find a good jumping-off point for
their search.

At times, of course, no such point is clearly visi-
ble. A simple scheme to fall back on at that point is
text search. Information objects are often associated
with memorable text, such as a title, a body, an an-
notation. Haystack’s upper navigation bar includes a
“search box” into which an arbitrary textual query can
be entered. The results of this search are a collection.
The collection is presented in the “drop down menu”
view of a collection, which optimizes for rapid selec-
tion of an item in the common case where the search
is successful. However, the collection of results can
also be “navigated to” to provide the starting point
for a more complex search.

We also offer a general purpose “find” interface that
lets people design a database query against the RDF
model. At present it is limited to expressing con-
straints that specific predicates must take on certain
values. We have invested relatively little effort in this
interface, because we see the need to express a query in
this way as a sign of failure of the more lightweight nav-
igation tools. Instead of a generic query interface, we



Figure 2: Invoking “send this item to someone” in Haystack. The Inbox collection is displayed in the calendar
view. We show three distinct open menus, though in actual use only one would remain open at a time.

expect that specific useful queries will likely be pack-
aged up by developers as operations (discussed above)
that use domain-specific dialogs to capture the infor-
mation necessary to formulate the query.

7.1 Fuzzy Browsing

Much research has been done in the database commu-
nity on search. Some [BMP01] have even looked for
ways to offer ranked or approximate matching, avoid-
ing the off-putting “all or nothing” effect of boolean
database queries. However, as we argued above, atten-
tion needs to be given to orienteering, which manifests
in search as an iterative process of query specification,
inspection of the results, and refinement of the query.
Yee et al [YSLH03] have explored faceted metadata
browsing as a way to let users orienteer through data
by choosing to restrict on certain attributes of the in-
formation.

In Haystack, we are exploring ways to bring ori-
enteering tools from the text-search domain to the
database domain [Sin03, SK04]. We propose to think
of a resource’s attributes and values (predicates and

objects) as features of that resource that can be used
for search and similarity estimation, much as the words
in a document are used in text search. Put an-
other way, we can think of associating to each item a
“virtual document” containing “words” such as “au-
thor:yc1yb87Karger” and “Send-Date:012937” (note
that URIs are kept in the terms in order to differenti-
ate values that are lexicographically identical but se-
mantically distinct). We can apply all the well-studied
techniques of fuzzy text search to those virtual docu-
ments.

For example, given any item, we can define “simi-
lar items” to be those which share many of the same
attribute values. These may well be worth display-
ing when we are looking at an item, as they will
likely assist orienteering by the user. Text search re-
search suggests various term weighting approaches to
decide which attributes are “important” in deciding
similarity—for example, extremely common attributes
should likely be ignored. When it comes to the com-
mon search process of issuing queries, browsing the
results, and modifying the query, the text search com-



munity has also developed various query refinement
and relevance feedback techniques that can be used to
suggest next steps. It is just such suggestions that are
presented in the left pane of Figure 1.

8 Discussion

Having presented the Haystack system, we now turn to
a discussion of some of our design choices and of some
of the open questions that we continue to examine.

8.1 Why a Database

Our discussion of Haystack may lead one to ask why
we use a database or structured model at all. The user
sees almost no sign of the underlying database: tuples
are never shown, and database querying is deprecated.
One might think, given our focus on link traversal, we
would be better off simply storing user information as
HTML in some kind of “personal web.”

On the contrary, we argue that the structured data
model is absolutely critical to the design of a person-
alizable information management system. Much of
the data users work with clearly is structured, rely-
ing heavily on properties and relationships to other
items. Unlike the web, in which each link must be
manually labeled with a textual description of its role,
a structured model gives a concise way to indicate
that role played by a certain class of links. Our view-
rendering architecture can make use of that structure
to render information objects in a variety of informa-
tive ways. And the representation of links in machine-
readable form means that, even if complex database
queries are beyond the capabilities of end users to con-
struct, power users can package up complex database
queries (as operations) and information presentations
(as views and lenses) that can then be incorporated
by typical users to increase the capabilities of their
system. Even more generally, the structure available
in the model makes it possible to write various au-
tonomous agents that can import and manipulate data
on behalf of the end user.

8.2 The Role of Schemata

While we rely heavily on a structured database, the
same is not obviously true of schemata. We allow the
user to to relate arbitrary objects in schema-violating
fashion—the author of a document can be a piece of
furniture, and the delivery date a person. And we
allow users to craft arbitrary new relations to connect
objects, without providing any schematic descriptions.

8.2.1 On not using schemata

On the whole, we believe this schema-light approach
is necessary in an personal information management
system. Given schemata, we must choose whether
to enforce them or not. As with developers design-
ing applications, we will invariably find users wanting

to record information that will violate our schemata.
At that point, we must choose whether to enforce our
schemata and forbid users from recording information
they consider important, or we must choose to vio-
late our schemas. Although the latter choice makes it
challenging for us to architect our system, the former
defeats the fundamental goal: to let users record infor-
mation they need. Mangrove [HED+03] takes a similar
tack, arguing that in practice schema will need to be
crafted to fit existing data, rather than the reverse.

Of course, one might argue that the user does not
know best. Perhaps enforcement can be couched as an
educational experience that teaches the user how they
ought to be structuring their information. We suspect,
however, that users are too set in their ways for such
an approach to work. Even if an interface can steer
users to record information the “right” way, we expect
users returning to seek that information will look for it
the “wrong” way that they original envisioned, and be
unable to find it because it was recorded “right.” We
need to record information the way we expect users to
seek it, even if we expect them to seek it incorrectly.

8.2.2 On using schemata

Although we do not envision enforcing schemas, they
nonetheless pervade Haystack’s. For the sake of
consistency, we do attempt to “suggest” appropriate
schemata for information. We expect that the “preex-
isting conditions” established by the large number of
schemata initially distributed with Haystack will lead
to users having similar-in-the-large knowledge repre-
sentations, so that standard views, queries, and oper-
ations work with them.

Schemata play a particularly important role in the
design of views. In particular, we make heavy use of
“type” assertions to decide on appropriate views and
operations; a user with a highly-nonstandard type sys-
tem will also need a highly nonstandard interface to
work with it. The choice of which attributes to display
in the view of an object of a given type is schematic—it
expresses an expectation that those attributes will typ-
ically be available, and that other attributes will not
(or will not be important). Users, when they modify
views, are in a sense modifying the schemas associ-
ated with those types. A key difference, however, is
that the schematic constraints suggested by views are
“soft.” While a view implies that certain attributes
are expected, the lack of one simply results in no in-
formation being displayed. We can see this in Fig-
ure 1: while the inbox display suggests the need for a
sender and date associated with each object, a person
can be included in the collection, with the only con-
sequence being some blank fields. Equally important
is the fact that multiple views mean that, in a sense,
different schemata can be imposed on the same object
at different times, depending on the task the user is
undertaking.



Although we do not enforce schema, our user inter-
face’s manipulation primitives often make very strong
suggestions. Schematic annotations about whether a
given property is single-valued or multi-valued affect
the behavior of drag and drop: dropping on a single-
valued field replaces the value of the property while
dropping on a multi-valued field incorporates an addi-
tional value for the property. Again, these suggestions
are not rigidly enforced: with sufficient effort, a user
can add a second value to a schematically-single-valued
attribute. At that point, views which assume single-
valuedness may end up displaying only one of the two
assigned values nondeterministically. Of course, there
is always the opportunity for the user to modify the
view to repair this flaw. And database queries, that
address the data without the constraints imposed by
views, can make full use of the multiple values.

Underlying our use of schemas is the general re-
search question of how to make use of database
schemata that are “usually true.” We have already
discussed ways that usually-true schemata can assist
the design of information views. At the programmer
level, schemata let the developer write clearer code,
as they can avoid complex case analyses for dealing
with data. As a simple example, knowing that a given
property is always present means one can skip the code
needed to deal with its absence. An intriguing ques-
tion is to what extent usually-true schemata can be
used to maintain clear code. At present, Haystack op-
erations are filled with various blocks of code dealing
with schema exceptions—for example, an operation
that sorts on dates needs to explicitly check whether
each date is actually of type date. In other cases, op-
erations fail silently when they encounter unexpected
exceptions (arguably this is reasonable behavior, ef-
fectively refusing to apply the operation to schema-
violating data). One might hope instead to write code
in which all schema violations are caught implicitly
and branched of to some kind of exception handling
block. But this begs the question of describing that ex-
ception handling code, and in particular giving clean
descriptions of the ways the schema can be violated
and the desired defaults to apply when they are.

8.3 Haystack Limitations

Our use of Haystack has highlighted assorted limita-
tions and flaws in the design. One significant one is
“UI ambiguity”. Given that every object on the screen
is alive, it is sometimes difficult for the user interface
to guess which object a user is addressing with a given
click. Any point on the screen is generally contained
in several nestings of hierarchically displayed objects,
and when the user clicks it is unclear which level of
the nesting they are addressing. For context menus,
we resolve this problem by giving the author access to
menus for all the objects nested at the click point—as
can be seen in Figure 1, the context menu offers ac-

cess to operations on the email sender, on the email
message of which that sender is a part, and on the in-
box of which the email message is a part. When the
user drags and drops an object, we make the heuristic
decision to address the “most specific” (lowest in the
hierarchy) objects at the click and drop points. This is
often correct, but sometimes leads to difficulties. For
example, in order to drop an item into a display of a
collection, one must carefully seek out a portion of the
collection display that is not owned by any recursively
rendered member of the collection. Much research re-
mains to be done on the best way to disambiguate UI
actions.

The power we give users over the data model can
also be damaging. Haystack does not offer users much
protection to users as they perform operations that
could destroy their data. Beyond the users’ own data,
since the entire interface is described as data, users can
easily corrupt their interfaces in ways that make them
impossible to use. For example, users can dissociate
views from the data-types they present, and suddenly
find themselves unable to view information.

The proper solution to this problem is to develop
effective access control (particularly write-control)
methods on the data. We have not addresses this crit-
ical issue, and pose it as an open problem below.

9 Other Applications

In this section, we speculate on some other roles for the
architecture we have created: to let users consumer the
semistructured data being produced by the Semantic
Web effort [BLHL01], and to let individual users con-
tribute to that effort by sharing or publishing some of
their own semistructured information.

9.1 The Semantic Web

Whether or not one accepts the need for a seman-
tic network on each user’s desktop, semantic networks
seem destined to play a critical role in information dis-
semination as the so called Semantic Web [BLHL01]
evolves. The web is an extremely rich source of infor-
mation, but its HTML documents present that infor-
mation in “human readable” form—i.e., one in which
the semantics of the documents are decoded by hu-
man beings based on their understanding of human
language. Such documents cannot be easily digested
by automated agents attempting to extract and ex-
ploit information on behalf of users. Thus, momentum
is building behind an effort to present information on
the web in RDF and XML, forms more amenable to
automated use.

One might think that the richer semantics offered
by the Semantic Web versus the traditional web could
also increase human users’ ability retrieve information
from it. But at present the opposite is true, because
no good interfaces exist for the Semantic Web. On



the Semantic Web, data and services are exposed in a
semantics-rich machine-readable fashion, but user in-
terfaces for examining that data, when they exist at
all, are usually created from centralized assemblies of
data and services. For example, with a semantic portal
(e.g., SEAL [SMS+01] or Semantic Search [GMM03],
search being a kind of portal), database administrators
aggregate semantically-classified information together
on a centralized server for dissemination to Web users.
A major motivation for adopting this approach is that
it preserves access through a highly ubiquitous client,
namely the Web browser. At the same time, the prob-
lem of how to reassemble a point-and-click user inter-
face only needs to be addressed for metadata that con-
forms to a constrained set of schemata known ahead
of time (and when those schemata are modified only
the server needs to be updated).

These portal-based approaches re-encounter the
same problems that we raised in regard to traditional
applications. The design of any one portal has in mind
a fixed ontology; arbitrary information arriving from
other parts of the Semantic Web cannot be automati-
cally incorporated into views generated by the portal.
If some schema is augmented, no portal will be able to
present information from the augmented schema until
the portal developer modifies his or her display system.
Thus, portals take us back to the balkanized informa-
tion structures we tried to remove with a semantic
network model.

On the other hand, if the user’s client software could
perform this data aggregation and user interface con-
struction on a per-user basis, then we could restore a
user’s ability to freely navigate over information and
services on the Semantic Web. Our view architec-
ture offers just such an opportunity to integrate data
at the client end [QK04]. Separate pieces of infor-
mation about a single resource that used to require
navigation through several different Web sites can be
merged together onto one screen, and this merging can
occur without specialized portal sites or coordination
between Web sites/databases. Furthermore, services
applicable to some piece of information need not be
packaged into the Web page containing that informa-
tion, nor must information be copied and pasted across
Web sites to access services; semantic matching of re-
sources to services (operations) that can consume them
can be done by the client and exposed in the form of
menus. By crafting and distributing views and opera-
tions, users can create and publish new ways of looking
at existing information without modifying the original
information source.

9.2 Collaboration and Content Creation

Our discussion so far has focused on one user’s in-
teraction with their own information (and then the
Semantic Web). But we believe that our system can
enhance the recording of knowledge by individuals for

communal use, as well as the search for and use of that
knowledge by broader communities.

One of the tremendous benefits of the World Wide
Web is that it dramatically lowered the bar for indi-
viduals wishing to share their own knowledge with a
broader community. It became possible for any indi-
vidual, without sophisticated tool support, to record
information that could then be located and accessed
by others. If the same were done on the Semantic
Web, then information recorded by users can be much
richer, making it more useful to other individuals (and
automated agents) than plain HTML.

Unfortunately, the state of the art tools for author-
ing Semantic Web information are graph editors that
directly expose the information objects as nodes and
properties as arcs connecting those nodes [EFS+99,
Pie]. Such tools require a far more sophisticated user
than do the simple HTML editors that let naive users
publish their knowledge to the World Wide Web.

Haystack makes it easy for users to author struc-
tured information, which is already represented in the
Semantic Web’s native RDF format. This lowers the
bar for a user who decides to expose some of their
“internal use” information to the world at large. Tra-
ditionally, someone who read a document and anno-
tated it for their own use would have to do substantial
work to convert those annotations (and possibly the
document) to HTML to be pushed on the web. With
a semantic network representation, the document and
annotations are already in the right form for publica-
tion onto the Semantic Web, and the user only needs
to decide who should have access to them.

Of course, the access-control problem is a difficult
one, made harder by the fine granularity of the data
model. We need a simple interface letting user’s spec-
ify which properties and relationships on which objects
should be visible to which people.

On the opposite side, when information is being
gathered from numerous sources, an individual must
start making trust decisions. Again, interfaces must
be developed to let a user specify which Semantic Web
assertions they wish to incorporate as “truth” in their
own semantic networks.

Another significant issue that must be tackled when
users collaborate is the problem of divergent schemata.
If each use is allowed to modify their information rep-
resentation at will, then it is unlikely that these repre-
sentations will align when data is exchanged. We hope
that this problem can be ameliorated by sharing view
prescriptions and operations along with data.

A piece of related work that we should men-
tion here is the REVERE system, and in particu-
lar the MANGROVE project [HED+03]. REVERE
shares many of Haystack’s goals and methods. Like
Haystack, REVERE aims to colonize a useful point
somewhere between structured and unstructured infor-
mation. Haystack focuses on helping each individual



manage their own information better. For REVERE,
in contrast, collaboration is a primary goal. Thus, is-
sues of schema alignment that can pushed to the future
for Haystack become primary drivers for the design of
REVERE.

10 Open Questions

In this section, we outline some of the database-
oriented open questions that we have so far not yet
addressed.

10.1 Database Performance

Haystack rests on a database, but the way it uses that
database is not typical. Almost all the queries issued
by Haystack are “trivial” inquiries about the proper-
ties hanging off a given objects, but the queries are
numerous. For example, rendering a Haystack dis-
play may involve thousands of database queries. We
determined early on that straightforward use of stan-
dard databases was not possible—for example, just the
cost of marshaling queries across the process bound-
ary to the database meant that refreshing the screen
took several seconds, which is intolerable for a user
interface. We wrote a special purpose in-process, in-
memory database which, after sufficient tuning, offered
the performance needed to make Haystack real-time
responsive. But in doing so, we sacrificed scalability.
We do not expect that a typical user’s data will fit in
RAM. An open problem is to devise a database and
proper caching techniques that will give us the perfor-
mance we need without sacrificing scalability.

One obvious question is whether our failure to scale
arises from our choice of RDF over a traditional multi-
column relational model. This may indeed be the case,
but it would be very unfortunate if pursuit of perfor-
mance forced us away from the model that we argued
above is the most natural one for an end user to work
with.

Should we apply Haystack to browsing data dis-
tributed on the Semantic Web and and among individ-
ual users, all our performance challenges clearly am-
plify even further.

10.2 Access Control

As discussed above, we need access control
mechanisms—one the one hand, to protect indi-
vidual users from making destructive modifications
to their own data, and on the other to help users
decide how they wish to share their semistructured
information with other individuals.

Traditional user environments have offered protec-
tion and access control on a “file” and “directory” level
that has generally sufficed. Users can take the time to
mark each file that should be read-only. System files
get stored in inaccessible locations so that the system

cannot be corrupted by inexperienced users’ manipu-
lations of those files. But in Haystack, objects that are
traditionally maintained monolithically have been bro-
ken down into graphs of primitive elements and rela-
tions connecting them. It is no longer clear where one
object ends and the next begins. This makes it chal-
lenging to decide what access controls and protections
should apply to each tuple in the information space.
Representation is not particularly difficult, as permis-
sions can be describe with additional tuples. But what
user interfaces can let a user easily specify the per-
missions on individual tuples? Similarly, our use of a
declarative language for describing user interfaces has
blurred the boundary between the user’s own, manip-
ulable data and system files. How can we give users
the power to customize their systems while protect-
ing them from the potentially disastrous consequences
of customizing their systems into incomprehensibility?
One might attempt to restrict certain “system level
predicates,” such as the predicates binding data types
to views, to read-only status. But there will surely be
cases in which the user needs to override such protec-
tions. Is it possible to steer their overrides so that they
do not have damaging consequences?

In a similar vein, we expect users may want to
export some of their semistructured information into
other forms—for example, to send graph fragments to
a friend by email, to “reformat” data for consumption
by other programs, or to publish certain information
for consumption by the public. Again, all of this is
relatively easy to do when information is stored at file
granularity. But when object boundaries are bare, how
can a user express arbitrary tuple subsets for export
and achieve an adequate level of confidence that they
are not, for example, accidentally publishing certain
information they would prefer to keep private?

10.3 Materialization of Objects

Haystack’s user interface often implies the existence of
objects that are not actually reified in the database.
An object’s context menu is constructed by a database
query after a right click. When a document is laid out,
the user might naturally consider the “collection of au-
thors,” though no such collection actually exists (each
person is directly linked to the document by an author
statement). This will pose a problem should the user
wish to manipulate the materialized collection—for ex-
ample, dragging an additional operation into the con-
text menu, or dragging the collection of authors into
another collection. In both of the given cases, there are
natural interpretations: in the first, the added opera-
tion should be labeled as germane to the given type,
while in the second, each author should individually
be added to the collection. But these interpretations
are made on a case by case basis. Is there a general
way to offer correct simulation to arbitrary material-
ized objects?



Queries in Haystack are used to materialize a col-
lection containing the results of the query. If we wish
to maintain that collection over time, but update it as
new relevant items arrive, how should we cope with the
user’s attempt to manually place additional items in
the collection, or remove items matching the query?
Are they modifying the query? Or should we main-
tain the collection in some “half static, half dynamic”
state?

10.4 Programming for Dynamic Information

The data stored in Haystack tends to mutate. Nu-
merous agents, such as those which incorporate infor-
mation from the world at large (e.g., regularly fetch-
ing email from an IMAP server) cause unpredictable
changes in the content of the system—changes that
need to be reflected in the display. Algorithmically,
it is natural to assume some sort of event driven
model, in which all tuples that influence the display are
watched, and in which changes to those tuples trigger
changes in the displayed information. Unfortunately,
event-driven systems are difficult to program. It is
much more natural for a developer to think of the data
to be displayed as static, and to describe procedurally
how to display that fixed data. What is needed, then,
is some framework by which the developer’s procedural
description of display rendering can automatically be
transformed into an event-driven model that properly
updates the display based on changes to the underly-
ing data.

10.5 Ontology Development

Haystack has proposed to move toward declarative
specification of information that has traditionally been
embedded, and thus hidden, within application pro-
grams. We need to develop proper schemata for such
specifications. As we have built Haystack we have re-
vised our schemata on the fly to offer the vocabulary
we need at the moment, but this is a problem that
should be addressed from first principles. In partic-
ular, we need to design schemata for describing the
way information is presented (what properties are im-
portant, which go together, how much relative atten-
tion each should get) and the operations that apply to
that information (what parameters are required and
optional, what other tools can be used to help the
user determine values for the parameters, and so on).
Another ontology is needed to describe tasks a user
might perform, the information and operations rele-
vant to those tasks, and the proper ways to display
information in the context of performing those tasks.

11 Conclusion

The Haystack framework demonstrates some of the
benefits of managing user information uniformly in a
semistructured data model. Its separation of data and

presentation lets us knock down the barriers to infor-
mation manipulation imposed by the current applica-
tion model. Moving to the new model, however, im-
poses requirements on the database and user interface
layers that current research has not addressed. It is our
hope that the application of ideas from the database
community will help achieve the full potential of the
semistructured data approach.

References

[Bak04] Karun Bakshi. Tools for end-user creation
and customization of interfaces for infor-
mation management tasks. Master’s the-
sis, Massachusetts Institute of Technol-
ogy, June 2004.

[BLHL01] Tim Berners-Lee, James Hendler, and
Ora Lasilla. The semantic web. Scientific
American, May 2001.

[BMP01] P. Bosc, A. Motro, and G. Pasi. Report
on the fourth international conference on
flexible query answering systems. SIG-
MOD Record, 30(1), 2001.

[Cod70] E. F. Codd. A relational model of data
for large shared data banks. CACM,
13(6):377–387, 1970.

[CvHH+01] Dan Connolly, Frank van Harmelen,
Ian Horrocks, Deborah L. McGuin-
ness, Peter F. Patel-Schneider, and
Lynn Andrea Stein. Daml+oil
(march 2001) reference description.
http://www.w3.org/TR/daml+oil-
reference, 2001.

[EFS+99] H. Eriksson, R. Fergerson, Y. Shahar, ,
and M. Musen. Automatic generation of
ontology editors. In Proceedings of the
12th Banff Knowledge Acquisition Work-
shop, 1999.

[GMM03] R. Guha, R. McCool, and E. Miller. Se-
mantic search. In Proceedings of the
World Wide Web Conference, 2003.

[HED+03] Alon Halevy, Oren Etzioni, Anhai Doan,
Zack Ives, Jayant Madhavan, Luke Mc-
Dowell, and Igor Tatarinov. Crossing the
structure chasm. In Proceedings of the
First Biennial Conference on Innovative
Data Systems Research (CIDR), 2003.

[HK04] Andrew Hogue and David Karger. Wrap-
per induction for end-user semantic con-
tent development. In Interaction and De-
sign for the Semantic Web Workshop at
the 13th annual World Wide Web Con-
ference, New York, NY, 2004.



[HKQ02] David Huynh, David Karger, and Dennis
Quan. Haystack: A platform for creat-
ing, organizing, and visualizing informa-
tion using rdf. In Semantic Web Work-
shop at WWW2002, Hawaii, May 2002.

[Hog04] Andrew Hogue. Tree pattern inference
and matching for wrapper induction on
the world wide web. Master’s thesis,
M.I.T., May 2004.

[MM03] Frank Manola and Eric Miller. Rdf
primer. http://www.w3.org/TR/rdf-
primer/, 2003.

[MMK99] I. Muslea, S. Minton, and C. Knoblock. A
hierarchical approach to wrapper induc-
tion. In Proceedings of the Third Interna-
tional Conference on Autonomous Agents
(Agents ’99), 1999.

[MvH03] Deborah L. McGuinness and Frank van
Harmelen. Owl web ontology language
overview. http://www.w3.org/TR/owl-
features/, 2003.

[Pie] Emmanuel Pietriga. Isaviz.
http://www.w3.org/2001/11/IsaViz/.

[QBHK03] Dennis Quan, Karun Bakshi, David
Huynh, and David R. Karger. User in-
terfaces for supporting multiple catego-
rization. In INTERACT: 9th IFIP Inter-
national Conference on Human Computer
Interaction, Zurich, September 2003. In-
ternational Federation for Information
Processing.

[QBK03] Dennis Quan, Karun Bakshi, and
David R. Karger. A unified abstraction
for messaging on the semantic web. In
Proceedings of the 12th International
World Wide Web Conference, page 231,
2003.

[QHKM03] Dennis Quan, David Huynh, David
Karger, and Robert Miller. User interface
continuations. In Proceedings of UIST
(User Interface Systems and Technolgies,
2003.

[QK03] Dennis Quan and David R. Karger.
Haystack: A platform for authoring end-
user semantic web applications. In Pro-
ceedings of the International Semantic
Web Conference, 2003.

[QK04] Dennis Quan and David R. Karger. How
to make a semantic web browser. In Pro-
ceedings of the 13th International World
Wide Web Conference, 2004.

[Sin03] Vineet Sinha. Dynamically expoloit-
ing available metadata for browsing and
information retrieval. Master’s thesis,
M.I.T., September 2003.

[SK04] Vineet Sinha and David R. Karger. Mag-
net: Supporting navigation in semistruc-
tured data environments. Submitted,
2004.

[SMS+01] N. Stojanovic, A. Maedche, S. Staab,
R. Studer, and Y. Sure. SEAL: a frame-
work for developing semantic portals.
In Proceedings of the international con-
ference on Knowledge capture, October
2001.

[TAAK04] Jaime Teevan, Christine Alvarado, Mark
Ackerman, and David R. Karger. The
perfect search engine is not enough: A
study of orienteering behavior in directed
search. In Proceedings of the ACM CHI
Conference on Human Factors in Com-
puting Systems, 2004. To appear.

[YSLH03] Ping Yee, Kirsten Swearingen, Kevin Li,
and Marti Hearst. Faceted metadata for
image search and browsing. In Proceed-
ings of ACM CHI Conference on Human
Factors in Computing, 2003.


