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Abstract 

The amount of data collected and stored by the 
average business doubles each year. Many 
commercial databases are already approaching 
hundreds of terabytes, and at this rate, will soon 
be managing petabytes. More data enables new 
functionality and capability, but the larger scale 
reveals new problems and issues hidden in 
“smaller”  terascale environments. This paper 
presents some of these new problems along with 
implemented solutions in the framework of a 
petabyte dataset for a large High Energy Physics 
experiment. Through experience with two 
persistence technologies, a commercial database 
and a file-based approach, we expose format-
independent concepts and issues prevalent at this 
new scale of computing. 

1. Introduction 

Today, most large databases reside in government and 
university laboratories. The largest resides at the Stanford 
Linear Accelerator Center (SLAC), a national laboratory 
operated by Stanford University. Currently, the main 
focus of the laboratory is on BaBar, one of the largest 
operating High Energy Physics (HEP) experiments. In its 
fifth year of data taking and with over a petabyte of 
production data, BaBar continues to actively refine 
approaches to managing its vast amount of information. 
The experiment’s data set is expected to continue to grow 
rapidly in the next several years. 

This paper presents problems and solutions in 
petascale computing, drawing on experience with the 

BaBar data store from the perspective of building, 
deploying, tuning, scaling and administering. The 
evolution of the system through two major design 
iterations is discussed, presenting a unique perspective on 
large data set challenges. The first system utilized a 
commercial Object Oriented Database Management 
System (ODBMS), successfully serving a set of complex 
data to an international collaboration. The second system 
replaced the database with an open-source, file-based 
object persistence, improving many aspects of the system, 
but bringing its own challenges and issues.  

Chapter 2 explains why HEP is so data intensive, 
discussing database related needs and challenges. Chapter 
3 describes how these needs and challenges were met 
using an ODBMS-based approach. Chapter 4 describes a 
simpler, home-grown approach. Chapter 5 highlights the 
essence of persistent technology independent experiences, 
problems and commonalities. Finally, chapter 6 
summarizes the paper. 

2. Requirements for HEP computing 

HEP experiments often focus their research on one or 
several types of events that are very rare. Such studies are 
highly statistical: these events are usually generated by 
colliding other particles together, however due to their 
rareness, thousands or even millions of collisions are 
needed to generate one “golden”  event—the more golden 
events, the more precise the measurements. In addition to 
the “ real”  data produced by colliding particles, an equally 
large data set must be simulated to understand the 
physics, background processes, and the detector. In 
studying the asymmetry of matter and anti-matter in our 
universe, BaBar has registered over 10 billion events and 
simulated nearly the same amount since its inception in 
1999. 

Finding these events usually requires hundreds of 
iterations of study, and thus requiring long-term data 
persistence. Such studies tend to produce extremely large 
data sets by today’s measures. Today’s HEP experiments 
are expected to generate a few petabytes in their lifetimes, 
while the next generation experiments starting in 2007 at 
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CERN (Large Hadron Collider, or LHC) are likely to 
reach 20 petabytes. 

The problem of storing so much data is only the tip of 
the iceberg. Analyzing data involves reading small chunks 
of data, each sized in the hundreds of bytes. Searching is 
done iteratively, narrowing the set of candidates but 
increasing the level of detail each time. Analyses are 
performed simultaneously by a large collaboration of 
physicists, reaching hundreds or even thousands, usually 
working from their local institutes world-wide. 

To perform analysis in a timely fashion, data needs to 
be efficiently managed. Current technology would require 
three years for a single node  to finish a single sequential 
scan of one petabyte. Therefore, good data structures and 
careful organization are most crucial, followed by raw 
performance from powerful servers. A huge data set is 
large in every dimension: millions of files, thousands of 
processors, hundreds of servers. This leads to many 
challenging scalability issues, discussed in more detail 
throughout this paper. 

2.1 Data processing 

Data processing in BaBar is broken into several 
independent production activities, as shown in Figure 1. 
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Figure 1 Data flow 

The Data Acquisition System (DAQ) is an example of 
an activity that requires immediate response time and 
round-the-clock reliability, but only limited concurrency 
and throughput. Since storing all data produced by the 
detector would not be feasible, fast filters reject most 
collisions, accepting only about three hundred out of 
millions of events per second. Each event is stored in a 
home-grown bit-packed form called xtc and is about 30 
KB in size. Each xtc file stores a single run which is a 
block of events taken with similar detector conditions. A 
typical run contains about a million events. 

Prompt Reconstruction (PR) reads these xtc files, 
reconstructing each collision in quasi-real time and 
persisting the results. It is a high volume activity, 
requiring hundreds of parallel processes running 
continuously to keep up with the data acquisition. As an 
important source of feedback for detector tuning, it is also 

a low latency activity. Turnaround time has a direct effect 
on data quality and must be kept under a few hours. 

A similar activity called Reprocessing (REP) 
reprocesses (reconstructs) all of the data taken since the 
start of the experiment using the latest software with the 
latest algorithms. It is done once a year on average. 

Simulation Production (SP) is tasked with generating 
the simulated data mentioned above, producing about one 
event per real event. Unlike PR and REP, each process 
generates a different run, which can be stored separately 
from others. The main challenge is distribution: 
production of SP data is done at many sites around the 
world. Comparing simulated and real data is the basis of 
all HEP analyses, including BaBar.  

To simplify the process of selecting data, and to spare 
users from repeatedly filtering the full data sample, all 
production data is “skimmed”  (filtered) into streams. 
Skimming is CPU intensive by nature, requiring heavy 
analysis to perform selection. It reads data sequentially, 
applying analysis to select events and write them out into 
over a hundred separate streams, each defined by different 
sets of selection criteria. Each event may pass filters for 
multiple streams, thus forming overlapping sets. 
Skimming utilizes around 2000 processing nodes to 
satisfy its heavy throughput and low-latency 
requirements. The massive aggregate I/O makes a highly 
parallel system crucial. Other challenges include its 
unfriendly I/O load of small-grain reads and writes, its 
event duplication problem, and contention with user jobs–
skim shares resources with the user computing pool due to 
costs. Production activities other than skimming run in 
their own isolated computing environments. 

2.2 Data mining 

Physicists need a single, integrated data source to do 
analyses, their searches for golden events in a haystack of 
collisions. The main challenge for the data store is to keep 
up in a cost-effective way with needs of thousands of 
data-hungry jobs sparsely reading small objects. It is 
followed by unpredictability and varying load – jobs are 
run in a completely unpredictable way with no easily 
discernible data access pattern. A high level of availability 
is also required. Any outage is disruptive for hundreds of 
users, so downtime has to be kept to a bare minimum. In 
addition to the centralized data store, users need their own 
persistent space for testing and storing intermediate 
results. 

Finally, BaBar physicists write their analysis code in 
C++, so the computing environment must support 
accessing and querying data in that language. 

2.3 Data distribution 

BaBar is a large collaboration of over 600 physicists in 10 
different countries. Many countries contribute by 
providing dedicated computing resources for the project. 
For this reason, a sizable fraction of data population and 



mining happens outside SLAC. Although it would be 
simpler to concentrate all activities at one location, 
activities are distributed, partly for political reasons: 
BaBar hardware sponsored by local governments must 
stay at their local sites. Initially, most activities were done 
entirely at SLAC, which also served as the only analysis 
center. However, as the involvement of external sites 
increased, many production and user activities were 
moved to offload SLAC: 
• PR and REP were moved entirely to Italy. 
• A large fraction of skimming was moved to Germany 

and Italy.  
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Figure 2 BaBar’s data distribution 

Currently, 90% of SP data is produced at 23 sites 
outside of SLAC. The number of large analysis centers 
increases almost every year, and is currently five, four of 
which are located in Europe. 

Having major data production activities scattered 
around the world complicates the task of managing both 
local and world-wide data flow. All data exchange 
happens over a WAN, not via tape, and terabytes of data 
are moved daily through dedicated cross-Atlantic links. 
SLAC itself is connected with an outside world via two 
links: one 622Mb/s (OC-12) link to the Energy Sciences 
Network (ESNET) and one 1Gb/s link to Internet2. At 
any given time, between 30-50% of their capacity is used. 

3. First generation: meeting the challenges 

The persistency system for the BaBar experiment is 
required to store and provide access to multi-petabyte data 
set in a cost-effective way. The main challenges are data 
organization, scalability sustaining performance, solving 
concurrency issues, reliability, administration and 
distribution. 

3.1 Organizing bulky data  

BaBar’s data is logically organized in several domains, 
with no direct cross-references. One of the key domains is 
the eventstore, the domain discussed most in this paper. 
This domain stores the heavily publicized petabyte of data 
bulk (events). 

Events are organized into collections, which may 
contain either events, or pointers to events. With 

collections numbering in the hundreds of millions, various 
production activities maintained dedicated bookkeeping 
systems, which were consolidated and centralized in the 
second generation computing model. 

Reconstructed events carry much more information 
than their corresponding bit-packed versions, and are 
therefore split into several components, each of which 
carries different level of details. Components vary 
significantly in size leading to important implications on 
read performance. 

 
Component Size [KB] 

raw 100 
rec 150 
mini 10 
micro 4 
tag 1 
(overhead) 3 

 
Storing the two largest components, raw and rec, is 

expensive due to storage and access costs, especially 
when analysis rarely needs them. The multi-level, multi-
component access model also proved too cumbersome 
and after a few years BaBar shifted to a simpler model 
involving only micro, mini and tag.  

3.2 Choosing a storage technology 

Storing petabytes of data on disk remains prohibitively 
expensive compared to tape in terms of operating cost 
(power and cooling requirements), durability, and 
purchasing cost. Tapes do not consume power or generate 
heat when not in use, two increasingly important factors 
at data centers. To manage tapes we use IBM’s Mass 
Storage System (MSS): High Performance Storage 
System (HPSS), storing over 1.3 petabytes of data on 
about 13,000 tapes managed by 6 StorageTek tape silos. 

With such a large MSS system, a large disk cache is 
still essential to deliver data to jobs in reasonable time. 
SLAC’s 1.3PB is currently backed by 160TB of disk 
cache. The disk cache is implemented on thousands of 
physical disks bound into large arrays for simplified 
maintenance. In the past, they were managed by 
VERITAS File System (VFS), but more recently by Sun’s 
Solaris 9 UFS. Both systems support journaling, an 
absolute necessity when dealing with extremely large file 
systems. 

An object oriented approach seems to be the most 
natural way to model HEP data, where complex many-to-
many relationships are commonplace. As explained 
above, the persistency system has to also provide multi-
petabyte scalability. None of the RDBMSes available in 
mid-nineties offered any of these features (and they do not 
appear to meet all these requirements even today). The 
decision to use an Object Oriented Database Management 
System – Objectivity/DB followed recommendations 
from a study at CERN [14]. ODBMS technology seemed 



to best fit BaBar’s needs of scalability, complexity and 
C++ bindings. Also, the thick-client thin-server 
architecture and distributed features seemed well suited to 
scaling, in contrast with the traditional, server-heavy 
RDBMS approach. 

3.3 Integrating the system 

The commercial ODBMS provided a powerful database 
engine including catalog, schema management, data 
consistency and recovery, but it was not deployable into a 
system of BaBar’s scale without extra effort. Half a 
million lines of complex C++ code were required to 
customize it and to implement needed features that did not 
come with the product.  

One of the major features added was an extended 
address space. An important requirement is that each 
analysis job should be able to access all data. The 
Objectivity/DB system allowed only 64K database files 
per federation (described later), and each job could access 
only one federation during its lifetime. Theoretically, this 
allowed storing many petabytes since the database files 
could be huge, but database files of that size (~10-20GB) 
were very impractical, especially for staging and 
distributing. After discussions with the vendor, the latter 
limitation of accessing only one federation was removed, 
allowing BaBar to implement bridging technology to glue 
data spread across multiple federations [11]. This allowed 
collections to be transparently accessed across many 
federations through a central bridge federation. A bridge 
federation contains bridge collections each containing a 
list of other collections and the federations in which they 
exist. Since Objectivity/DB transactions and local client 
caches could not span federations, implementing bridging 
also required implementing a complex transaction 
management system to transparently and automatically 
switch transactions as jobs change federations. 

Due to BaBar’s customized storage system, the data 
server provided by Objectivity/DB–Advanced 
Multithreaded Server (AMS) –was insufficient. Access to 
database files needed to be transparent whether they 
resided on disk or tape, so we worked closely with the 
company to re-architect the AMS. This involved splitting 
the product into three separate components: the AMS 
protocol layer, the logical file system layer (Objectivity 
Open File System, or OOFS), and the physical file system 
layer (Objectivity Open Storage Layer, or OOSS), of 
which we controlled the latter two [4]. 

To better utilize a precious disk cache, we worked 
with Objectivity on an API that would allow us to plug 
compression into their system. Data compression reduced 
the disk footprint by half, and client-side decompression 
kept server load under control. 

Other features added on top of the ODBMS included 
clustering and placement strategies, specialized indices, 
and administrative tools. 

Significant effort was spent tuning and optimizing the 
database system from the first day of data taking on [3]. 
With the detector’s rapidly improving performance, it was 
clear that the system had to scale to unforeseen levels. A 
dedicated test-bed, occasionally requiring 500 nodes was 
established to tackle the performance and scalability 
issues. Tuning the system, scaling and understanding 
unforeseen bottlenecks required a lot of time, effort and 
thorough understanding of the whole system: operating 
system, client code, network, and Objectivity/DB 
including the AMS.  

Finally, a transient-persistent abstraction layer was 
implemented early in the development phase to contain 
persistency-specific code. This layer isolated the bulk of 
the BaBar code from the details of persistency 
implementation with a small performance hit (~2%). With 
this fundamental decoupling, hundreds of users were 
shielded from persistency details, facilitating a reduced 
impact as the features described above were implemented. 

3.4 Coping with server load 

BaBar computing makes extreme demands on its servers. 
For instance, a single PR federation often needs to handle 
data injection from hundreds of nodes and sustain over 
15MB/sec of write throughput. Data analysis routinely 
needs to deliver 200MB/sec to over 1,500 jobs. In one 
case, a single server (host) was observed to sustain a 
thousand open files and over 15,000 open TCP 
connections. Coping with such loads requires powerful 
and robust servers. 

Clients access data remotely through the AMS 
provided by Objectivity/DB. The AMS was designed 
specifically to serve Objectivity/DB data, serving 
database pages directly with no caching. NFS and AFS 
are somewhat problematic alternatives. NFS often times 
out under heavy load, and AFS has several issues related 
to client cache synchronization and token renewal. Many 
small institutes prefer the simpler NFS access because of 
its low overhead under a light load. 

 AMS load depends on the number of clients, as well 
as their access patterns. One of the important “ features”  of 
Objectivity/DB is that it opens a TCP connection for each 
opened database file per client. In our environment that 
translates to tens, often hundreds of connections to the 
server per client. This large number of connections 
saturates a CPU which must linearly search a file 
descriptor table containing many thousands of entries to 
handle each I/O request. Tuning the AMS was limited by 
the Objectivity/DB protocol, but we had the freedom to 
do modifications in the OOFS and OOSS layers. 

Improvements in the OOFS and OOSS layers included 
separating TCP file descriptors from database file 
descriptors, closing inactive files, and sharing fi le 
descriptors of the fi les opened by multiple clients. Due to 
thread synchronization around the single fi le descriptor 
table, we ran four AMS servers per host to efficiently 



utilize the 4-CPU servers. Each quarter of a compute farm 
was then redirected to a different AMS server. Another 
important change was to increase the default limit of open 
file descriptors on UNIX from 1 to 8 K. 

An automatic load balancer was implemented to 
efficiently balance the load and reduce “hot spots.”  It 
measures the load on data servers and redirects clients 
accordingly. While it is also capable of duplicating data, 
this feature is turned off to avoid excessive staging. It is 
designed to work with immutable data, which is sufficient 
for analysis. We have not found a reliable way to apply it 
to mutable data yet. 

The lock server was another bottleneck, especially 
since each federation had only one lock server, and 
Objectivity/DB’s implementation was single-threaded. 
Unfortunately, in this case, we had no access to modify it, 
so we resorted to less invasive techniques such as 
reducing the offered lock traffic (explained in detail later) 
and using faster hardware. Bridge technology (also 
explained later) further alleviated lock server contention. 

3.5 Sustaining performance 

HEP jobs require heavy computation; and are therefore 
expected to be CPU, rather than I/O bound—the average 
CPU efficiency should be above 90% for both data 
population and data analysis. 

Even though the jobs did heavy computation, both 
data population and data mining dealt with a lot of I/O. 
Data population often produced over 2 terabytes per day, 
and data analysis often read 10 times that amount. In 
many cases, thousands of jobs competed for server time 
or disk bandwidth. To keep the farms CPU-bound, 
numerous measures were taken.  

Not only were disks and servers strained by thousands 
of simultaneous jobs, but the high load also resulted in 
randomized access patterns at the disk level. This was 
often seen in data analysis, even though data placement 
and clustering algorithms provided spatial locality for data 
that is frequently accessed together. Turning off read-
ahead in VFS alleviated the problem somewhat; however, 
the poor performance of small random reads on disk 
continues to be a major problem without an efficient 
solution. 

Data population is an organized activity. Its heavy 
write bandwidth requirements were achieved by client-
side cache size tuning and transaction length 
randomization such that clients flush data to disk only 
during commits and only a few clients commit at any 
given time. 

Parallelism is another way to improve performance. 
During data population we parallelized event and run 
processing. Different events within a run were processed 
by different nodes. The optimal number of nodes 
participating in processing a single run was about 150; 
with larger numbers, startup and shutdown times 
dominated. Different runs were processed by independent 

farms, each farm had dedicated sets of client and server 
hardware. To enable this in PR, feedback calculations for 
the detector were extracted and run independently from 
the rest of PR. 

In data analysis, parallelism is achieved with a batch 
system. Since all BaBar applications are single-threaded, 
each job can utilize only one CPU, so users may 
implement parallelism by initiating multiple jobs 
simultaneously. Each job process a subset of total data 
sample to be analysed and the results (selected events) can 
then be combined into a single collection. This is “quick 
and dirty”  parallelism, but very convenient for analyzing 
large data sets.  

3.6 Dealing with concurrency 

Concurrent access to data is possible using transactions 
and locking mechanisms provided by the database engine. 
In Objectivity/DB, locking occurs at the granularity of a 
container. A container is a logical section of a database. 
Each database maps to a single file. A consistent set of 
databases forms a federated database. Each federation has 
a catalog (database metadata) and schema (definitions of 
the various object classes) and delegates lock and 
transaction handling to one lock server (may be shared).  

Generally in PR, more than a hundred nodes process 
the same run and write to the same set of output streams. 
Each job writes to the same set of databases, but to its 
dedicated containers. The only shared resources are 
collection navigation metadata, and some internal 
structures maintained by Objectivity/DB, such as a 
database catalog or a page table for each database. Jobs 
contend for both these resources when creating 
collections, databases, and containers. Contention on 
collection metadata was removed by precreating 
collections in a single job. Contention on Objectivity/DB 
metadata was removed by centralizing the pre-creation of 
databases and containers and assigning them to jobs 
through a CORBA server [2].  

Contention on collection metadata is also a problem in 
data analysis. Thousands of analysis processes access the 
data, often in competition with skimming, which itself 
heavily reads and writes the data. Internal Objectivity/DB 
resources are not an issue due to the relatively small 
volume of written data, but collection metadata is a 
bottleneck. It is organized in an efficient directory-like 
tree-structure, but the contention comes because many 
tree-nodes share containers. (Container opening has 
significant overhead, and databases can have a limited 
number of containers.) Rearranging the tree nodes into 
different containers and providing access to central nodes 
inside separate mini-transactions reduced but did not 
eliminate the contention. Eliminating it requires removing 
all dependencies on a central index when updating.  

Introducing bridge technology and spreading data 
across many federations, lock servers, and database 
catalogs helped reduce lock contention, but the collection 



metadata problem resurfaced in the bridge federation. For 
that reason, some users found it more convenient to 
bypass the bridge federation, and maintain their own 
bookkeeping of collection-to-federation mappings. 

Other tunings were needed to improve concurrency, 
especially in PR farms. One such tuning involved 
minimizing container naming. Container naming involves 
an extra lock on another shared resource, a page table. 
Another tuning was reducing database name lookup 
(which requires an expensive catalog access) by caching 
id-to-name mappings and using ids whenever possible. 
The last important tuning was presizing containers to their 
expected final size. Growing a container requires locking 
the database’s page table, and therefore is too expensive 
to be done simultaneously by hundreds of writing clients 

Scaling to BaBar’s heavy concurrency needs can be 
summed up in one directive: Minimize contention around 
shared resources. This means making updates as fast as 
possible, or planning ahead and pooling the updates into a 
single large update.  

3.7 Availability 

Data needs to be highly available. Since BaBar is a large 
international collaboration with users scattered across 
many time zones, there is no good time of the day (or 
night) to take the database offline. Unfortunately, 
software and hardware faults still happen, so BaBar’s 
computing must have measures in place to minimize their 
impact. 

3.7.1 Durability 

All event data is potentially valuable–new algorithms can 
reveal insights in data previously thought uninteresting—
so it must be backed-up. Production data is thus written to 
tapes as soon as it is generated. Disk faults are backed by 
tape, and the tapes containing the most demanded data are 
duplicated in multiple regional centers. Faulty eventstore 
tapes can be rebuilt from tapes containing raw detector 
data (xtc format), which are stored in exactly two places, 
SLAC and Padova, Italy. Frequently changing metadata is 
backed up to HPSS during scheduled weekly outages. 
This metadata includes database catalogs, collection 
metadata, database identifier allocation, and user access 
control information. It is relatively small, measured in 
tens of megabytes. On the other hand, user data is not 
backed up because it is considered scratch data for 
debugging and testing; it comprises less than five percent 
of the total data sample. The remaining data is immutable. 

Large fractions of the event data are multiply 
duplicated in offsite analysis centers. This improves 
safety and pushes data closer to remote users. 

At SLAC, major services like lock, journal, and 
catalog servers are backed up by uninterruptible power 
systems, but data servers remain prone to power outages. 
Unexpected power outages are the primary reason for 
seriously exercising our database backup system, which 
happens about once a year. Hardware problems often 

follow each power outage resulting in prolonged database 
outages. During one major power outage, damaged 
hardware kept the database system offline for over 24 
hours.  

3.7.2 Planned and unplanned outages 

Some administration tasks require exclusive access to a 
federation, thus necessitating an outage. Killing thousands 
of jobs, many of which have been running for hours or 
even days is not a viable option and is used only before 
planned major outages. An inhibit system was thus 
developed to facilitate these administrative tasks. The 
inhibit system stalls all clients between transactions 
instead of killing them, using the fact that each BaBar 
application is required to commit its transaction 
periodically. Jobs stalled in this fashion do not keep any 
locks, which is enough for most administration tasks. 

Short regular outages are scheduled weekly, to 
perform necessary administration operations like backing 
up metadata. The overall achieved uptime is about 98%, 
with most of the remaining 2% downtime caused by 
scheduled and unscheduled power outages. Bridge 
technology has helped to achieve the high uptime: 
administrators can take down one federation at a time 
while the rest (over 99% of the total data sample) are still 
available. 

3.7.3 Platform unreliability 

The problem of unreliable platforms appeared when we 
first bought a large batch of commodity machines to be 
used in PR. The problem turned out to be a vendor-
specific hardware problem which caused random reboots 
(~4% of machines every day) and frequent hardware 
failures. This visibly reduced overall efficiency and 
forced us to look for new ways to manage recovery from 
crashes and the resulting orphan locks associated with 
unusable machines. Today, the number of crashes of 
commodity hardware used as clients is well under control, 
although still far from zero. 

3.8 Using the data 

Another interesting problem for large data sets is how to 
make all of it available and usable. The BaBar eventstore 
is not a closed archive—it is live data that is collected and 
served to physicists to support their cutting-edge research. 
This section offers overviews on how event data is 
published, accessed, and indexed. 

3.8.1 Publishing 

The system makes data available primarily via 
Objectivity/DB AMS data servers. Data comes from DAQ 
in the form of xtc files, which PR reconstructs to be 
inserted into the eventstore. From there, individuals and 
other BaBar groups access the data, often deriving 
additional event data to be inserted. Individuals read and 
write data in real-time, but the publishing of production 
data is often delayed by a few days. Data produced over a 



week’s time may take two days to be published due to 
contention with shared eventstore constructs, although the 
turnaround time remains impressive compared to previous 
HEP experiments. Since the BaBar eventstore experiences 
constant usage, lock collisions happen frequently during 
the two steps for publishing: attaching the db file and 
adding the collections to the index. 

Partly because of this resource contention, BaBar data 
is distributed geographically. As a member of the BaBar 
collaboration, a physicist may access data via a variety of 
data centers, which are categorized into two groups, 
according to their capabilities and responsibilities. Tier A 
sites such as SLAC form the core of BaBar computing. 
Large scale analysis and processing is split up among 
these sites, and they are open to any BaBar collaborator. 
The entirety of BaBar data is available through Tier A 
sites. Tier C sites are much smaller, have much less data, 
and are almost exclusively managed and used by local 
users. Many of them still participate in producing 
simulated data. 

3.8.2 Accessing 

All production data is truly read-only, protected by setting 
appropriate permission bits on database files. Groups’  and 
individuals’  data is stored in private databases, providing 
writable scratch space. Custom C++ code implements 
access control as well, preventing inadvertent 
modifications of other users’  data. Each user can freely 
read other users’  data, but cannot update/delete it, unless 
explicit permission is granted by an administrator. 

The Objectivity/DB product provides C++ bindings 
for making queries, along with a data definition language 
for describing persistent objects. Because of portability 
issues in writing persistence-specific code, the BaBar 
computing policy specifies that analysis code be kept on 
the transient side of the persistent-transient interface. To 
access persistent data, this analysis code is modularized 
and plugged into a framework system for controlling and 
providing access to event data. This Event Analysis 
Framework is modeled as a pipeline of modules which 
receive and process event data in turn. With the ability to 
reorder, reconfigure, enable and disable modules via Tcl 
scripts, users generally use published framework binaries, 
adding and removing event filters and customizing their 
jobs without recompiling.  

Unfortunately, in the ODBMS implementation, the 
BaBar eventstore could not be accessed outside of the 
framework system. All the database customizations were 
done within the framework, and so no tools had been 
provided to manipulate the data outside of the pipeline 
model. Because of this limitation, physicists often 
extracted the data out of the eventstore to the ntuple 
format for simpler data manipulation. 

3.8.3 Indexing 
 Eventstore data is not indexed. The most natural place to 
use indices would be for event selection (tag data). 

Usually, tens of attributes (out of over 500 possible) are 
examined for each event, which would require complex 
multi-dimensional indices. With these complexities, the 
strategy is to cluster these attributes into a separate 
component (“ tag” ) and placing tag components for events 
in sequence.  

It is well worth noting that most jobs that run on 
eventstore data spend most of their time analyzing sets of 
events for selection or statistics. Considering that jobs 
need to be crafted to avoid the 48-hour limit of CPU time, 
a single job would overwhelm the server if the “query”  
was processed there.  

To combat the high computational cost of selecting 
events, the skimming activity filters event collections into 
many smaller subsets according to common 
characteristics. Every six months, all data is read and 
skimmed according to the latest requests by various 
analysis working groups. With this advanced pre-fi ltering 
technology, selection rates on the skimmed data exceed 
30% where they were previously less than 10% or even 
under 1%. 

While the eventstore database was free of indices, 
non-eventstore databases, particularly the Conditions 
Database (CDB, which stores detector conditions) [6], 
relies heavily on indices. The most common queries in the 
CDB are partial-range queries over two dimensions. So 
common were these queries that generic two-dimensional 
indexing implementations were too inefficient. Using 
certain characteristics of CDB data allowed us to build an 
efficient, customized B-tree algorithm. 

3.9 Administration 

Some say that 1 full-time person is needed to manage 
each terabyte of data [7]. For BaBar, the level of effort 
needed to maintain the petabyte system was less then 
three full time database administrators. Initially, 
administration required a lot of human interventions—too 
many by our measures. These interventions were slowly 
automated, reducing tedium and opportunities for user 
error, but the system continued to grow more complex 
with new features like bridge federations. Most of the 
biggest challenges of administration were touched on in 
the previous sections. They include (in order of 
importance): 
• hardware and software failures 
• metadata management 
• data distribution 
• manual load balancing 
• lock collisions 

3.9.1 Hardware and software failures 

Hardware and software failures continue to be 
problematic. In a system with over 3000 physical disks, 
hardware failures are not uncommon. Even with 
enterprise server hardware, a disruptive hardware crash 
(e.g. disk array controller) still happens more than once a 



month, on average. Disk failures are more common, 
averaging about 3.5 disks per month, but generally have a 
low impact because of RAID 5 redundancy. On the 
software side, AMS failures occur about once a month in 
one of over a hundred servers, generally as fallout from a 
new AMS feature. 

3.9.2 Metadata management 

Though bridge technology solved the address space 
problems, it also led to the proliferation of federations. 
With 120 federations in analysis, moving (“sweeping” ) 
data from production farms to analysis federations was a 
daunting task. Another complication was a collection 
count that exceeded the original design by several orders 
of magnitude. This was primarily because of three factors 
which themselves were beyond the specification: (a) a 
large number of data streams, (b) a large number of 
skims, and (c) constantly improving detector and collider 
performance. With so many federations and collections, 
keeping their metadata consistent while data moved from 
production farm to analysis was a real challenge in terms 
of volume and concurrency.  

Occasionally database files were temporarily or 
permanently unavailable. Because no simple mapping 
existed between database files and collections, users had 
no easy way of avoiding afflicted data sets. Sometimes a 
user’s job would crash after many hours, and the user 
would find that an unavailable database file was the cause 
only after extended help from a database administrator. 

3.9.3 Data Distribution 

Distributing data across multiple servers, federations, and 
sites requires dedicated tools. Within SLAC, the local 
data distribution strategy takes advantage of the HPSS 
catalog to minimize the actual copying of databases. 
Databases from PR, for example, can be published for 
analysis by simply updating the target federation’s 
catalog. By centrally managing database ids, database 
files could be quickly moved between federations without 
destroying external references in dependent databases.  

World-wide data distribution of BaBar’s challenging 
data volume utilized grid technology. Shipping production 
data between SLAC and the site in Lyon, France, for 
example, was done through the Storage Resource Broker 
(SRB) [12]. BaBar has also been investigating the Globus 
Toolkit [5] for Simulation Production. 

Wide data distribution also complicated data quality. 
External sites were not always up-to-date with the 
database system: uninformed operators sometimes 
removed journal files with “rm”  and copied dirty database 
files. Without reliable and fast QA tools, these mishaps 
caused administrative headache. 

3.9.4 Others 

Due to frequently changing hot spots, data had to be 
almost constantly rebalanced to reduce bottlenecks and 
improve system performance. The automatic load 

balancing discussed earlier was only available in late 
2003, so before that, data was balanced manually. Manual 
balancing was effective, but its heavy cost in database 
administrator effort was too large to sustain. 

Finally, lock collisions were a constant problem. As 
mentioned before, collection publishing frequently 
conflicted with user access. Users also had locking 
conflicts with their own jobs. Stubborn locks left by dead 
jobs stymied many users until they referred to a FAQ or 
an administrator. With high turnover in students working 
on BaBar, the user pool needed frequent assistance. 

3.10  Summary of experiences 

Mammoth size and complexity requirements forced 
BaBar to look for innovative approaches to managing its 
data. Using a commercial database system provided a 
basic persistence model, but brought new challenges as 
well. BaBar was the first in the HEP community to use an 
object database, and globally alone in scaling to a 
petabyte. 

With these unknowns and a changing set of 
requirements, BaBar built significant flexibility into its 
data management software. This foresight allowed the 
system to quickly adapt to many issues in performance, 
volume, organization, administration, and functionality. 
Though it was clearly overdesigned in certain aspects, the 
extra effort was an overall benefit. A few requirements 
were not anticipated, such as the high collection count. 
Thus the flexibility to accommodate those issues did not 
exist, and coping with them required reengineering during 
user operation. Designing the right amount of adaptability 
is difficult in any situation, and BaBar’s especially 
volatile analysis needs rewarded the extra effort. 

Initial deployment was rocky, impeded by many 
scalability and performance problems, requiring many 
tunings and optimizations to stabilize the system. The 
original requirements were met quickly, but rapid 
expansion and constantly changing requirements kept the 
data store operating near the edge of its capabilities 
throughout the past 5 years of production. 

BaBar’s vibrant research effort continues to demand 
more data, more quickly from the detector, as well as 
higher levels of data service. The first generation 
eventstore was undoubtedly a great success, providing 
storage and service throughput well beyond its original 
design goals. Data rates, for example, were several times 
higher than originally designed. Hundreds of users 
analyzed data in BaBar. Its complexity and size has put it 
beyond today's scalability frontier: in 2003, it was larger 
than the largest 200 relational databases combined, 
earning the grand prize in Winter Corporation’s TopTen 
Program (a survey of world’s largest databases). 

Further details on this ODBMS-implementation can 
be found in [1], [2], and [3]. 



4. Second generation: refactoring 

Experience is often considered the best teacher. When a 
project is finished, its developers invariably ponder how 
much better it could have been, had they known then what 
they know now. Thus, as BaBar’s first persistence system 
matured and stabilized, thoughts began shifting from 
“how can we fix X?”  to “ if the system was like Y, then 
would X exist?”  Research is necessarily forward thinking, 
and with an increasingly stable system, developers were 
able to design and implement BaBar’s second computing 
model. 

4.1 Motivation 

Migrating BaBar’s large computing system was not a 
decision made lightly, requiring many months of 
discussion by BaBar management and staff. The idea 
itself began circulating in 2002, soon after the LHC 
experiments at CERN decided not to use Objectivity/DB 
for persistence. Their choice was not based on the 
perceived technical feasibility, but rather on the 
uncertainty of Objectivity Inc.’s long term viability. 
Because the ODBMS market had grown far slower than 
expected, the company’s sustainability in a difficult 
economic climate and over the LHC’s operating lifetime 
(15-20 years) was deemed too uncertain. Following the 
LHC’s decision had other benefits including: (a) greater 
reuse of skills for physicists switching experiments, and 
(b) reducing the number of systems to be supported. 

As the only commercial software in a sea of 5 million 
lines of home-grown C++, Objectivity/DB was the only 
non-source-accessible component. Though support was 
excellent, their priorities and release cycle did not always 
align with BaBar’s. Dependence on their libraries, for 
example, locked an otherwise open system in certain 
compilers and operating systems. Monetary cost was also 
an important factor. 

Object databases are problematic for BaBar in other 
ways. The overhead of database semantics on usability 
and manageability was too high, considering that nearly 
all of the workload was on read-only data. Data seemed 
“ locked away”  from physicists, and was non-trivial for 
administrators to migrate between machines or setup on a 
physicist’s laptop.  

Finally, the existing transient-persistent abstraction 
layer within BaBar software made migration a practical 
possibility. Such a layer was crucial in mitigating any 
lock-in to a single persistence technology, and allowed 
enough freedom to consider alternatives. 

4.2 Design goals 

The second computing model aimed to select the best 
features from the original implementation and leave 
behind the most troublesome. Users still wanted a high 
performance, flexible, scalable, and unified computing 
environment, but disliked the overhead of network 

connectivity, database semantics, and the central point of 
failure. Yet the new design had to minimize user impact. 
BaBar was not going to interrupt researching the origins 
of the universe or give up its mammoth amount of 
existing analysis code. 

BaBar wanted to eliminate dependence on commercial 
software, and so chose ROOT I/O [13], an open-source, 
almost BSD-licensed persistence technology that had 
wide acceptance in the HEP community. ROOT I/O 
lacked many standard ODBMS features, never claiming 
to be a “database,”  but early tests indicated that it could 
be adapted to meet BaBar’s demands. 

Improving data administration was another goal. Users 
found the array of database files representing their data 
unnecessarily difficult to manage. They eschewed the 
organization of database files as clustering constructs for 
their data, whose logical structure depended on 
collections storing references to events with references to 
data objects. The new computing model simplified the 
mapping, defining the one-collection-one-set-of-fi les 
model. This model also simplified exporting data and 
facilitated unconnected laptop analysis. 

The last major goal was to reduce the complexity of 
the system. The same physicists confused by the need for 
the many files were also annoyed that the many data 
servers, lock servers, transactions, and database semantics 
seemed not to help but rather hinder their analyses.  

4.3 ROOT I/O 

ROOT I/O provides data persistence for the ROOT data 
analysis framework, and can be characterized by its light-
weight, “ raw”  interface to persistent objects. Persistent 
classes are defined very similarly to Objectivity/DB, with 
the added benefit that member fields may be marked as 
non-persistent. This is a marked benefit when using the 
persistent classes directly, although users of the BaBar 
framework are shielded from persistence details. A key 
disadvantage, however, is ROOT I/O’s lack of true object 
referencing (ROOT has since developed a limited form of 
object references, but BaBar does not use them). 

A major benefit to using ROOT I/O for persistence is 
the availability of the data under the CINT C++ 
interactive interpreter used by ROOT. Interactive use was 
among the motivations to migrate, and it is hoped that its 
convenience will allow BaBar users to work more closely 
with their data. Interactive manipulation of ROOT I/O has 
been immensely useful to developers, but has also proven 
to require extra diligence in developing interactive-
accessible code. As of this writing, interactive access is 
still very new to users, but it is hoped to become a 
disruptive technology that will energize and spur different 
ways of analysis. Still, there remains the danger of writing 
code too close to persistence—interactive analysis is 
necessarily aware of the details of ROOT. Finally, ROOT 
I/O persistence provides built-in data compression, 
encoding a batch of objects of the same class in a single 



compressed unit. Compared to compression at the level of 
database fi les in the first generation system, ROOT 
provides compression at a finer granularity made possible 
by its unique model of clustering persistent objects. 

4.4 Kanga: an abstraction layer above ROOT 

To successfully migrate BaBar’s existing analysis and 
processing software to a new persistence technology, 
significant effort was required. The Kanga system was 
implemented to fill-in the essential functionality that the 
previous ODBMS provided, and to replace the existing 
ODBMS-dependent layer of code.  

The Kanga system provides its own persistence layer 
that implements object-references/pointers, basic schema 
evolution, and transient-persistent object binding on top 
of ROOT I/O. Because object-referencing operates on a 
low level in object persistence, client code had to be 
shielded from direct interaction with ROOT, so all 
accesses had to be made through the Kanga persistence 
system. Transient-persistent object binding was also 
integrated into Kanga where it was previously a separate 
abstraction layer from the ODBMS. Kanga is accessible 
inside the ROOT CINT environment, giving the 
interactive user access to its enhanced functionality. 

It is interesting to note that although Kanga’s object 
referencing system is limited, BaBar data can be modeled 
adequately. It is a characteristic of BaBar event data that 
objects of a particular event do not reference data in 
different events, so more flexible, more generic object 
references are not necessary. 

Another key characteristic of Kanga is that it does not 
attempt to provide any database features. Data must be 
persisted in a very specific fashion, and ROOT files 
themselves cannot be updated, only appended. However, 
BaBar’s model of data collection, processing, and access 
(read-only after data is persisted) was such that it did not 
suffer too greatly. In fact, the feature-light characteristics 
have yielded lower overhead and overall performance 
benefits in current practice.  

One example of the tradeoffs of Kanga is in its 
management of collections. In the ODBMS, data from 
many collections were stored in a single database file. 
Kanga defines the model: one fi le contains data for only 
one collection. One can then manage collections easily as 
files in a file system. Data production can run in parallel, 
creating “sub-collections”  which are later merged into 
much larger collections. Since the collections are merged, 
there are less collections overall, which makes 
management easier. Unfortunately, large collections, 
some exceeding 2GB, are difficult to manage by the end 
user. Jobs running over these collections exceeded the 
batch system’s CPU limits, and more aggressive data 
quality efforts needed to mark some sub collections as 
“bad”  due to discovered errors in their processing and 
production. To handle these cases and provide greater 
overall convenience, a new syntax for selecting 

collections was needed to select subsets of collections, 
shifting the problem of too many collections to a new 
problem of implementing and debugging a syntax for 
selecting parts of them. 

4.5 A new data server: Xrootd 

In considering the new computing model’s persistence 
technology, ROOT I/O, client/server data access was an 
important issue. Data servers in the new system needed to 
reliably serve tape-resident data backed by local disk 
caches. The bundled data server, rootd, was insufficient 
for BaBar’s needs, so it was thus re-architected into a 
more performant solution, using past experience with 
Objectivity/DB’s AMS and the rootd source as references. 
The resulting effort is called Xrootd [8], [16]. 

Xrootd was built specifically to address some of the 
larger problems encountered with the AMS daemon. The 
AMS protocol specified one TCP connection per file per 
client. With clients typically accessing many fi les, and 
sometimes failing to close their connections, this caused 
not only server overhead, but administrative headache. 
AMS daemon restarts were highly disruptive, as the 
protocol had no inherent failover or fault-recovery 
provisions. The Xroot protocol uses only one connection 
per client, and has specific features for fault-tolerance and 
load balancing. 
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Figure 3 Xrootd architecture 

The Xroot protocol utilizes a connection as an 
asynchronous pathway supporting multiple independent 
and overlapping operations. In this way, it uses each 
connection as multiple logical connections, removing the 
wasteful use of network connections. I/O for each 
independent operation can be segmented, preventing a 
large transfer from necessarily blocking other operations. 
Fault tolerance is facilitated through explicit redirection 
and deferral. Redirection allows the server to perform 
dynamic load-balancing as well as fault-handling. 
Deferral is a server-originated message that effectively 
pauses the client for a particular time period. It is used to 
allow clients to gracefully continue through server restarts 
or other maintenance, or to delay clients while data is 



staged. Deferral  allows server maintenance without 
disrupting thousands of active jobs, and this ability itself  
makes the in-house data server development effort 
worthwhile. 

An Xrootd server instance has two components: the 
Xrootd data server daemon and the olb load balancer 
(reused from AMS plug-in). Each server instance can be 
configured as redirector or data host. Instances configured 
as redirectors serve no data, but are well-known to the 
clients. Data hosting instances serve data but do not 
redirect. Using a combination of the two, clients can be 
load balanced among the data hosting instances.  

Xrootd’s dynamic nature significantly eases 
administration. New Xrootd data host instances 
automatically register themselves with the redirectors and 
are immediately available to stage in data and serve it to 
clients. This behavior happens automatically upon the 
daemon’s startup without additional administrative 
attention. Many other high-performance features are 
available in Xrootd, but are beyond the scope of this 
paper. 

Overall, the Xrootd server has shown itself to satisfy 
its design expectations. On modest dual-CPU hardware, a 
single data hosting instance has easily handled over a 
thousand clients and over two thousand open files 
simultaneously. Redirector instances handle over five-
thousand redirects per second. With its robust 
architecture, Xrootd easily saturates its disk and memory 
bandwidth at below 50% CPU usage. 

4.6 Bookkeeping 

The ROOT-based eventstore lacks a central catalog, so a 
separate bookkeeping system is needed to track all 
collections and files. Bookkeeping shields users from 
many unimportant details, presenting groups of 
collections and files to users as named data sets. Data 
from activities like PR, REP, and SP is tracked in this 
system, while a QA group uses the same system to mark 
the data which may become part of an official data set. 
Another responsibility of the bookkeeping system is to 
manage tasks. This part of the system shepherds a task 
from definition to completion. This includes generating 
batch job configuration files, tracking the splitting of 
larger jobs, the submittal to the batch queue, monitoring 
job status, and the resubmittal of failed jobs. 

The technology that best fits bookkeeping is an 
RDBMS. As with the eventstore, the specifics are 
abstracted, allowing more than one RDBMS 
implementation to be used. Some large centers, like 
SLAC (which has an Oracle site-license) use Oracle, 
while most small institutes opt for an open-source 
alternative, MySQL. The core database resides at SLAC, 
but is mirrored at around ten other sites not including the 
laptops of more adventurous users. All updates to the core 
are done on SLAC’s instance, and replicas trigger their 
own synchronization (usually daily), flagging missing 

collections afterwards and downloading them 
automatically. External sites keep additional, non-
synchronized local information specific to their local 
installations. 

To reduce the dependency on central servers, jobs 
never talk directly to the bookkeeping system. Instead, all 
bookkeeping operations are done in advance: a query is 
sent, and the response is fed to the job in form of a site-
independent configuration file. 

The main goal is to provide a compact, simple catalog 
for users to find the most common data quickly, while 
allowing access to the full archive when needed. The 
bookkeeping system, now around 3GB in size, is 
currently being used for central production, data 
distribution, and analysis, but the task management 
component is only used for central production and has yet 
to be deployed for analysis use. 

4.7 Other improvements 

Apart from the major features already discussed, several 
features were implemented independently. Where 
skimming produced pointer collections in the first 
generation, a more flexible specification scheme was 
implemented, allowing the production of deep-copy, 
partial-copy, or pointer collections on a per-skim basis. 
With this feature, events are now duplicated by a factor of 
3.2, trading off space for increased data locality and I/O 
performance. 

Load-on demand is a feature intended to reduce data 
pressure when reading back event data. It operates as a 
thin abstraction layer between objects and their referents, 
faulting in the latter only when referenced. This sort of 
architecture is sensible when the object access is 
expensive and dynamic, adding only a minor overhead in 
the worst case. Load-on-demand has shown promise, but 
it is unclear whether the current pipelined analysis model 
will benefit, since most analysis jobs are based on preset 
processing sets which seem to read most of the data 
anyway. 

Another independent feature is a facility for 
monitoring data servers. This project offers centralized 
views of measurements on BaBar’s data servers, allowing 
administrators to more easily and quickly understand the 
system’s basic health. Using the Ganglia package [10], 
the system is able to gather, store and present through web 
interface measurements such as CPU load, disk I/O and 
networking Alerting capability has been added on. Such 
information is expected to reduce downtime by speeding 
troubleshooting and diagnosis, and perhaps even prevent 
downtime and improve efficiency by making it simple to 
see destabilizing factors before they disrupt the larger 
system. 

4.8 Have we met the challenge? 

Initial experiences with the system have included teething 
problems, but things have been positive. The system was 



built with an aggressive schedule, allocating relatively 
little time and resources to implementing the core 
features. Some well intentioned efforts to ease things in 
one area have complicated things in another.  

To ease collection management, the new system 
adhered to a one-collection-one-set-of-fi les model. 
Instead of using database files as raw storage blocks, each 
file now belonged to only one collection. One could then 
move collections as easily as files, without being forced to 
utilize special tools. Yet this improvement carried with it 
some problems. Skimming and other production activities 
needed to merge their output collections to prevent the 
pre-merge number of collections (~millions) from 
straining the file system, the mass storage system, and 
other metadata bookkeeping systems. This improved 
analysis efficiency and reduced collection count by an 
order of magnitude, but increased each collection’s size. 
At the same time, improved data quality began marking 
parts of collections as “bad.”  These two factors motivated 
the implementation of a more complex scheme to select 
events at a finer granularity within collections. The 
increased convenience and flexibility of this scheme has 
been well worth the added complexity. 

The new system has been impressive in many ways. 
Administrators have found data and server management to 
be simpler. Users are excited about the analysis 
possibilities with interactive access, and relieved to not 
worry about database semantics. Though the more-
complex, non-eventstore database was not migrated as 
part of this larger effort, work is already underway in 
evaluating its migration to a non-commercial alternative. 
Further development and tuning of the larger system are 
still taking place, but the system as a whole is now in 
wide use. 

5. Lessons for future implementation 

Managing large data sets requires unconventional 
techniques and poses major challenges which do not 
appear in smaller-scale systems. In the past five years we 
have learned how to build and manage large system for 
managing a petabyte data set, encountering such aspects 
as integrating client and server software, running large-
scale computing farms, and administering databases. 
Experience in two different persistency mechanisms—a 
commercial ODBMS and a hybrid RDBMS/file-based 
solution—puts us in a unique position to recognize 
common data management themes. We have found that 
the largest of these are: (a) providing access, and (b) 
scaling the system. 

5.1 Providing access 

Efficient and convenient access to data is one of the 
primary goals of a data management system. Having a 
hierarchy backed by tertiary storage allowed the system to 
handle the bulk, but the heavy access load continues to be 
a challenge. The small, fine-grained random disk access 

that is typical in BaBar is especially challenging to the 
disk-based cache. Poor disk performance is a major 
bottleneck “solvable”  only by buying more and more 
hardware. 

Nowadays, disk capacity is growing at an impressive 
rate. The MB/$ ratio is rapidly going up, while the 
number of disk heads per MB is going down. Disks of a 
given capacity are cheaper, but slower. Their 
characteristics are therefore more like tape, offering good 
performance for sequential reads of large chunks (~1MB), 
but glacial performance for sparse, random reads of small 
chunks (<1KB). Access at the latter operating point is far 
from optimal for a disk, but it is the most common access 
in HEP (and many other applications). The disk-memory 
performance gap continues to widen. Memory is still too 
expensive to be used in bulk to replace disks.  
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Figure 4 Current performance gap in memory systems 

One potential solution to this problem is to de-
randomize disk access. Techniques like pre-fetching or 
data train would be effective ways to schedule the disk, 
but they require an understanding of the access patterns. 
An effort is underway to trace and understand Xrootd 
access patterns for this purpose. Another way of achieving 
de-randomization is to use hints from applications to 
schedule less random access. Applications often know in 
advance what they will access, but scheduling efficient 
reads across multiple applications may not be trivial.  

5.2 Scaling the system 

When dealing with petascale data sets, scalability issues 
come up everywhere: number of servers, files, persistent 
objects, connections to servers, crashes, lines of code, and 
so on. Managing such data sets is a challenge easily 
underestimated. Very large systems are complicated by 
nature, therefore the simpler the solution, the better. At 
this scale, managing the metadata of the data set itself 
becomes a major problem that requires special 
consideration in the early stages of design. Being a 



pioneer at this scale, BaBar did not appreciate this at the 
beginning.  

With so much hardware in use, availability is another 
big challenge. Having a large number of nodes, servers, 
farms, disks, and tapes means that the system experiences 
frequent failures. To combat this, systems should 
minimize dependencies on central servers, use reliable 
server hardware and software, reduce failure impact (e.g. 
by replicating), and invest heavy effort in fault recovery 
mechanisms. Using commodity hardware reduces cost, 
but care must be taken to meet minimum reliability and to 
recover from the increased number of failures. 

Distribution of data and computing load is crucial for 
performance at this scale. Files need to be distributed 
across many servers, or even sites. To reduce the server 
load, a thin-server/thick-client architecture can be used, as 
the load can be pushed off servers and distributed across 
many clients, reducing overall server cost. Load balancing 
is required to take full advantage of available server 
capacity, but it must be automated. 

Mammoth data stores have necessarily specific and 
non-generic needs. Since such systems push the limits of 
technology, it is highly important to design carefully and 
control complexity. Needed features should be 
implemented robustly, and unnecessary features should be 
dropped for simplicity. These systems are often the first 
of their kind, so built-in flexibility is also important to 
allow adaptation to the continually evolving requirements 
and use cases.  

Finally, systems of this size must account for physical 
considerations. Running large computing farms requires 
dealing with lots of heat, power demand, and floor 
weight. These three are among most serious challenges 
for people maintaining hardware at SLAC and 
collaborating sites. 

6. Conclusions 

Currently there is very little, if any, literature that covers 
management of a petascale database simply because there 
are no other databases today of that scale. With the 
amount of data collected and stored by the average 
business doubling each year [7], petabyte systems will be 
popular in a few years. Building such systems is very 
expensive, and wrong decisions might be very costly; 
therefore any practical experience with this new scale of 
computing is invaluable. 

This paper presented our experience with managing 
BaBar’s petabyte data store—the world’s largest database. 
The experience has already proved useful for many, such 
as intelligence and law enforcement agencies [9]. The 
paper highlights design choices, describes the toughest 
challenges, points out unexpected surprises, and provides 
advice on the building, deploying and administering of a 
very large data set. Experience with two different 
persistence technologies (one commercial and one open-
source) has allowed us to expose format-independent 

aspects and themes. The immense scale of the data set 
magnified nearly every aspect of data management in 
both technologies. Keeping data structures, workflow, and 
overall design simple is crucial. The inclusion of non-
essential features is costly and will remain unappreciated 
by the real users. Planning for change makes inevitable 
migrations practical. BaBar’s data sample will continue to 
grow rapidly in the next few years, and we expect to 
continue building our understanding of beyond-petabyte 
data sets. 
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