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1 Introduction
This paper presents the architecture of PIER1, an Internet-
scale query engine we have been building over the last three
years. PIER is the first general-purpose relational query pro-
cessor targeted at a peer-to-peer (p2p) architecture of thou-
sands or millions of participating nodes on the Internet. It
supports massively distributed, database-style dataflows for
snapshot and continuous queries. It is intended to serve as a
building block for a diverse set of Internet-scale information-
centric applications, particularly those that tap into the stan-
dardized data readily available on networked machines, in-
cluding packet headers, system logs, and file names.

In earlier papers we presented the vision for PIER, its ap-
plication relevance, and initial simulation results [28, 32]. We
have also presented real-world results showing the benefits of
using PIER in a p2p filesharing network [41, 43]. In this pa-
per we present, for the first time, a detailed look at PIER’s
architecture and implementation. Implemented in Java, PIER
targets an unusual design point for a relational query engine,
and its architecture reflects the challenges at all levels, from
the core runtime system through its aggressive multi-purpose
use of overlay networks, up into the implementation of query
engine basics including data representation, query dissemina-
tion, query operators, and its approach to system metadata. In
addition to reporting on PIER’s architecture, we discuss ad-
ditional design concerns that have arisen since the system has
become real, which we are addressing in our current work.

1.1 Context

Distributed database systems have long been a topic of in-
terest in the database research community. The fundamen-
tal goal has generally been to make distribution transpar-
ent to users and applications, encapsulating all the details of
distribution behind standard query language semantics with

1PIER stands for Peer-to-peer Information Exchange and Retrieval.
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ACID guarantees. The resulting designs, such as SDD-1 [5],
R* [40] and Mariposa [64], differ in some respects, but they
share modest targets for network scalability: none of these
systems has been deployed on much more than a handful of
distributed sites.

The Internet community has become interested in dis-
tributed query processing for reasons akin to those we laid
out in earlier work [32]. Not surprisingly, they approach
this problem from a very different angle than the traditional
database literature. The fundamental goal of Internet systems
is to operate at very large scale (thousands if not millions
of nodes). Given the inherent conflicts between consistency,
availability, and tolerance to network partitions (the CAP the-
orem [7]), designers of Internet systems are willing to toler-
ate loose consistency semantics in order to achieve availabil-
ity. They also tend to sacrifice the flexibility of a SQL-style
database query language in favor of systems that scale natu-
rally on the hierarchical wiring of the Internet. Examples in
this category include Astrolabe [66] and IrisNet [22], two hi-
erarchical Internet query systems that we discuss in Section 5.

PIER, coming from a mixed heritage, tries to strike a com-
promise between the Internet and database approaches. Like
Internet systems, PIER is targeted for very large scales and
therefore settles for relaxed semantics. However, PIER pro-
vides a full degree of data independence, including a rela-
tional data model and a full suite of relational query opera-
tors and indexing facilities that can manipulate data without
regard to its location on the network.

We begin (Section 2) by describing some of the basic de-
sign choices made in PIER, along with the characteristics of
target applications. This is followed (Section 3) by a detailed
explanation of the PIER architecture. We also highlight key
design challenges that we are still exploring in the system. In
Section 4, we outline our future work on two important fronts:
security and query optimization. Related work is presented in
Section 5 and we conclude in Section 6.

2 Design Decisions and Sample Application

Many of the philosophical assumptions we adopted in PIER
were described in an earlier paper [32]; that discussion guided
our architecture. Here we focus on concrete design decisions
we made in architecting the system. We also overview a num-



ber of sample applications built using PIER.

2.1 Design Decisions

PIER fully embraces the notion of data independence, and
extends the idea from its traditional disk-oriented setting to
promising new territory in the volatile realm of Internet sys-
tems [29]. PIER adopts a relational data model in which
data values are fundamentally independent of their physical
location on the network. While this approach is well es-
tablished in the database community, it is in stark contrast
to other Internet-based query processing systems, including
well-known systems like DNS [49] and LDAP [30], fileshar-
ing systems like Gnutella and KaZaA, and research systems
like Astrolabe [66] and IrisNet [22] – all of which use hier-
archical networking schemes to achieve scalability. Analo-
gies to the early days of relational databases are apropos
here. PIER may be somewhat less efficient than a customized
locality-centric solution for certain constrained workloads.
But PIER’s data-independence allows it to achieve reason-
able performance on a far wider set of queries, making it a
good choice for easy development of new Internet-scale ap-
plications that query distributed information.

2.1.1 Network Scalability, Resilience and Performance

PIER achieves scalability by using distributed hash table
(DHT) technology (see [57, 60, 63] for a few represen-
tative references). As we discuss in more detail in Sec-
tion 3.2, DHTs are overlay networks providing both location-
independent naming and network routing, and they are reused
for a host of purposes in PIER that are typically separate mod-
ules in a traditional DBMS (Section 3.3.6). DHTs are ex-
tremely scalable, typically incurring per-operation overheads
that grow only logarithmically with the number of machines
in the system. They are also designed for resilience, capable
of operating in the presence of churn in the network: frequent
node and link failures, and the steady arrival and departure of
participating machines in the network.

PIER is designed for the Internet, and assumes that the
network is the key bottleneck. This is especially important
for a p2p environment where most of the hosts see bottle-
necks at the “last mile” of DSL and cable links. As discussed
in [32], PIER minimizes network bandwidth consumption via
fairly traditional bandwidth-reducing algorithms (e.g., Bloom
Joins [44], multi-phase aggregation techniques [62], etc).
But at a lower and perhaps more fundamental system level,
PIER’s core design centers around the low-latency process-
ing of large volumes of network messages. In some respects
therefore it resembles a router as much as a database system.

2.1.2 Decoupled Storage

A key decision we made in our earliest discussions was to
decouple storage from the query engine. We were inspired
in this regard by p2p filesharing applications, which have
been successful in adding new value by querying pre-existing
data in situ. This approach is also becoming common in the

database community in data integration and stream query pro-
cessing systems. PIER is designed to work with a variety
of storage systems, from transient storage and data streams
(via main memory buffers) to locally reliable persistent stor-
age (file systems, embedded DBs like BerkeleyDB, JDBC-
enabled databases), to proposed Internet-scale massively dis-
tributed storage systems [15, 39]. Of course this decision also
means that PIER sacrifices the ACID storage semantics of
traditional distributed databases. We believe this is a natural
trade-off in the Internet-scale context since (a) many Internet-
scale applications do not need persistent storage, and (b) the
CAP theorem suggests that strong consistency semantics are
an unrealistic goal for Internet-scale systems.

In strictly decoupling storage from the query engine, we
give up the ability to reliably store system metadata. As a
result, PIER has no metadata catalog of the sort found in a
traditional DBMS. This has significant ramifications on many
parts of our system (Sections 3.3.1, 3.3.2, and 4.2).

2.1.3 Software Engineering

From day one, PIER has targeted a platform of many thou-
sands of nodes on a wide-area network. Development and
testing of such a massively distributed system is hard to do
in the lab. In order to make this possible, native simulation
is a key requirement of the system design. By “native” simu-
lation we mean a runtime harness that emulates the network
and multiple processors, but otherwise exercises the standard
system code.

The trickiest challenges in debugging massively dis-
tributed systems involve the code that deals with distribution
and parallelism, particularly the handling of node failures and
the logic surrounding the ordering and timing of message ar-
rivals. These issues tend to be very hard to reason about, and
are also difficult to test robustly in simulation. As a result,
we attempted to encapsulate the distribution and parallelism
features within as few modules as possible. In PIER, this
logic resides largely within the DHT code. The relational
model helps here: while subtle network timing issues can af-
fect the ordering of tuples in the dataflow, this has no effect
on query answers or operator logic (PIER uses no distributed
sort-based algorithms).

2.2 Potential Applications

PIER is targeted at applications that run on many thousands
of end-users’ nodes where centralization is undesirable or in-
feasible. To date, our work has been grounded in two specific
application classes:

• P2P File Sharing. Because this application is in global
deployment already, it serves as our baseline for scala-
bility. It is characterized by a number of features: a sim-
ple schema (keywords and fileIDs), a constrained query
workload (Boolean keyword search), data that is stored
without any inherent locality, loose query semantics (re-
solved by users), relatively high churn, no administra-
tion, and extreme ease of use. In order to test PIER, we
implemented a filesharing search engine using PIER and
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Figure 1: CDF of latency for receipt of an answer from PIER and Gnutella,
over real user queries intercepted from the Gnutella network. PIER was mea-
sured on 50 PlanetLab nodes worldwide, over a challenging subset of the
queries: those that used “rare” keywords used infrequently in the past. As
a baseline, the CDF for Gnutella is presented both for the rare-query subset,
and for the complete query workload (both popular and rare queries). Details
appear in [41].

Figure 2: The top 10 sources of firewall log events as reported by 350
PlanetLab nodes running on 5 continents.

integrated it into the existing Gnutella filesharing net-
work, to yield a hybrid search infrastructure that uses
the Gnutella protocol to find widely replicated nearby
items, and the PIER engine to find rare items across
the global network. As we describe in a paper on the
topic [41], we deployed this hybrid infrastructure on 50
nodes worldwide in the PlanetLab testbed [54], and ran
it over real Gnutella queries and data. Our hybrid in-
frastructure outperformed native Gnutella in both recall
and performance. As one example of the results from
that work, the PIER-based hybrid system reduced the
number of Gnutella queries that receive no results by
18%, with significantly lower answer latency. Figure 1
presents a representative performance graph from that
study showing significant decreases in latency.

• Endpoint Network Monitoring. End-hosts have a
wealth of network data with standard schemas: packet
traces and firewall logs are two examples. Endpoint net-
work monitoring over this data is an important emerg-
ing application space, with a constrained query work-
load (typically distributed aggregation queries with few
if any joins), streaming data located at both sources and
destinations of traffic, and relatively high churn. Ap-
proximate answers and online aggregation are desirable.

Figure 2 shows a prototype applet we built, which ex-
ecutes a PIER query running over firewall logs on 350
PlanetLab nodes worldwide. The query reports the IP
addresses of the top ten sources of firewall events across
all nodes. Recent forensic studies of (warehoused) fire-
wall logs suggest that the top few sources of firewall
events generate a large fraction of total unwanted traf-
fic [74]. This PIER query illustrates the same result in
real time, and could be used to automatically parameter-
ize packet filters in a firewall.

3 Architecture
In this section we describe the PIER architecture in detail. We
begin with the low-level execution environment and overview
of the DHT. We then discuss the “life of a query”, present
details of the query processing logic and highlight the varying
ways the DHT is used in query processing.

3.1 Execution Environment

Like any serious query engine, PIER is designed to achieve a
high degree of multiprogramming across many I/O-bound ac-
tivities. As noted in Section 2, it also needs to support native
simulation. These requirements led us to a design grounded
in two main components: a narrow Virtual Runtime Interface,
and an event-based style of multiprogramming that makes
minimal use of threads.

3.1.1 Virtual Runtime Interface

The lowest level of PIER presents a simple Virtual Runtime
Interface (VRI) that encapsulates the basic execution plat-
form. The VRI can be bound to either the real-world Physical
Runtime Environment (Section 3.1.3) or to a Simulation En-
vironment (Section 3.1.4). The VRI is composed of interfaces
to the clock and timers, to network protocols, and to the inter-
nal PIER scheduler that dispatches clock and network events.
For the interested reader, a representative set of the methods
provided by the VRI are shown in Table 1.

3.1.2 Events and Handlers

Multiprogramming in PIER is achieved via an event-based
programming model running in a single thread. This is com-
mon in routers and network-bound applications, where most
computation is triggered by the arrival of a message, or by
tasks that are specifically posted by local code. All events in
PIER are processed by a single thread with no preemption.



Clock and Main Scheduler
long getCurrentTime()
void scheduleEvent(delay, callbackData, callbackClient)
void handleTimer (callbackData)

UDP
void listen(port, callbackClient)
void release(port)
void send(source, destination, payload, callbackData, callback-
Client)
void handleUDPAck (callbackData, success)
void handleUDP(source, payload)

TCP
void listen(port, callbackClient)
void release(port)
TCPConnection connect(source, destination, callbackClient)
disconnect(TCPConnection)
int read(byteArray)
int write(byteArray)
void handleTCPData(TCPConnection)
void handleTCPNew (TCPConnection)
void handleTCPError (TCPConnection)

Table 1: Selected methods in the VRI.

The single-threaded, event-based approach has a number
of benefits for our purposes. Most importantly, it supports
our goal of native simulation. Discrete-event simulation is
the standard way to simulate multiple networked machines
on a single node [53]. By adopting an event-based model at
the core of our system, we are able to opaquely reuse most
of the program logic whether in the Simulation Environment
or in the Physical Runtime Environment. The uniformity of
simulation and runtime code is a key design feature of PIER
that has enormously improved our ability to debug the system
and to experiment with scalability. Moreover, we found that
Java did not handle a large number of threads efficiently2.
Finally, as a matter of taste we found it easier to code using
only one thread for event handling.

As a consequence of having only a single main thread,
each event handler in the system must complete relatively
quickly compared to the inter-arrival rate of new events. In
practice this means that handlers cannot make synchronous
calls to potentially blocking routines such as network and
disk I/O. Instead, the system must utilize asynchronous (a.k.a.
“split-phase” or “non-blocking”) I/O, registering “callback”
routines that handle notifications that the operation is com-
plete3. Similarly, any long chunk of CPU-intensive code must
yield the processor after some time, by scheduling its own
continuation as a timer event. A handler must manage its
own state on the heap, because the program stack is cleared
after each event yields back to the scheduler. All events orig-
inate with the expiration of a timer or with the completion of

2We do not take a stand on whether scalability in the number of threads
is a fundamental limit [70] or not [67]. We simply needed to work around
Java’s current limitations in our own system.

3Java does not yet have adequate support for non-blocking file and JDBC
I/O operations. For scenarios where these “devices” are used as data sources,
we spawn a new thread that blocks on the I/O call and then enqueues the
proper event on the Main Scheduler’s event priority queue when the call is
complete.
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Figure 3: Physical Runtime Environment - A single priority queue in the
Main Scheduler stores all events waiting to be handled. Events are enqueued
either by setting a timer or through the arrival of a network message. Out-
bound network messages are enqueued for asynchronous processing. A sec-
ond I/O thread is responsible for dequeuing and marshaling the messages,
and placing them on the network. The I/O thread also receives raw network
messages, unmarshals the contents, and places the resulting event in the Main
Scheduler’s queue.

an I/O operation.

3.1.3 Physical Runtime Environment

The Physical Runtime Environment consists of the standard
system clock, a priority queue of events in the Main Sched-
uler, an asychronous I/O thread, and a set of IP-based net-
working libraries (Figure 3). While the clock and scheduler
are fairly simple, the networking libraries merit an overview.

UDP is the primary transport protocol used by PIER,
mainly due its low cost (in latency and state overhead) relative
to TCP sessions. However, UDP does not support delivery
acknowledgments or congestion control. To overcome these
limitations, we utilize the UdpCC library [60], which pro-
vides for acknowledgments and TCP-style congestion con-
trol. Although UdpCC tracks each message and provides for
reliable delivery (or notifies the sender on failure), it does not
guarantee in-order message delivery. TCP sessions are pri-
marily used for communication with user clients. TCP facili-
tates compatiblity with standard clients and has less problems
passing through firewalls and NATs.

3.1.4 Simulation Environment

The Simulation Environment is capable of simulating thou-
sands of virtual nodes on a single physical machine, provid-
ing each node with its own independent logical clock and net-
work interface (Figure 4). The Main Scheduler for the sim-
ulator is designed to coordinate the discrete-event simulation
by demultiplexing events across multiple logical nodes. The
program code for each node remains the same in the Simula-
tion Environment as in the Physical Runtime Environment.

The network is simulated at message-level granularity
rather than packet-level for efficiency. In other words, each
simulated “packet” contains an entire application message
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Figure 4: Simulation Environment - The simulator uses one Main Sched-
uler and priority queue for all nodes. Simulated events are annotated with
virtual node identifiers that are used to demultiplex the events to appropriate
instances of the Program objects. Outbound network messages are handled
by the network model, which uses a topology and congestion model to cal-
culate when the network event should be executed by the program. Some
congestion models may reschedule an event in the queue if another outbound
message later affects the calculation.

and may be arbitrarily large. By avoiding the need to frag-
ment messages into multiple packets, the simulator has fewer
units of data to simulate. Message-level simulation is an ac-
curate approximation of a real network as long as messages
are relatively close in size to the maximum packet size on
the real network (usually 1500 bytes on the Internet). Most
messages in PIER are under 2KB.

Our simulator includes support for two standard network
topology types (star and transit-stub) and three congestion
models (no congestion, fair queuing, and FIFO queuing). The
simulator does not currently simulate network loss (all mes-
sages are delivered), but it is capable of simulating complete
node failures.

3.2 Overlay Network

Having described the underlying runtime environment and
its interfaces, we can now begin to describe PIER’s program
logic. We begin with the overlay network, which is a key ab-
straction that is used by PIER in a variety of ways that we will
discuss in Section 3.3.6.

Internet-scale systems like PIER require robust communi-
cation substrates that keep track of the nodes currently par-
ticipating in the system, and reliably direct traffic between
the participants as nodes come and go. One approach to this
problem uses a central server to maintain a directory of all the
participants and their direct IP addresses (the original “Nap-
ster” model, also used in PeerDB [52]). However, this solu-
tion requires an expensive, well-administered, highly avail-
able central server, placing control of (and liability for) the
system in the hands of the organization that administers that
central server.

Instead of a central server, PIER uses a decentralized rout-
ing infrastructure, provided by an overlay network. Overlay

Inter-Node Operations
void get(namespace, key, callbackClient)
void put(namespace, key, suffix, object, lifetime)
void send(namespace, key, suffix, object, lifetime)
void renew (namespace, key, suffix, lifetime)
void handleGet(namespace, key, objects[])

Intra-Node Operations
void localScan(callbackClient)
void newData(callbackClient)
void upcall(callbackClient)
void handleLScan(namespace, key, object)
void handleNewData(namespace, key, object)
continueRouting handleUpcall(namespace, key, object)

Table 2: Selected methods provided by the overlay wrapper.

networks are a means of inserting a distributed layer of in-
direction above the standard IP network. DHTs are a popu-
lar class of overlay networks that provide location indepen-
dence by assigning every node and object an identifier in an
abstract identifier space. The DHT maintains a dynamic map-
ping from the abstract identifier space to actual nodes in the
system.

The DHT provides, as its name implies, a hash-table like
interface where the hash buckets are distributed throughout
the network. In addition to a distributed implementation of a
hash table’s traditional get and put methods, the DHT also
provides additional object access and maintenance methods.
We proceed to describe the DHT’s three core components –
naming, routing, and state – as well as the various DHT inter-
faces (Table 2).

3.2.1 Naming

Each PIER object in the DHT is named using three parts: a
namespace, partitioning key, and suffix. The DHT computes
an object’s routing identifier using the namespace and par-
titioning key; the suffix is used to differentiate objects that
share the same routing identifier. The query processor uses
the namespace to represent a table name or the name of a par-
tial result set in a query. The partitioning key is generated
from one or more relational attributes used to index the tu-
ple in the DHT (the hashing attributes). Suffixes are tuple
“uniquifiers”, chosen at random to minimize the chance of a
spurious name collision within a table.

3.2.2 Routing

One of the key features of DHTs is their ability to handle
churn in the set of member nodes. Instead of a centralized
directory of nodes in the system, each node keeps track of a
selected set of “neighbors”, and this neighbor table must be
continually updated to be consistent with the actual member-
ship in the network. To keep this overhead low, most DHTs
are designed so that each node maintains only a few neigh-
bors, thus reducing the volume of updates. As a consequence,
any given node can only route directly to a handful of other
nodes. To reach arbitrary nodes, multi-hop routing is used.



In multi-hop routing, each node in the DHT may be re-
quired to forward messages for other nodes. Forwarding en-
tails deciding the next hop for the message based on its desti-
nation identifier. Most DHT algorithms require that the mes-
sage makes “forward progress” at each hop to prevent routing
cycles. The definition of “forward progress” is a key differ-
entiator among the various DHT designs; a full discussion is
beyond the scope of this paper.

A useful side effect of multi-hop routing is the ability of
nodes along the forwarding path to intercept messages be-
fore forwarding them to the next hop. Via an upcall from the
DHT, the query processor can inspect, modify or even drop a
message. Upcalls play an important role in various aspects of
efficient query processing, as we will discuss in Section 3.3.

3.2.3 Soft State

Recall that the system does not support persistent storage; in-
stead it places the burden of ensuring persistence on the origi-
nator of an object (its publisher) using soft state, a key design
principle in Internet systems [12].

In soft state, a node stores each item for a relatively short
time period, the object’s “soft-state lifetime”, after which the
item is discarded. If the publisher wishes to keep an object in
the system for longer, it must periodically “renew” the object,
to extend its lifetime.

If a DHT node fails, any objects stored at that node will be
lost and no longer available to the system. When the publisher
attempts to renew the object, its identifier will be handled by
a different node than before, which will not recognize the ob-
ject identifier, cause the renewal to fail, and the publisher
must publish the item again, thereby making it available to
the system again. Soft-state also has the side-effect of being
a natural garbage collector for data. If the publisher fails, any
objects published will eventually be discarded.

The choice of a soft-state lifetime is given to the publisher,
with the system enforcing a maximum lifetime. Shorter life-
times require more work by the publisher to maintain per-
sistence, but increase object availability, since failures are
detected and fixed by the publisher faster. Longer lifetimes
are less work for the publisher but failures can go undetected
for longer. The maximum lifetime protects the system from
having to expend resources storing an object whose publisher
failed long ago.

3.2.4 Implementation

Our overlay network is composed of three modules, the
router, object manager, and wrapper (see Figure 5).

The router contains the peer to peer overlay routing proto-
col, of which there are many options. We currently use Bam-
boo [60], although PIER is agnostic to the actual algorithm,
and has used other DHTs in the past.

As listed in Table 2 the DHT supports a collection of inter-
node and intra-node operations. The hash table functionality
is provided by a pair of asynchronous inter-node methods,
put and get . Both are two-phase operations: first a lookup
is performed to determine the identifier-to-IP address map-
ping, then a direct point-to-point IP communication is used

Overlay Network

Routing

Wrapper

Object
Manager

Obj.

Query Processor

Obj.Obj.

Figure 5: The overlay network is composed of the router, object manager
and wrapper. Both the router and wrapper exchange messages with other
nodes via the network. The query processor only interacts with the wrap-
per, which in turn manages the choreography between the router and object
manager to fulfill the request.

to perform the operation. When the get operation completes,
the DHT passes the data to the query processor through the
handleGet callback. The API also supports a lightweight
variant of put called renew to renew an object’s soft-state
lifetime. The renew method can only succeed if the item is
already at the destination node; otherwise, the renew will fail
and a put must be performed. The send method is similar to
a put , except upcalls are provided at each node along the path
to the destination. Figure 6 shows how each of the operations
is performed.

The two intra-node operations are also key to the query
processor. localScan and handleLScan allows the query pro-
cessor to view all the objects that are present at the local node.
newData and handleNewData enable the query processor
to be notified when a new object arrives at the node. Finally
upcall and handleUpcall allow the query processor to inter-
cept messages sent via the send call.

3.3 Query Processor

Having described the runtime environment and the overlay
network, we can now turn our attention to the processing of
queries in PIER. We introduce the PIER query processor by
first describing its data representation and then explaining the
basic sequence of events for executing a query.

3.3.1 Data Representation and Access Methods

Recall that PIER does not maintain system metadata. As a
result, every tuple in PIER is self-describing, containing its
table name, column names, and column types.

PIER utilizes Java as its type system, and column values
are stored as native Java objects. Java supports arbitrarily
complex data types, including nesting, inheritance and poly-
morphism. This provides natural support for extensibility in
the form of abstract data types, though PIER does not inter-
pret these types beyond accessing their Java methods.

Tuples enter the system through access methods, which
can contact a variety of sources (the internal DHT, remote
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Figure 6: put and renew perform a lookup to find the object’s identifier-
to-IP mapping, after which they can directly forward the object to the des-
tination. send is very similar to a put , except the object is routed to the
destination in a single call. While send uses fewer network messages, each
message is larger since it includes the object. get is done via a lookup fol-
lowed by a request message and finally a response including the object(s)
requested.

web pages, files, JDBC, BerkeleyDB, etc.) to fetch the data.
The access method converts the data’s native format into
PIER’s tuple format and injects the tuple in the dataflow (Sec-
tion 3.3.5). Any necessary type inference or conversion is
performed by the access method. Unless specified explicitly
as part of the query, the access method is unable to perform
type checking; instead, type checking is deferred until further
in the processing when a comparison operator or function ac-
cess the value.

3.3.2 Life of a Query

We first overview the life of a query in PIER, and in subse-
quent sections delve somewhat more deeply into the details.

For PIER we defined a native algebraic (“box and ar-
row”) dataflow language we call UFL4. UFL is in the spirit
of stream query systems like Aurora [1], and router toolkits
like Click [38]. UFL queries are direct specifications of phys-
ical query execution plans (including types) in PIER, and we
will refer to them as query plans from here on. A graphical
user interface called Lighthouse is available for more conve-
niently “wiring up” UFL5. PIER supports UFL graphs with
cycles, and such recursive queries in PIER are the topic of
research beyond the scope of this paper [42].

An UFL query plan is made up of one or more operator
graphs (opgraphs). Each individual opgraph is a connected
set of dataflow operators (the nodes) with the edges specify-
ing dataflow between operators (Section 3.3.5). Each opera-
tor is associated with a particular implementation.

4Currently UFL stands for the “Unnamed Flow Language”.
5Somewhat to our surprise, many of our early users requested a SQL-like

query language. We have implemented a naive version of this functionality,
but this interface raises various query optimization issues (Section 4.2).

Separate opgraphs are formed wherever the query redis-
tributes data around the network and the usual local dataflow
channels of Section 3.3.5 are not used between sets of oper-
ators (similar to where a distributed Exchange operator [24]
would be placed). Instead a producer and a consumer in two
separate opgraphs are connected using the DHT (actually, a
particular namespace within the DHT) as a rendezvous point.
Opgraphs are also the unit of dissemintation (Section 3.3.3),
allowing different parts of the query to be selectively sent to
only the node(s) required by that portion of the query.

After a query is composed, the user application (the client)
establishes a TCP connection with any PIER node. The PIER
node selected serves as the proxy node for the user. The proxy
node is responsible for query parsing and dissemination, and
for forwarding results to the client application.

Query parsing converts the UFL representation of the
query into Java objects suitable for the query executor. The
parser does not need to perform type inference (UFL is a
typed syntax) and cannot check the existence or type of col-
umn references since there is no system catalog.

Once the query is parsed, each opgraph in the query plan
must be disseminated to the nodes needed to process that por-
tion of the query (Section 3.3.3). When a node receives an op-
graph it creates an instance of each operator in the graph (Sec-
tion 3.3.4), and establishes the dataflow links (Section 3.3.5)
between the operators.

During execution, any node executing an opgraph may
produce an answer tuple. The tuple (or batches of tuples) is
forwarded to the client’s proxy node. The proxy then delivers
the tuple to the client’s application.

A node continues to execute an opgraph until a timeout
specified in the query expires. Timeouts are used for both
snapshot and continuous queries. A natural alternative for
snapshot queries would be to wait until the dataflow delivers
an EOF (or similar message). This has a number of prob-
lems. First, in PIER, the dataflow source may be a massively
distributed data source such as the DHT. In this case, the data
may be coming from an arbitrary subset of nodes in the entire
system, and the node executing the opgraph would need to
maintain the list of all live nodes, even under system churn.
Second, EOFs are only useful if messages sent over the net-
work are delivered in-order, a guarantee our message layer
does not provide. By contrast, timeouts are simple and appli-
cable to both snapshot and continuous queries. The burden of
selecting the proper timeout is left to the query writer.

Given this overview, we now expand upon query dissemi-
nation and indexing, the operators, dataflow between the op-
erators, and PIER’s use of the overlay network.

3.3.3 Query Dissemination and Indexing

A non-trivial aspect of a distributed query system is to effi-
ciently disseminate queries to the participating nodes. The
simplest form of query dissemination is to broadcast each op-
graph to every node. Broadcast (and the more specialized
multicast) in a DHT has been studied by many others [10, 58].
The method we describe here is based upon the distribution
tree techniques presented in [10].



PIER maintains a distribution tree for use by all queries;
multiple trees can be supported for reliability and load balanc-
ing. Upon joining the network, each PIER node routes a mes-
sage (using send ) containing its node identifier toward a well-
known root identifier that is hard-coded in PIER. The node
at the first hop receives an upcall with the message, records
the node identifier contained in the message, and drops the
message. This process creates a tree, where each message in-
forms a parent node about a new child. A node’s depth in the
tree is equivalent to the number of hops its message would
have taken to reach the root. The shape of the tree (fanout,
height, imbalance) is dependent on the DHT’s routing algo-
rithm6. The tree is maintained using soft-state, so periodic
messages allow it to adapt to membership changes.

To broadcast an opgraph, the proxy node forwards it to a
hard-coded ID for the root of the distribution tree. The root
then sends a copy to each “child” identifier it had recorded
from the previous phase, which then forwards it on recur-
sively.

Broadcasting is not efficient or scalable, so whenever pos-
sible we want to send an opgraph to only those nodes that
have tuples needed to process the query. Just like a DBMS
uses a disk-based index to read the fewest disk blocks, PIER
can use distributed indexes to determine the subset of net-
work nodes needed based on a predicate in an opgraph. In
this respect query dissemination is really an example of a dis-
tributed indexing problem7.

PIER currently has three kinds of indexes: a true-predicate
index, an equality-predicate index, and a range-predicate in-
dex. The true-predicate index is the distribution tree de-
scribed above: it allows a query that ranges over all the data
to find all the data. Equality predicates in PIER are directly
supported by the DHT: operations that need to find a specific
value of a partitioning key can be routed to the relevant node
using the DHT. For range search, PIER uses a new technique
called a Prefix Hash Tree (PHT), which makes use of the DHT
for addressing and storage. The PHT is essentially a resilient
distributed trie implemented over DHTs. A full description
of the PHT algorithm can be found in [59]. While PHTs have
been implemented directly on our DHT codebase, we have
yet to integrate them into PIER. The index facility in PIER is
extensible, so additional indexes (that may or may not use the
DHT) can be also supported in the future.

Note that a primary index in PIER is achieved by pub-
lishing a table into the DHT or PHT with the partitioning at-
tributes serving as the index key. Secondary indexes are also
possible to create: they are simply tables of (index-key, tu-
pleID) pairs, published with index-key as the partitioning key.
The tupleID has to be an identifier that PIER can use to access
the tuple (e.g., a DHT name). PIER provides no automated
logic to maintain consistency between the secondary index
and the base tuples.

In addition to the query dissemination problem described

6For example, Chord [63] produces distribution trees that are (roughly)
binomial; Koorde [35] produces trees that are (roughly) balanced binary.

7We do not discuss the role of node-local indexes that enable fast access
to data stored at that node. PIER does this in a traditional fashion, currently
using main-memory hashtables.

above, PIER also uses its distributed indexing facility in man-
ners more analogous to a traditional DBMS. PIER can use
a primary index as the “inner” relation of a Fetch Matches
join [44], which is essentially a distributed index join. In
this case, each call to the index is like disseminating a small
single-table subquery within the join algorithm. Finally,
PIER can be used to take advantage of what we have called
secondary indexes. This is achieved by a query explicitly
specifying a semi-join between the secondary index and the
original table; the index serves as the “outer” relation of a
Fetch Matches join that follows the tupleID to fetch the cor-
rect tuples from the correct nodes. Note that this semi-join
can be situated as the inner relation of a Fetch Matches join,
which achieves the effect of a distributed index join over a
secondary index.

3.3.4 Operators and Query Plans

PIER is equipped with 14 logical operators and 26 physical
operators (some logical operators have multiple implementa-
tions).

Most of the operators are similar to those in a DBMS, such
as selection, projection, tee, union, join, group-by, and dupli-
cate elimination. PIER also uses a number of non-traditional
operators, including many of our access methods, a result
handler, in-memory table materializer, queues, put (similar
to Exchange), Eddies [2] (Section 4.2), and a control flow
manager (Section 3.3.5).

Join algorithms in PIER include Symmetric Hash join [71]
and Fetch Matches join [44]. Common rewrite strategies such
as Bloom join and semi-joins can be constructed. In [32] we
examine the different join strategies and their trade-offs.

While for the most part PIER’s operators and queries are
similar to other systems, there are some salient differences:

• Hierarchical Aggregation. The simplest method for
computing an aggregate is to collect all the source tuples
in one location. However if there are many tuples, com-
munication costs could easily overwhelm the one node
receiving the data. Instead we want to distribute the in-
bandwidth load to multiple nodes.

One such method is to have each node compute the par-
tial aggregate for its values and those from a group of
other nodes. Instead of explicitly grouping nodes, we
can arrange the nodes into a tree following the same
process used in query broadcasting (see Section 3.3.3).
Each node computes its local aggregate and uses the
DHT send call to send it to a root identifier specified in
the query. At the first hop along the routing path, PIER
receives an upcall, and combines that partial aggregate
with its own data. After waiting for more data to ar-
rive from other nodes, the node then forwards the partial
aggregate one more hop closer to the root. Eventually
the root will receive partial aggregates that include data
from every node and the root can produce the answer.

In the optimal case, each node sends exactly one par-
tial aggregate. To achieve the optimal, each node must
know when it has received data from each of it children.



This has problems similar to our discussion of EOF in
Section 3.3.2. We discuss this in more detail in [31].

This procedure works well for distributive and algebraic
aggregates where only constant state is needed at each
step regardless of the amount of source data being aggre-
gated. Holistic aggregates are unlikely to benefit from
hierarchical computation.

• Hierarchical Joins. Like hierarchical aggregation, the
goal of hierarchical joins is to reduce the communication
load. In this case, we can reduce the out-bandwidth of a
node rather than the in-bandwidth.

In the partitioning (“rehash”) phase of a parallel hash
join, source tuples can be routed through the network
(using send ), destined for the correct hash bucket on
some node. As each tuple is forwarded along the path,
each intermediate node intercepts it, caches a copy, and
annotates it with its local node identifier before forward-
ing it along. When two tuples cached at the same node
can be joined, and were not previously annotated with
a matching node identifier, the join result is produced
and sent directly to the proxy. In essence, join results
are produced “early”. This both improves latency, and
shifts the out-bandwidth load from the node responsible
for a hash-bucket to nodes along the paths to that node.

Hierarchical joins only reduce out-bandwidth for some
nodes. In particular, when a skewed workload causes
one or more hash buckets to receive a majority of the
tuples, the network bottleneck at those skewed nodes
is ameliorated by offloading out-bandwidth to nodes
“along the way”. The in-bandwidth at a node respon-
sible for a particular hash bucket will remain the same
since it receives every join input tuple that it would have
without hierarchical processing.

• Malformed Tuples. In a wide-area decentralized appli-
cation it is likely that PIER will encounter tuples that do
not match the schema expected by a query. PIER uses
a “best effort” policy when processing such data. Query
operators attempt to process each tuple, but if a tuple
does not contain the field of the proper type specified in
the query, the tuple is simply discarded. Likewise if a
comparison (or in general any function) cannot be pro-
cessed because a field is of an incompatible type, then
the tuple is also discarded.

• No Global Synchronization. PIER nodes are only
loosely synchronized, where the error in synchroniza-
tion is based on the longest delay between any two nodes
in the system at any given time. An opgraph is exe-
cuted as soon as it is received by a node. Therefore it is
possible that one node will begin processing an opgraph
and send data to another node that has yet to receive the
query. As a consequence, PIER’s query operators must
be capable of “catching up” when they start, by process-
ing any data that may have already arrived.

• In-Memory Operators. Currently, all operators in
PIER use in-memory algorithms, with no spilling to
disk. This is mainly a result of PIER not having a buffer
manager or storage subsystem. While this has not been
a problem for many applications, we plan to revisit this
decision.

3.3.5 Local Dataflow

Once an opgraph arrives at a node, the local dataflow is set
up. A key feature to the design of the intra-site dataflow is
the decoupling of the control flow and dataflow within the
execution engine.

Recall that PIER’s event-driven model prohibits handlers
from blocking. As a reuslt, PIER is unable to make use of the
widely-used iterator (“pull”) model. Instead, PIER adopts a
“non-blocking iterator” model that uses pull for control mes-
sages, and push for the dataflow. In a query tree, parent oper-
ators are connected to their children via a traditional control
channel based on function calls. Asynchronous requests for
sets of data (probes) are issued and flow from parent to child
along the graph, much like the open call in iterators. During
these requests, each operator sets up its relevant state on the
heap. Once the probe has generated state in each of the nec-
essary operators in the opgraph, the stack is unwound as the
operators return from the function call initiating the probe.

When an access method receives a probe, it typically reg-
isters for a callback (such as from the DHT) on data arrival, or
yields and schedules a timer event with the Main Scheduler.

When a tuple arrives at a node via an access method, it is
pushed from child to parent in the opgraph via a data chan-
nel that is also based on simple function calls: each operator
calls its parent with the tuple as an argument. The tuple will
continue to flow from child to parent in the plan until either
it reaches an operator that removes it from the dataflow (such
as a selection), it is consumed by an operator that stores it
awaiting more tuples (such as join or group-by), or it enters
a queue operator. At that point, the call stack unwinds. The
process is repeated for each tuple that matches the probe, so
multiple tuples may be pushed for one probe request.

Queues are inserted into opgraphs as places where
dataflow processing “comes up for air” and yields control
back to the Main Scheduler. When a queue receives a tuple, it
registers a timer event (with zero delay). When the scheduler
is ready to execute the queue’s timer event, the queue contin-
ues the tuple’s flow from child to parent through the opgraph.

An arbitrary tag is assigned to each probe request. The
same tag is then sent with the data requested by that probe.
The tag allows for arbitrary reordering of nested probes while
still allowing operators to match the data with their stored
state (in the iterator model this is not needed since at most
one get-next request is outstanding on each dataflow edge.

3.3.6 Query Processing Uses of the Overlay

PIER is unique in its aggressive reuse of DHTs for a variety
of purposes traditionally served by different components in
a DBMS. Here we take a moment to enumerate the various
ways the DHT is used.



• Query Dissemination. The multi-hop topology in the
DHT allows construction of query dissemination trees
as described in Section 3.3.3. If a table is published into
the DHT with a particular namespace and partitioning
key, then the query dissemination layer can route queries
with equality predicates on the partitioning key to just
the right nodes.

• Hash Index: If a table is published into the DHT, the ta-
ble is essentially stored in a distributed hash index keyed
on the partitioning key. Similiarly, the DHT can also be
used to create secondary hash indexes.

• Range Index Substrate: The PHT technique provides
resilient distributed range-search functionality by map-
ping the nodes of a trie search structure onto a DHT [59].

• Partitioned Parallelism: Similar to the Exchange oper-
ator [24], the DHT is used to partition tuples by value,
parallelizing work across the entire system while pro-
viding a network queue and separation of control-flow
between contiguous groups of operators (opgraphs).

• Operator State: Because the DHT has a local storage
layer and supports hash lookups, it is used directly as
the main-memory state for operators like hash joins and
hash-based grouping, which do not maintain their own
separate hashtables.

• Hierarchical Operators: The inverse of a dissemina-
tion trees is an aggregation tree, which exploits multi-
hop routing and callbacks in the DHT to enable hierar-
chical implementations of dataflow operators (aggrega-
tions, joins).

4 Future Work
In this section we discuss the two primary areas of continuing
research on PIER: security and query optimization.

4.1 Security

In the last two years we have been running PIER on the Plan-
etLab testbed, now over 350 machines on 5 continents. That
environment raises many real-world challenges of scale and
reliability, but remains relatively benign in terms of the partic-
ipants in the system. Our next goal is to ready PIER for truly
Internet-scale deployment “in the wild,” which will require
facing the interrelated questions of security and robustness.
In this section we present our initial considerations in this di-
rection, identifying major challenges and techniques we are
considering to meet these challenges.

4.1.1 Challenges

Many of challenges facing loosely-coupled distributed sys-
tems that operate in unfriendly environments have been iden-
tified before. In the context of peer-to-peer systems, Wallach
gives a good survey [68]. We concentrate here on challenges
particular to our query processing system.

Result fidelity is a measure of how close a returned result is
to the “correct” result. Depending on the query, fidelity can be
related to information retrieval success metrics such as preci-
sion and recall, or to the numerical accuracy of a computed re-
sult such as an aggregation function. Fidelity may deteriorate
due to both network failures (message loss between nodes, or
nodes becoming unreachable) and node failures (causing par-
tial or total loss of data and results on a node). Both classes of
failures can be caused by malicious activity, such as network
denial-of-service (DoS) attacks or node break-ins. In addi-
tion, a compromised or malicious node can reduce fidelity
through data poisoning, for instance by introducing an out-
lier value that derails the computation of a minimum.

Resource management in a highly-distributed, loosely
coupled system like PIER faces additional challenges beyond
the traditional issues of fairness, timeliness, etc. Important
concerns include isolation, free-riding, service flooding, and
containment. Isolation prevents client-generated tasks from
causing the distributed system to consume vastly more re-
sources than required at the expense of other tasks, for ex-
ample due to poorly or maliciously constructed query plans.
Free-riding nodes in peer-to-peer systems exploit the system
while contributing little or no resources. Service flooding by
malicious clients is the practice of sending many requests to a
service with the goal of overloading it. Finally, containment
is important to avoid the use of the powerful PIER infras-
tructure itself as a launchpad for attacks against other entities
on the Internet; consider, for instance, a slew of malicious
queries all of which name an unsuspecting victim as the in-
tended recipient for their (voluminous) results.

Accountability of components in PIER, that is, the ability
to assign responsibility for incorrect or disruptive behavior,
is important to ensure reliable operation. When misbehavior
is detected, accountability helps identify the offending nodes
and justifies corrective measures. For example, the query can
be repeated excluding those nodes (in the short term), or the
information can be used as input to a reputation database used
for node selection in the future.

Finally, politics and privacy are ever-present issues in any
peer-to-peer system. Different data sources may have differ-
ing policy restrictions on their use, including access control
(e.g., export controls on data) and perhaps some notion of
pricing (e.g., though coarse-grained summaries of a data set
may be free, access to the raw data may require a fee). The
flip-side of such data usage policies is user privacy. Adop-
tion of large p2p query-based applications may be hindered
by end-user concerns about how their query patterns are ex-
ploited: such patterns may reveal personal information or
help direct targeted fidelity attacks. Certain data sets may
also require some anonymity, such as disassociation between
data points and the users responsible for those data points.

4.1.2 Defenses

Currently PIER concentrates primarily on mechanics and fea-
sibility and less on the important issues of security and fault
tolerance. In this section, we present defensive avenues we
are investigating for PIER and, in each case, we outline



the support that PIER already incorporates, the approaches
we are actively pursuing but have not yet implemented, and
further explorations we foresee for our future work. Wal-
lach [68] and Maniatis et al. [47] survey available defenses
within peer-to-peer environments.

• Redundancy. Redundancy is a simple but powerful
general technique for improving both security and ro-
bustness. Using multiple, randomly selected entities to
compute the result for the same operator may help to re-
veal maliciously suppressed inputs as well as overcome
the temporary loss of network links. Similarly, multiple
overlay paths can be used to thwart malicious attempts
to drop, delay, or modify PIER messages in query dis-
semination or result aggregation.

The current codebase does not incorporate any of these
techniques. We are, however, studying the benefits of-
fered by different dissemination and aggregation topolo-
gies in minimizing the influence of an adversary on the
computed result. Specifically, we examine the change in
simple metrics such as the fraction of data sources sup-
pressed by the adversary and relative result error, and
plan in the future to consider more complex ones such as
maximum influence [37]. We hope that the outcome of
this study will help us to adapt mechanism designs for
duplicate-insensitive summarization recently proposed
for benign environments [3, 13, 50] to our significantly
more unfriendly target environment.

• Rate Limitation. A powerful defense against the abuse
of PIER’s resources calls for the enforcement of rate lim-
its on the dissemination and execution of queries, and
the transfer of results (e.g., [16, 47]). These rate limits
may be imposed on queries by particular clients, e.g.,
to prevent those clients from unfairly overwhelming the
system with expensive operations; they may be imposed
on the results traffic directed towards particular destina-
tions, to limit the damage that malicious clients or bugs
can cause PIER itself to inflict upon external entities;
they may be imposed by one PIER node on another PIER
node, to limit the amount of free-riding possible when
some PIER nodes are compromised.

PIER takes advantage of the virtualization inherent in
its Java environment to sandbox operators as they exe-
cute. This is an important first step before rate limits
— or any other limits including access controls, etc. —
can be imposed on running operators. Although the sys-
tem does not currently impose any such limits, we are
actively investigating rate limitations against particular
clients. We monitor, at each PIER node, the total re-
source consumption (e.g., CPU cycles, disk space, mem-
ory, etc.) of that client’s query operators within a time
window. When a node detects that this total exceeds a
certain threshold, it contacts other PIER nodes to com-
pute the aggregate consumption by the suspect client
over the whole system. Given that aggregate, a PIER
node can throttle back, primarily via the sandboxes, the

amount of local resources it makes available to the cul-
prit’s operators. Note, however, that per-client controls
such as those we propose are dependent on a dependable
authentication mechanism not only for PIER nodes but
also for the clients who use them; otherwise, Sybil at-
tacks [19] in which a malicious client uses throwaway
identities, one per few queries, never quite reaching the
rate limitation thresholds, can nullify some of the bene-
fits of the defense. Assigning client identifiers in a cen-
tralized fashion [9] may help with this problem, but re-
verts to a tightly-coupled subsystem for identity.

For the scenarios in which PIER nodes themselves may
misbehave, e.g., to free-ride, we are hoping to incor-
porate into the system a coarser-grained dynamic rate-
limitation mechanism that we have previously used in
a different peer-to-peer problem [47]. In this scheme,
PIER nodes can apply a reciprocative strategy [21], by
which node A executes a query injected via node B only
if B has recently executed a query injected via A. The
objective of this strategy is to ensure that A and B main-
tain a balance of executed queries (and the associated
resources consumed) injected via each; A rate-limits
queries injected via B according to its own need to in-
ject new queries. Reciprocation works less effectively
when the contribution of individual peers in the system
varies, for instance due to the popularity of a peer’s re-
sources. However, such reciprocative approaches are es-
pecially helpful in infrastructural p2p environments such
as PIER, in which nodes are expected to interact with
each other frequently and over a long time period.

• Spot-checking and Early Commitment. Pro-
gram verification techniques such as probabilistic spot-
checking [20] and early commitment via authenticated
data structures [8, 23, 46, 48] can be invaluable in ensur-
ing the accountable operation of individual components
within a loosely-coupled distributed system. In the SIA
project [55], such techniques are used to aggregate in-
formation securely in the more contained setting of sen-
sor networks. Briefly, when a client requesting a query
wishes to verify the correct behavior of the (single) ag-
gregator, it samples its inputs and ensures that these sam-
ples are consistent with the result supplied by the aggre-
gator. The client knows that the input samples it obtains
are the same as those used by the aggregator to com-
pute its result, because the aggregator commits early on
those inputs cryptographically, making it practically im-
possible to “cover its tracks” after the fact, during spot
checking.

In the context of PIER, the execution of operators,
including aggregation operators, is distributed among
many nodes, some of which may be malicious. In the
near term, we are investigating the use of spot checks,
first to verify the correct execution of individual nodes
within an aggregation tree, for example, that a sum op-
erator added the inputs of its aggregation children cor-
rectly. Second, to ensure that all data inputs are included



in the computation, we trace the computation path from
sampled data sources to the query result. Third, to en-
sure that all included data inputs should, in fact, be in-
cluded, we sample execution paths through an aggrega-
tion tree and verify that the raw inputs come from legit-
imate sources. A client who detects that a result is sus-
pect — i.e., is inconsistent with subsequent spot checks
— can refine the approximation with additional sam-
pling, use redundancy to obtain “a second opinion,” or
simply abort the query.

In the long term, we hope to implement in PIER the
promising principle of “trust but verify” [75], based on
mechanisms like this that can secure undeniable evi-
dence certifying the misbehavior of a system participant.
Such evidence avoids malicious “framing” by competi-
tors, and can be a powerful tool to address issues of both
accountability and data fidelity.

4.2 Query Optimization

PIER’s UFL query language places the responsibility for
query optimization in the hands of the query author. Our ini-
tial assumption was that (a) application designers using PIER
would be Internet systems experts, more comfortable with
dataflow diagrams like the Click router [38] than with SQL,
and (b) traditional complex query optimizations like join or-
dering were unlikely to be important for massively distributed
applications. With respect to the first assumption, we seem
simply to have been wrong – many users (e.g., administra-
tors of the PlanetLab testbed) far prefer the compact syntax
of SQL to UFL or even the Lighthouse GUI. The second issue
is still open for debate. We do see multiway join queries in
the filesharing application (each keyword in a query becomes
a table instance to be joined), but very few so far in network
monitoring. Choices of join algorithms and access methods
remain an important issue in both cases.

We currently have an implementation of a SQL-like lan-
guage over PIER using a very naive optimizer. We have con-
sidered two general approaches for a more sophisticated op-
timizer, which we discuss briefly.

4.2.1 Static Optimization

It is natural to consider the implementation of a traditional
R*-style [40] static query optimizer for PIER. An unusual
roadblock in this approach is PIER’s lack of a metadata cat-
alog. PIER has no mechanism to store statistics on table car-
dinalities, data distributions, or even indexes. More funda-
mentally, there is no process to create nor place to store an
agreed-upon list of the tables that should be modeled by the
metadata!

The natural workaround for this problem is for an end-
user p2p application based on PIER to “bake” the metadata
storage and interpretation into its application logic. Another
related approach is to store metadata outside the boundaries
of PIER. Table and column statistics could be computed by
running (approximate) aggregation queries in PIER, and the
whole batch of statistics could be stored and disseminated in

a canonical file format outside the system. This out-of-band
approach is taken by the popular BitTorrent p2p filesharing
network: users exchange lists of file names (“torrents”) on
websites, in chatrooms, etc. In the case of PIER, the metadata
would of course be far richer. But an analogous approach is
possible, including the possibility that different communities
of users might share independent catalogs that capture subsets
of the tables available.

This design entirely separates the optimizer from the core
of PIER, and could be built as an add-on to the system. We are
not currently pursuing a static optimization approach to PIER
for two reasons. First, we suspect that the properties of a large
p2p network will be quite volatile, and the need for runtime
reoptimization will be endemic. Second, one of our key target
applications – distributed network monitoring – is naturally
a multi-user, multi-query environment, in which multi-query
optimization is a critical feature. Building a single-query R*-
style optimizer will involve significant effort, while only pro-
viding a first step in that direction.

4.2.2 Distributed Eddies

In order to move toward both runtime reoptimization and
multi-query optimization, we have implemented a prototype
version of an eddy [2] as an optional operator that can be
employed in UFL plans [33]. A set of UFL operators can
be “wired up” to an eddy, and in principle benefit from the
eddy’s ability to reorder the operators. A more involved im-
plementation (e.g., using SteMs [56] or STAIRS [17]) could
also do adaptive selection of access methods and join algo-
rithms, and the TelegraphCQ mechanism for multiquery op-
timization could be fairly naturally added to the mix [45].

The above discussion is all in the realm of mechanism:
these components could all be implemented within the frame-
work of PIER’s dataflow model. But the implementation of
an intelligent eddy routing policy for a distributed system is
the key to good performance, and this has proven to be a
challenging issue [33]. Eddies employ two basic functions
in a routing policy: the observation of dataflow rates into and
out of operators, and based on those observations a decision
mechanism for choosing how to route tuples through opera-
tors. In a centralized environment, observation happens nat-
urally because the eddy intercepts all inputs and outputs to
each operator. In PIER, each node’s eddy only sees the data
that gets routed to (or perhaps through) that node. This makes
it difficult for a local eddy instance to make good global de-
cisions about routing. Eddies could communicate across sites
to aggregate their observations, but if done naively this could
have significant overheads. The degree of coordination mer-
ited in this regard is an open issue.

5 Related Work
PIER is currently the only major effort toward an Internet-
scale relational query system. However it is inspired by and
related to a large number of other projects in both the DB
and Internet communities. We present a brief overview here;
further connections are made in [32].



5.1 Internet Systems

There are two very widely-used Internet directory systems
that have simple query facilities. DNS is perhaps the most
ubiquitous distributed query system on the Internet. It sup-
ports exact-match lookup queries via a hierarchical design in
both its data model (Internet node names) and in its imple-
mentation, relying on a set of (currently 13) root servers at
well-known IP addresses. LDAP is a hierarchical directory
system largely used for managing lookup (selection) queries.
There has been some work in the database research commu-
nity on mapping database research ideas into the LDAP do-
main and vice versa (e.g., [36]). These systems have proved
effective for their narrow workloads, though there are persis-
tent concerns about DNS on a number of fronts [51].

As is well known, p2p filesharing is a huge phenomenon,
and systems like KaZaA and Gnutella each have hundreds of
thousands of users. These systems typically provide simple
Boolean keyword query facilities (without ranking) over short
file names, and then coordinate point-to-point downloads. In
addition to having limited query facilities, they are ineffective
in some basic respects at answering the queries they allow;
the interested reader is referred to the many papers on the
subject (e.g., [41, 73]).

5.2 Database Systems

Of course we owe a debt to early generations of distributed
databases as mentioned in Section 1, but in many ways,
PIER’s architecture and algorithms are closer to parallel
Database Systems like Gamma [18], Volcano [24], etc. –
particularly in the use of hash-partitioning during query pro-
cessing. Naturally the parallel systems do not typically worry
about distributed issues like multi-hop Internet routing in the
face of node churn.

In terms of its data semantics, PIER most closely resem-
bles centralized data integration and web-query systems like
Tukwila [34] and Telegraph [61]. Those systems also reached
out to data from multiple autonomous sites, without concern
for the storage semantics across the sites.

Another point of reference in the database community is
the nascent area of distributed stream query processing, an
application that PIER supports. The Aurora* proposal [11]
focuses on a small scale of distribution within a single ad-
ministrative domain, with stronger guarantees and support for
quality-of-service in query specification and execution. The
Medusa project augments this vision with Mariposa-like eco-
nomic negotiation among a few large agents.

Tian and DeWitt presented analytical models and simula-
tions for distributed eddies [65]. Their work illustrated that
the metrics used for eddy routing policies in centralized sys-
tems do not apply well in the distributed setting. Their ap-
proaches are based on each node periodically broadcasting
its local eddy statistics to the entire network, which would
not scale well in a system like PIER.

In terms of declarative query semantics for widely dis-
tributed systems, promising recent work by Bawa et al. [3]
addresses in-network semantics for both one-shot and contin-
uous aggregation queries, focusing on faults and churn during

execution. In the PIER context, open issues remain in captur-
ing clock jitter and soft state semantics, as well as complex,
multi-operator queries.

5.3 Hybrids of P2P and DB

Gribble, et al. were the first to make the case for a joint re-
search agenda in p2p technologies and database systems [25].
Another early vision of p2p databases was presented by Bern-
stein et al. [4], who used a medical IT example as motivation
for work on what is sometimes called “multiparty semantic
mediation”: the semantic challenge of integrating many peer
databases with heterogeneous schemas. This area is a main
focus of the Piazza project; a representative result is their re-
cent work on mediating schemas transitively as queries prop-
agate across multiple databases [27]. From the perspective
of PIER and related Internet systems, there are already clear
challenges and benefits in unifying the abundant homoge-
neous data on the Internet [32]. These research agendas are
complementary with PIER’s; it will be interesting to see how
the query execution and semantic mediation work intersects
over time and the application interfaces defined to connect
them. An early effort in this regard is the PeerDB project [52],
though it relies on a central directory server, and its approach
to schema integration is quite simple.

PIER is not the only system to address distributed querying
of data on the Internet. The IrisNet system [22] has similar
goals to PIER, but its design is a stark contrast: IrisNet uses
a hierarchical data model (XML) and a hierarchical network
overlay (DNS) to route queries and data. As a result, IrisNet
shares the characteristics of traditional hierarchical databases:
it is best used in scenarios where the hierarchy changes infre-
quently, and the queries match the hierarchy. Astrolabe [66]
is another system that focuses on a hierarchy: in this case
the hierarchy of networks and sub-networks on the Internet.
Astrolabe supports a data-cube-like roll-up facility along the
hierarchy, and can only be used to maintain and query those
roll-ups.

Another system that shares these goals is Sophia [69], a
distributed Prolog system for network information. Sophia’s
vision is essentially a superset of PIER’s, inasmuch as the
relational calculus is a subset of Prolog. To date Sophia pro-
vides no distributed optimization or execution strategies, the
idea being that such functionality is coded in Prolog as part
of the query.

A variety of the component operations in PIER are being
explored in the Internet systems community. Distributed ag-
gregation has been the focus of much work; a recent paper
by Yalagandula and Dahlin [72] is a good starting point, as it
also surveys the earlier work. Range indexing is another topic
that is being explored in multiple projects (e.g., [14, 6, 26],
etc.) We favor the PHT scheme in PIER because it is simpler
than most of these other proposals: it reuses the DHT rather
than requiring a separate distributed mechanism as in [14],
it works over any DHT (unlike Mercury [6]), and it appears
to be a good starting point for resiliency, concurrency, and
correctness – issues that have been secondary in most of the
related work.



6 Conclusions
When we began the design of PIER, we expected that the
mixture of networking and database issues and expertise
would lead to unusual architectural choices. This has indeed
been the case. We anticipated some of these cross-domain
issues from the start. For example, PIER’s aggressive, mul-
tipurpose exercising of the overlay network was of interest
to the networking researchers in the group; the design of a
router-like (event-driven, push-based) dataflow core for query
execution was of interest to the database researchers. Other
challenges came as a surprise, including the many ramifica-
tions of forgoing metadata storage in a general-purpose query
engine, and the interrelationships between query dissemina-
tion and index-based access methods.

We believe that the current state of PIER will be a strong
basis for our future work, though we still have many remain-
ing questions on the algorithmic and architectural front. In
addition to the issues covered in Sections 4.1 and 4.2, these
include efficient processing of recursive queries for network
routing, high-performance integration of disk-based persis-
tent storage, and the challenges of declarative query seman-
tics in a soft-state system made up of unsynchronized com-
ponents.
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