
Automatic Performance Diagnosis and Tuning in Oracle

Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, Graham Wood

Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA 94065, USA
{kdias, mramache, ushaft, veeve, gwood}@oracle.com

Abstract

Performance tuning in modern database systems
requires a lot of expertise, is very time
consuming and often misdirected. Tuning
attempts often lack a methodology that has a
holistic view of the database. The absence of
historical diagnostic information to investigate
performance issues at first occurrence
exacerbates the whole tuning process often
requiring that problems be reproduced before
they can be correctly diagnosed.

In this paper we describe how Oracle
overcomes these challenges and provides a way
to perform automatic performance diagnosis and
tuning. We define a new measure called
‘Database Time’ that provides a common
currency to gauge the performance impact of any
resource or activity in the database. We explain
how the Automatic Database Diagnostic Monitor
(ADDM) automatically diagnoses the
bottlenecks affecting the total database
throughput and provides actionable
recommendations to alleviate them. We also
describe the types of performance measurements
that are required to perform an ADDM analysis.
Finally we show how ADDM plays a central role
within Oracle 10g’s manageability framework to
self-manage a database and provide a
comprehensive tuning solution.

1. Introduction
With the advent of web business, system performance is
more important to businesses than ever before. A poorly
performing web site is just as bad as one that is actually

down, because users get frustrated and are unlikely to
return. Databases are an integral part of these high profile
systems. With the decreasing costs of computer hardware,
businesses are building more and bigger databases, and
the database administrators (DBAs) are being asked to
take on more and larger databases.

Database systems typically have a plethora of
measurements and statistics available about their
operation. Often many individual components maintain
separate sets of measurements and it can be hard to get an
overall view of what is happening in the database. The
many sets of measurements can lead to data overload for
the DBA who is tasked with analysing a problem.

Identification of the root cause of a performance
problem is not easy [WE02, CH00, HE97, BR94]. It is
not uncommon for DBAs to spend large amounts of time
and resources fixing performance symptoms, only to find
that this had marginal effect on system performance.
Often a symptom is treated mainly because the DBA has
seen that symptom before and knows how to treat it. Lack
of a holistic view of the database leads to incorrect
diagnosis and misdirected tuning efforts resulting in over-
configured systems increasing the total cost of ownership
[HU02, CH00, GA96].

Even when ‘correct’ analysis is performed it is often
found that the available data stops short of what is
required to fully diagnose the root cause of the problem
and in order to complete the diagnosis the problem must
be reproduced. Reproducing problems is sometimes non-
trivial and can range from simply asking a user to perform
an operation again, to requiring the building of a copy of
the database, which may take weeks to set-up. Many
times performance issues go unresolved because it is not
regarded as cost effective to spend the time and resources
to reproduce the problem. Often, the issue is dropped and
the DBA hopes that the problem will not reoccur. In most
cases, the mechanisms provided to capture detailed
information required to be able to fully analyse a problem
are not designed to be non-intrusive and have a significant
overhead. Sometimes tuning experts or ‘gurus’ are called
in to try and resolve a problem. Specialist skills and
expertise are required because there are many areas where
value judgments and rules-of-thumb are involved.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 2005 CIDR Conference.

One of the things that makes performance tuning
difficult is that the performance of different components
of the database is often measured using unrelated metrics
like buffer hit-ratio, transactions per second and average
I/O latency. Such unrelated metrics make it infeasible to
weigh the performance impact of one component of the
database with the impact of others components. Tuning
actions that are solely based on such metrics have a
tendency either to make the DBAs believe that the
database needs excessive hardware or to make just one
component of the database perform better with negligible
effect on the total database throughput.

Keeping these limitations in mind, we built the
Automatic Database Diagnostic Monitor (ADDM) in
Oracle 10g. ADDM automates the entire process of
diagnosing performance issues and suggests relevant
tuning recommendations with the primary objective of
maximizing the total database throughput.

Modern database systems have complicated
interactions between their sub-components and have the
ability to work with a variety of applications. This results
in a very large list of potential performance issues such
automatic diagnosis solutions could identify. Also, as new
database technologies and applications are invented and
older ones are obsoleted, it is pivotal that automatic
diagnostic and tuning solutions can easily be adapted to
accommodate such changes.

The objectives of an automatic performance diagnosis
and tuning solution can be summarized as follows:

• Should posses a holistic view of the database and
understand the interactions between various
database components.

• Should be capable of distinguishing symptoms
from the actual root-cause of performance
bottlenecks.

• Should provide mechanisms to diagnose
performance issues on their first occurrence.

• Should easily keep up with changing
technologies.

The remainder of the paper is organized as follows:

We discuss related work in both academic research and
commercially available databases in Section 2. We define
a new measure, Database Time, and describe in detail our
methodology to solve this problem in Section 3. We
discuss the various measurements that were required to
implement our solution in Section 4. We extend our
definition of Database Time to other models in Section 5
and explain how ADDM plays a central role in Oracle
10g’s self-managing framework in Section 6. We present
the experiments we used to validate our implementation
and their results in Section 7. Finally, we summarize our
conclusions in Section 8.

2. Related Work
The COMFORT project used an online feedback control
loop to solve individual tuning issues like load control for
locking, dynamic data placement among others [WE02,
WE94]. Automated tuning systems have been proposed
[HE97] that employ a feedback control mechanism
layered on top of a target system. A different school of
thought suggests that current database systems have too
many features, unpredictable performance and very low
“gain/pain ratio”, and RISC-type simplification of
database functionality is crucial to achieve automatic
tuning [WE02, CH00].

Oracle’s previous solution for performance tuning was
Statspack [ORP8, ORP9, ORSP]. Statspack is a tool that
takes snapshots of database performance statistics and
generates reports across a pair of snapshots. Though
Statspack reports reduced the time it took for DBAs to
diagnose performance issues [ORSP2], it still left the
interpretation of the report and the actual root-cause
identification to the DBAs. Oracle 9i has other self-
optimizing features like dynamic runtime query
optimization [ORQ9], self-configuring features for space
and memory management [DA02, ORM9, EL03]. Refer
to Section 6 for a description of various Oracle 10g’s
manageability features like “SQL Tuning Advisor” and
“Segment Advisor”. IBM DB2 version 8.1 has features
like “Health Center” for database monitoring and
“Configuration Assistant” to assist DBAs in database
configuration [IBP8, IBG8]. Similarly, SQL Server 2000
provides performance tools like “Index Tuning Wizard”
and “SQL Query Analyzer” to help the DBA achieve
individual performance goals and has monitoring tools
like “System Monitor objects” [CH97, MSPD].

Commercially available databases have features to
manage some of their sub-components automatically,
mechanisms to actively monitor database performance,
and tools that make it easier for the DBA to achieve some
specific performance goals. However, none of them (until
Oracle 10g) have a performance diagnosis and tuning
solution that automatically identifies the root-causes
affecting total database throughput.

3. Automatic Performance Diagnosis
Performance of various components of the database are
measured using different metrics. For example, the
efficiency of the data-block buffer cache is expressed as a
percentage in buffer hit-ratio; the I/O subsystem is
measured using average read and write latencies; the
database throughput is measured using transactions-per-
second. However, using these metrics, finding the
performance impact of a particular component over the
total database throughput is extremely hard, if not
infeasible. For example, determining by how much would
transactions-per-second decrease if the average I/O
latency becomes twice as long is not trivial.

One of the first objectives of this project was to define
a common currency that can be used to measure the
performance impact of any component within the
database. It then becomes possible to be able to compare
the impact of any two database components. For example,
one would then be able to compare the performance
impact due to an under-sized data-block buffer cache with
the performance impact due to a badly written SQL
statement. For this purpose, we define a measure called
‘Database Time’ that would serve as a common currency.

3.1 Database Time

Database time is defined as the sum of the time spent
inside the database processing user requests. Figure 1
illustrates a simple scenario of a single user submitting a
request. User’s response time is the time interval between
the instant the request is sent and the instant the response

is received. The database time involved in that user
request is only a portion of that user’s response time that
is spent inside the database.

Figure 2 illustrates database time as it is summed over
multiple users and each user is performing a series of
operations resulting in a series of requests to the database.
It can be seen from Figure 2 that database time is directly
proportional to the number and duration of user requests
and can be higher or lower than the corresponding wall-
clock time.

Using database time as a measure, one should be able
to gauge the performance impact of any entity of the
database. For example, the performance impact of an
under-sized buffer cache would be measured as the total
database time spent in performing additional I/O requests
that could have been avoided if the buffer cache was
larger.

Fetch
results

Database time spent in processing user requests

Figure 2: Database time defined as the sum of the time spent in processing all user requests

Session
connect

Execute
SQL

Execute
SQL

Execute
SQL

Session
disconnect

Fetch
results

Execute
SQL

Fetch
result

User 1

User 2

User n

Wall-clock time

.

. .

.

Fetch
results

Fetch
results

.

. .

.

Fetch
results

Fetch
results

Execute
SQL

Fetch
result

Execute
SQL

Fetch
result

 Wide area network

Application Server

Oracle Database

 Wall-clock time

User sends
a request

User gets
a response

Figure 1: Database time from a single user’s perspective.

Local area network

Time spent in the Wide area network

 Time spent in the Application Server (Middle Tier)
 Time spent in the Local area network

Database time spent processing the user request

Database time is simply a measurement of the total
amount of work done by the database (analogous to the SI
unit ‘Joule’ used in Physics to measure energy or work
done) and the rate at which the database time is consumed
is the database load average which is analogous to the OS
load average (measured as ‘Database Time’/second this
unit is analogous to the SI unit ‘Watt’ or ‘Joules/second’
used in Physics to measure power). The objective of
ADDM is to reduce the amount of database time spent on
a given workload, which is analogous to consuming less
energy to perform the same task. Identifying the
component contributing the most database time is
equivalent to finding the single database component that
when tuned will provide the greatest benefit. In other
words, if we look for ways to process a given set of user
requests while consuming the least amount of database
time, we are simply looking for the most efficient way to
accomplish the given task.

ADDM uses database time to identify database
components that require investigation and also to quantify
performance bottlenecks.

Database systems often have models or mechanisms,
like background processes or parallel queries, in which
the definition of the database time is more complex. In
Section 5 we discuss database time definitions for these
models.

3.2 DBTime-graph and ADDM Methodology

The first step in automatic performance tuning is to
correctly identify the causes of performance problems.
Only when the root-cause of the performance problem is
correctly identified, it is possible to explore effective
tuning recommendations to solve or alleviate the issue.

ADDM looks at the database time spent in two
independent dimensions.

• The first dimension looks at the database time
spent in various phases of processing user
requests. This dimension includes categories like
‘connecting to the database’, ‘optimizing SQL
statements’, and ‘executing SQL statements’.

• The second dimension looks at the database time
spent using or waiting for various database
resources used in processing user requests. The
database resources considered in this dimension
include both hardware resources, like CPU and
I/O devices, and software resources like database
locks and application locks.

For a detailed analysis on how we actually measure
the database time spent on various categories mentioned
here refer to Section 4.

To perform automatic diagnosis, ADDM looks at the
database time spent in each category under both these
dimensions and drills down into the categories that had
consumed significant database time. This two-
dimensional drill down process can be represented using a
directed-acyclic-graph as shown in Figure 3, which we
call the “DBTime-graph”.

It should be noted that this DBTime-graph is not a
decision tree for a rule-based diagnosis system, where a
set of rules is organized in the form of a decision tree and
tree is traversed either to find the goal given a particular
set of data or to find the data given a particular goal
[BE03]. The DBTime-graph has various properties that
differentiates itself from rule-based decision trees:

• Each node in this graph looks at the amount of
database time consumed by a particular database
component or resource.

• All nodes in this graph are gauged with the same
measure - database time.

Root node

SQL
Optimization

SQL
Execution

User
Connect

Undersized
Buffer cache

Insufficient I/O
Bandwidth

Level 2

Dimension 2 Dimension 1

I/O
Capacity

Database
locks

CPU
Capacity

Level 1

Figure 3: Sample DBTime graph

Terminal nodes that identify root causes

Branch nodes that identify symptoms (links to all terminal nodes are not shown)

• All the children of a particular node are
unconditionally explored whenever the database
time spent in that node is significant.

• Database time attributed to a particular node
should be completely contained in the database
time attributed to each of its parents.

Any node that complies with all the properties above
can be added to the DBTime-graph making it easy to
maintain with changing technologies, unlike the decision
tree of a rule-based diagnosis system [BE03].

Performance problems often attribute database time
across many categories in one dimension but not the
other. For example, a database with insufficient CPU
capacity will slow down all phases involved in processing
user requests, which is ADDM’s first dimension.

However, it would be evident from the second
dimension that the top performance problem affecting the
database is insufficient CPU capacity. This two
dimensional view of looking where the database time is
consumed gives ADDM a very good judgment in
zooming in to the more significant performance issues.

ADDM explores this DBTime-graph starting at the
root-node and exploring all the children of a node if the
database time consumed by the component is significant.
Branch nodes in this graph identify the performance
impact of what is usually a symptom of some
performance bottleneck. Whereas the terminal nodes
identify particular root-causes that can explain all the
symptoms that were significant along the path in which
the terminal node was reached. For example, in Figure 3
the branch node “I/O Capacity” would measure database
time spent in all I/O requests, which could be significant
due to various bottlenecks. Whenever significant database
time was spent in I/O requests all the children of the “I/O
Capacity” node would be explored, which are the two
terminal nodes in this example. The “Undersized Buffer
Cache” node would look for a particular root-cause,
which is to see if the data-block buffer cache was
undersized causing excessive number of I/O requests. The
“Insufficient I/O Bandwidth” node would look for
hardware issues that could slow down all I/O requests.

Once a terminal node identifies a root-cause, it
measures the impact of the root-cause in database time. It
then explores ways that can solve or alleviate the problem
identified. It uses the various measurements that are
discussed in Section 4 to come up with actionable tuning
recommendations. The nodes also estimate the maximum
possible database time that could be saved by the
suggested tuning recommendations, which need not
necessarily be equal to the database time attributed to the
root-cause.

In addition to identifying bottlenecks, ADDM also
identifies key components that were not experiencing any
performance bottlenecks. The idea is to prevent the DBA
from tuning components that have marginal effect on the
total database throughput.

It is interesting to note that ADDM need not traverse
the entire DBTime-graph; it can prune the uninteresting
sub-graphs. This can be achieved only because the
DBTime-graph is constructed in a way that a node’s
database time is contained in the database time attributed
to its parents. By pruning and not traversing uninteresting
sub-graphs, which represent database components that are
not consuming significant database time, the cost of an
ADDM analysis depends only on the number of actual
performance problems that were affecting the database.
The cost of the analysis does not depend on the actual
load on the database or the number of issues ADDM
could potentially diagnose.

The DBTime-graph also makes it very easy for
ADDM to adapt to new requirements to look for new
root-causes for performance problems without affecting
the cost of the analysis. Evidently, removing obsolete
terminal nodes is also very simple to do.

At the end of the analysis ADDM reports the top root-
causes identified, ranked by the performance impact
attributed with each root-cause along with the respective
tuning recommendations.

4. Workload Measurements
ADDM analysis can only be done if the appropriate data
is available. In this section we discuss the performance
data that a system should collect to enable an ADDM
analysis. In this section we list the requirements imposed
by ADDM and describe the types of data we collect for
any analysis period. Refer to Section 6 for details about
how the data is stored and used in practice.

4.1 Data Collection Requirements

Our first and most important requirement is that we
collect all the data ADDM needs for each node in the
DBTime-graph. ADDM needs data for the following
operations:

• Quantifying the impact in database time of the
database components under consideration.

• Finding recommendations for alleviating root-
cause problems and estimating the potential
benefit of a recommendation in database time.

Our second requirement is the “minimal intrusion

principle”; it states that the act of collecting
measurements for performance diagnostics should not
cause a significant degradation in performance.
Obviously, the notion of “significant” is subjective and is
determined by business considerations—what kind of
server overhead is acceptable for the customer to get the
benefit of an ADDM analysis. Any measurement we take
has an associated cost. At the very least we need to
increment some counter or an in-memory variable. If we
need exact timing, we might need to use an operating
system call to get the current time. This cost might be

negligible in some cases, but could be prohibitive in
others.

In sections 4.2 to 4.5 we describe the different types of
data we collect for ADDM analysis. In all cases we
describe both the purpose of the data and how it conforms
to the minimal intrusion principle.

4.2 Database Time Measurements

The first priority in an ADDM analysis is to establish the
main components that consume significant database time.
The database server must be instrumented to measure the
amount of database time spent in specific operations
ADDM is interested in. This measurement is a cumulative
non-decreasing function of time. ADDM analysis is
always performed over a specific time interval called the
“analysis period” (e.g., yesterday between 10am and
11am). ADDM finds how much time was spent on a
specific operation by subtracting the measurement for the
beginning of the analysis period from the measurement
for the end of the analysis period.

We maintain measurements at various granularities so
an ADDM analysis can go from the symptoms (e.g.,
commit operations consumed significant database time) to
the root cause (e.g., write I/O to one of the log files was
very slow—possibly a hardware issue). We need to

maintain measurements at the coarse level—time spent in
all commit operations. We also need the finer
granularity—time spent in write I/O for each log file.

Direct measurements can only be done on database
operations that usually take significant time to finish. If
we try to measure the timing of numerous short operations
we are likely to violate the minimal intrusion principle.
The decision about which operations should be measured
should be based on the cost of measurement (i.e., how
much time it takes to start and end a timer) and the
expected length and quantity of such operations. For
example, measuring the total time spent in I/O operations
is reasonable because I/O operations take many orders of
magnitude more time than starting and ending a timer. On
the other hand, measuring the time we spend in the critical
section of a commonly used semaphore would be
prohibitively expensive. Our solution to capture short
duration operations is to use sampling. We use both
frequency based sampling, where we sample one
operation out of every N occurrences, and time based
sampling which is discussed in detail in the next section.

4.3 Active Session History

ADDM often needs a detailed description of the workload
to be able to find root-causes of problems and give

Sample
Number

User
Number Operation Details

1 1 Connect Using CPU
2 1 Execute Using CPU
2 2 Execute Waiting for read I/O of block 5 of Emp table
3 n Execute Waiting for lock on block 5 of Emp Table
4 2 Fetch Using CPU
4 n Execute Waiting for CPU

Figure 4: Active Session History Samples

User 1

User 2

Fetch
results

Session
connect

Execute
SQL

Execute
SQL

Execute
SQL

Session
disconnect

Fetch
results

Execute
SQL

Fetch
result

User n

Fetch
results

Fetch
results

Fetch
results

Fetch
results

Execute
SQL

Fetch
result

Execute
SQL

Fetch
result

Wall-clock time

.

. .

.
.

. .

.

Sample 1 Sample 2 Sample 4 Sample 5 Sample 3

A single row in the Active Session History table shown below

effective recommendations. It is not possible to collect a
complete system trace of operations since the amount of
data is very large and it will significantly affect database
performance. Our solution is to provide a time based
sample of all activity in the system. We call this sampled
data the “Active Session History” (ASH).

ASH is a collection of samples taken at regular time
intervals. Each sample contains information about what
the database server is doing on behalf of each connected
user (a.k.a. “session”) at the time of sampling. We only
collect data for sessions that are actively using the
database during the sample time. If a session is waiting
for the next user command, it does not appear in ASH for
the specific sample time.

Figure 4 illustrates a workload and the table in that
figure shows the resulting ASH samples. The samples in
ASH describe the database operation performed by each
session in great detail. For example, when a session is
waiting for I/O we can tell which database object is read,
what portion of it is read. This amount of detail enables
ADDM to drill down to very specific root-causes.

The time interval we use for ASH sampling should be
at least two orders of magnitude shorter than the time
interval used as an analysis period. This ensures that we
have at least hundreds of samples of specific session
states to analyze. If a specific operation consumes
significant database time (say more than a few percents of
database time) during the analysis period, there is a high
probability that this operation will appear in a significant
number of samples in ASH. This enables ADDM to
diagnose such operations even if we do not measure them
directly. The ASH sampling frequency should be chosen
with care. If sampling is too frequent, it might violate the
minimal intrusion principle. If sampling is infrequent,
ADDM may not be able to find the root-cause of a
problem or an effective recommendation, because there
may not be enough samples of the specific operation.

ADDM uses ASH for finding root-causes and
effective recommendations. For example, suppose we find
from exact database time measurements that the chief
source of contention in the system is on locks that deal
with space allocation to tables. We can use ASH to find
finer granularity of events like “which are the top tables
that experienced space allocation contention and what are
the types of SQL statements used for such contention?”
We might be able to determine that a specific table suffers
from contention due to INSERT statements and
recommend a partitioning scheme to alleviate the
problem. While time measurements might be able to lead
us to the specific type of locks that cause a problem, or
sometimes to the specific table, only ASH allows us to
perform a cross analysis with the types of SQL statements
that contended for the locks. Without ASH, ADDM could
not recommend the specific solution: partition a specific
table.

4.4 System Configuration

We also collect data that is not numeric in nature or that
can decrease with time. This data is usually about
database settings. We need to maintain a full log of
changes for this kind of data. Fortunately, database
settings do not change very often, so the cost of
maintaining a full log of changes does not cost much. This
type of data can be crucial to giving recommendations for
fixing specific problems. Examples of such data are:

• Size of memory components (like buffer cache)
• Number of CPUs used by the system.
• Special query optimizer settings.

The exact nature of the data depends on the
implementation of the database server and is outside the
scope of this paper.

4.5 Simulations

Sometimes, estimating the impact of a specific area of the
database requires a simulation of various possible
alternatives. For example, we might have significant
impact of read I/O operations because the buffer cache is
under-sized. The database time measurement is the time
we spent on read I/O operations. However, to find that
the buffer cache is the root-cause we must determine that
we spent time reading data blocks that were in the buffer
cache at some point in time and were removed to make
room for other data blocks. In other words, we need to
determine how many read I/O operations could have been
saved given an infinite buffer cache. Our solution is to
simulate how much database time would be saved when
the buffer cache is increased to various sizes and
recommend an optimal setting given the resources.

5. Database Time in Other Models
The definition of database time in Section 3.1 relies on a
simple computation model. The model is characterized
by the following limitations:

• Single Machine. This means that we do not have
a distributed system. Instead, we use a single
host machine for the database server.

• No Background Activity. This means that all
database work is done while the user is waiting
for a response.

• No Parallel Computation. Every user connection
corresponds to a single thread of computation in
the database server. This means that work done
on behalf of a user call cannot use more than one
CPU at the same time, wait for more than one
event at the same time, or wait for an event and
use a CPU at the same time.

Most database servers support computation models that
use distributed systems, parallel queries and background
activity. Therefore, we needed to establish ADDM’s goals
when each of these assumptions is violated.

5.1 Distributed Systems

The simplest distributed system has identical components.
This means that all the machines that are part of the
system are identical machines, running the same software,
have the same network connections, and use the same
types of I/O devices. In this simple case, all we need to do
is sum the database time observed on all machines to get
the total database time for the distributed system. Every
subdivision of database time (e.g., the time spent waiting
for I/O) is summed across all machines as well.

It is a lot more complicated when there are differences
between machines. In that case we need to find a common
currency between machines and not just between different
areas in the same server. For example, we cannot consider
one second of CPU usage on one machine equivalent to
one second of CPU usage on another machines if the two
CPUs have different computation speeds. We still sum all
the database times from the different machines because
this number still corresponds to the total amount time
spent by users waiting for a response from the database
server. We just need to consider that moving a thread of
computation from one machine to another may result in
changes to the total database time. For example, moving a
CPU heavy computation from a slow CPU to a fast CPU
is going to reduce database time if the two machines are
not CPU bound both before and after the move.

5.2 Background Activity

Background activity is an important component in an
Oracle server. For example, data blocks do not need to be
written to disk even after a transaction commits. It is
enough that the appropriate log records are written to
disk. Therefore, most write I/O to tables and indexes is
done as a background activity; no user waits for these
writes to complete.

We regard background activity as a set of threads of
computation. The time spent in these threads is not
counted in database time since no user waits for these
threads. However, statistics about resource usage by the
background must be maintained. When ADDM detects
that a resource is used too much, a possible
recommendation is to reduce the background activity that
uses the resource. For example, if the I/O sub-system is
used so heavily that I/O response time is both very slow
and responsible for most of the database time, we might
consider reducing the frequency of checkpoints.

5.3 Parallel Computation

The first problem we have with parallel computation is
how to measure database time. Parallel computation
implies that a single user connection is responsible for
multiple threads of computation, which may use multiple
CPUs and wait for multiple events or resources. Since
database time is a measurement of throughput, we must
consider all time spent by all the threads of computation
as part of database time. The only exception is when one

thread is waiting for another thread that belongs to the
same user connection. In that case we consider the wait
time as idle and we do not add it to database time. The
reason for this exception is that we try to gauge what the
database time would be if the computation were serialized
while maintaining the same execution plan. In that case,
all CPU usage and waits for external resources are still
parts of the computation. However, internal wait between
threads disappears from the computation.

Parallel computations are used when we need to
reduce the response time of a request. As is always the
case with parallel algorithms throughput is sacrificed to
get better response time. In many cases, the response time
of a specific user request is more important than the total
system throughput. ADDM advises the database
administrator how much extra database time is spent on
parallel computations compared to serial computation. In
this case we must consult the optimizer to find the best
serial execution plan and compare it to the parallel
execution plan that was actually used. This is a simulation
since we do not execute the serial plan and do not know
the exact cost in terms of database time.

5.4 Summary

We have seen how distributed systems, background
activity and parallel queries can complicate both the
notion of database time and the goal of an ADDM
analysis. These are not the only complications we
encountered and solved when implementing ADDM in
Oracle 10g. However, a complete list is outside the scope
of this paper. The general principle remains the same:
find a common currency to measure database throughput,
find ways to increase that throughput and improve the
performance of the database as users experience it.

6. ADDM’s Role in Self-Managing
Databases
ADDM is a central part of the manageability framework
for self-managing a database that was developed in Oracle
10g (see [ORM10]). This framework enables a
comprehensive tuning solution by providing the necessary
components. ADDM is a key component that serves as
the central intelligence for various tuning activities in the
system, like SQL Tuning [ORQ10] or Space
Fragmentation Analysis [ORS10], since it takes a holistic
view of the database system and identifies the top issues
affecting overall throughput. ADDM itself relies on the
framework to a large extent for ready access to the
performance measurements it needs.

The manageability solution in Oracle 10g is centered
around the three phases of the self-managing loop:
Observe, Diagnose, and Resolve. Each component
provided by the framework plays a key role in one or
more of these phases. These phases refer to a particular
activity (e.g.: a SQL tuning cycle), and there could be

many such activities occurring concurrently each in
different phases. Figure 5 and the subsequent sections
below illustrate the relationship between the main
components and how they interact with ADDM.

6.1 Observe Phase

This phase is automatic and continuous in Oracle 10g and
provides the data needed for analysis and feedback as a
result of the actions taken as part of the analysis. To
enable accurate system performance monitoring and
tuning it is imperative that the system under consideration
exposes relevant measurements and statistics. The
manageability framework allows for instrumentation of
the code to obtain precise timing information, and
provides a lightweight comprehensive data collection
mechanism to store these measurements for further
online or offline analysis.

The main component of this phase is the “Automatic
Workload Repository” (AWR). It is a persistent store of
performance data for Oracle10g. The database captures
system and performance data from in-memory views
every hour and stores it in AWR. Each collection is
referred to as a snapshot. Any pair of snapshots
determines an analysis period that can be used for an
ADDM analysis. The AWR is self-managing; it accepts
policies for data retention and proactively purges data
should it encounter space pressure.

The snapshot mechanism along with the
comprehensive data it collects solves the “first occurrence
analysis” requirement. ADDM runs automatically each
time a snapshot is taken, the period of analysis being
defined by the two most recent consecutive snapshots.

6.2 Diagnose Phase

The activities in this phase refer to the analysis of various
parts of the database system using the data in AWR or in
the in-memory views. Oracle 10g introduces a set of
advisors, ADDM being one of them, for analyzing and
optimizing the performance of its respective sub-
components. Of particular note is the fact that all the
advisors provide an impact in terms of Database Time for
the problems they diagnose. This allows for easy
comparison across advisors’ results.

ADDM consults these advisors during its analysis
depending on the amount of time and resources needed by
these advisors. If an advisor could potentially take a
substantial amount of time for its analysis, ADDM
generates a recommendation to invoke that specific
advisor instead. The user can then schedule this task when
appropriate.

The set of advisors that ADDM can invoke include
• SQL Tuning Advisor: tunes SQL statements by

improving the execution plan, by performing
cost based access path analysis and SQL
structure analysis.

• Segment Advisor: analyses space wastage by
objects due to internal and external
fragmentation.

• Memory Advisors: continuously monitor the
database instance and auto-tune the memory
utilization between the various memory pools.

6.3 Resolve Phase

The various advisors, after having performed their
analysis, provide as output a set of recommendations that
can be implemented or applied to the database. Each
recommendation is accompanied by a benefit, in database
time, that the workload would experience should the
recommendation be applied. The recommendations may
be automatically applied by the database (e.g., the
memory resizing by the memory advisors) or it may be
initiated manually. This is the Resolve phase.
 Applying recommendations to the system close an
iteration of that particular tuning loop. The influence of
the recommendations on the workload will then be
observed in future performance measurements. Further
tuning loops may be initiated until the desired level of
performance is attained.

7. Experiments and Results
It is not an easy task to test and quantify the results of
ADDM. The value of ADDM is in helping DBAs manage
the performance of their databases. Checking if ADDM
meets the task, we need to survey many customers that
already adapted Oracle 10g in a production or test
environment. It is too early after the release of Oracle
10g to perform such a survey. However, we provide three
examples of real ADDM usage in Sections 7.1 to 7.3.

AWR
In-memory
perf data

Recommendations

Apply to
system

ADDM Oracle 10g
Advisors

Auto Snapshot
Collection

Automatic
Performance

Diagnosis

Figure 5: ADDM and the Self-Managing
 Database framework

We used various scenarios to gauge the effectiveness of
ADDM.

Blind tests were performed in the initial testing phase;
performance tuning experts were asked to analyse and
make recommendations on running systems. In a majority
of cases ADDM produced comparable results and in some
cases ADDM’s recommendations produced greater
benefit than the experts’ recommendations.

As part of the testing performed internal to Oracle
Server Technologies group we have a number of tests in
which we introduced known ‘common faults’ and
application inefficiencies. When ADDM analysis was
performed on the data captured during these tests ADDM
correctly identified the fault in all cases.

High load stress testing is an integral part of the
testing of the database product at Oracle and the effect of
running all of the Oracle 10g manageability features was
measured. With both typical customer workloads and
highly tuned industry standard benchmarks the reduction
in throughput from enabling all of the manageability
features was approximately 3%. AWR and ADDM were
two of the features enabled. ADDM runs performed after
each AWR snapshot were available in a timely manner,
typically under ten seconds.

Although Oracle 10g was declared production in
January 2004 a number of internal production systems
were running the software for several months before this
date. ADDM has identified and correctly diagnosed a
number of performance issues in this time on these
systems.

7.1 Experience of Qualcomm

Qualcomm Centauri Application was upgraded from
Oracle version 8.1.7.4 to 10g RAC. While testing the
upgrade they found significant performance problems and
testers reported poor response times. The DBA looked at
the ADDM recommendations which highlighted a SQL
(update statement) that was causing over 90% of the
system load. They then ran SQL Tuning Advisor on the
statement and it recommended the creation of an index. It
was later found that the recommended index should have
been in place. The index was missing because a patch to
the application was applied to the production system but
not to the upgraded test system. Identifying the index
made problem diagnosis easy.

7.2 Experience in Oracle’s Bug Database

The Oracle Bug database is used daily by many thousands
of users and was one of the first production systems to
move to Oracle 10g. The system runs on an 8 CPU PA-
RISC HP machine. After upgrading to Oracle 10g users
experienced poor performance. ADDM reported that users
were spending a large proportion of their time waiting for
free buffer waits and recommended examining the I/O
subsystem for write performance (this type of problem

happens when the buffer cache is filled with dirty buffers
and faster I/O should solve the problem). When the
System Administrator looked at the I/O subsystem he
found that the asynchronous I/O was incorrectly
configured causing asynchronous I/O requests to fail and
then be performed synchronously leading to extremely
slow IO times.

7.3 Experience of Oracle Applications QA Testing

An Applications Development DBA reported that a user
said that the system was slow. Unfortunately there was no
timescale or details given. Investigation was made harder
by the fact that the users of the system and the DBAs
investigating the slowdown where on opposite sides of the
world, 12 time zones apart.
Looking at ADDM reports there were a couple of one
hour periods in which the time spent in the database was
significantly higher. Both of these ADDM reports showed
that most of the time was spent in parsing and that the
parsing was caused by the application generating large
numbers of SQL statements containing literal string
values. (This problem is Oracle’s equivalent of using
many similar SQL statements instead of a stored
procedure. The cost of such configurations is time spent
in parsing, optimizing and compiling the SQL statements-
in Oracle’s terminology it is called “hard parse”). The
recommendation from ADDM was to modify the
application to use bind variables rather than literals or to
change a database configuration parameter to
automatically convert the literals into binds. When
application development was approached about the literal
usage it was discovered that this QA system was running
a 'known bad' internal build of the application and
upgrading to the correct build removed the issue.

8. Conclusion
In this paper we described how Oracle 10g offers a
comprehensive tuning solution by providing automatic
performance diagnosis and tuning via ADDM. This
addresses the ever-increasing performance tuning
challenges currently faced by database administrators.

We defined a new measure called Database Time that
allows for comparison of the performance impact of
various database components with each other. We also
described what types of performance measurements are
needed for accurate performance diagnosis, as well as
how we obtain them in a manner that has marginal impact
on the system. This solution also obviates the need to
reproduce a problem in order to diagnose it.

ADDM incorporates a holistic view of the system, and
by using database time in conjunction with the two-
dimensional DBTime-graph it is able to quickly isolate
the root causes of performance bottlenecks affecting the
throughput of the system. ADDM provides specific
actionable recommendations with an estimate of the
benefit for alleviating performance problems.

The results of running ADDM on a variety of
workloads and production systems within Oracle
demonstrates the benefits and practicality of our approach
for throughput tuning.

Acknowledgements
The authors would like to thank all the members of the
Server Manageability team at Oracle for their valuable
feedback in all stages of this project. We would like to
thank Connie Green for providing helpful comments on
an earlier version of this paper.

References
[BE03] D. G. Benoit. Automatic Diagnosis of Performance
Problems in Database Management Systems, PhD Thesis,
Queen’s University, Canada, 2003.

[BR94] K. P. Brown, M. Mehta, M.J. Carey, M. Livny: Towards
Automated Performance Tuning for Complex Workloads. 20th
International Conference on Very Large Data Bases, Santiago,
Chile, 1994.

[CH97] S. Chaudhuri, V. Narasayya: An Efficient, Cost-driven
Index Tuning Wizard for Microsoft SQL Server, 23rd
International Conference on Very Large Data Bases, Athens,
Greece, 1997.

[CH00] S. Chaudhuri and G. Weikum: Rethinking Database
System Architecture: Towards a Self-tuning RISC-style
Database System. 26th International Conference on Very Large
Data Bases, Cairo, Egypt, 2000.

[DA02] B. Dageville, M. Zait: SQL Memory Management in
Oracle9i, 28th International Conference on Very Large Data
Bases, Hong Kong, China, 2002.

[EL03] S. Elnaffar, W. Powley, D. Benoit, P. Martin: Today’s
DBMSs: How Autonomic Are They? Proceedings of the First
IEEE International Autonomic Systems Workshop, Prague,
DEXA 2003.

[GA96] Gartner Group: Total Cost of Ownership: The Impact of
System Management Tools, 1996.

[HE97] J. L. Hellerstein. Automated Tuning Systems: Beyond
Decision Support. In the proceedings on Computer
Measurement Group, 1997

[HU02] Hurwitz Group: Achieving Faster Time-to-Benefit and
Reduced TCO with Oracle Certified Configurations, March
2002.

[IBG8] IBM Corporation: DB2 Universal Database Version 8
Guide to GUI Tools for Administration and Development, IBM
Corporation, 2003.

[IBP8] IBM Corporation: DB2 Universal Database Version 8
Administration Guide: Performance, IBM Corporation, 2003.

[MSPD] Microsoft Corporation: RDBMS Performance Tuning
Guide for Data Warehousing, Chapter 20, SQL Server 2000
Resource Kit.

[ORM9] Oracle Corporation: Oracle 9i Database Manageability,
Oracle White Paper,
http://www.oracle.com/technology/products/manageability/data
base/pdf/Oracle9iManageabilityBWP.pdf

[ORM10] Oracle Corporation: Oracle Database 10g: The Self-
Managing Database, Oracle White Paper,
http://www.oracle.com/technology/products/manageability/data
base/pdf/twp03/TWP_manage_self_managing_database.pdf

[ORP8] Oracle Corporation: Oracle 8i Designing and Tuning for
Performance Release 2, Oracle 8i Documentation,
http://tahiti.oracle.com

[ORP9] Oracle Corporation: Oracle 9i Database Performance
Tuning Guide and Reference, Oracle 9i Documentation,
http://tahiti.oracle.com

[ORQ9] Oracle Corporation: Query Optimization in Oracle 9i,
Oracle White Paper,
http://www.oracle.com/technology/products/bi/pdf/o9i_optimiza
tion_twp.pdf

[ORQ10] Oracle Corporation: The Self-Managing Database:
Guided Application and SQL Tuning, Oracle White Paper,
http://www.oracle.com/technology/products/manageability/data
base/pdf/twp03/TWP_manage_automatic_SQL_tuning.pdf

[ORS10] Oracle Corporation: The Self-Managing Database:
Proactive Space and Schema Object Management, Oracle
Presentation,
http://www.oracle.com/technology/products/manageability/data
base/pdf/ow03p/40170p.pdf

[ORSP] Oracle Corporation: Diagnosing Performance
Bottlenecks using Statspack and The Oracle Performance
Method, Oracle White Paper,
http://www.oracle.com/technology/deploy/performance/pdf/stats
pack_opm4.pdf

[ORSP2] Oracle Corporation: Diagnosing Performance Using
Statspack, Oracle White Paper,
http://www.oracle.com/technology/deploy/performance/pdf/stats
pack.pdf

[WE94] G. Weikum, C. Hasse, A. Mönkeberg, P. Zabback: The
COMFORT Automatic Tuning Project, Information Systems,
Vol. 19, No. 5, pp. 381-432, 1994.

[WE02] G. Weikum, A. Mönkeberg, C. Hasse, P. Zabback:
Selftuning Database Technology and Information Services:
From Wishful Thinking to Viable Engineering, 28th
International Conference on Very Large Data Bases, Hong
Kong, China, 2002.

