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Abstract 

Performance tuning in modern database systems 
requires a lot of expertise, is very time 
consuming and often misdirected. Tuning 
attempts often lack a methodology that has a 
holistic view of the database. The absence of 
historical diagnostic information to investigate 
performance issues at first occurrence 
exacerbates the whole tuning process often 
requiring that problems be reproduced before 
they can be correctly diagnosed.  

In this paper we describe how Oracle 
overcomes these challenges and provides a way 
to perform automatic performance diagnosis and 
tuning. We define a new measure called 
‘Database Time’ that provides a common 
currency to gauge the performance impact of any 
resource or activity in the database. We explain 
how the Automatic Database Diagnostic Monitor 
(ADDM) automatically diagnoses the 
bottlenecks affecting the total database 
throughput and provides actionable 
recommendations to alleviate them. We also 
describe the types of performance measurements 
that are required to perform an ADDM analysis. 
Finally we show how ADDM plays a central role 
within Oracle 10g’s manageability framework to 
self-manage a database and provide a 
comprehensive tuning solution. 

1.   Introduction 
With the advent of web business, system performance is 
more important to businesses than ever before. A poorly 
performing web site is just as bad as one that is actually 

down, because users get frustrated and are unlikely to 
return. Databases are an integral part of these high profile 
systems. With the decreasing costs of computer hardware, 
businesses are building more and bigger databases, and 
the database administrators (DBAs) are being asked to 
take on more and larger databases.  

Database systems typically have a plethora of 
measurements and statistics available about their 
operation. Often many individual components maintain 
separate sets of measurements and it can be hard to get an 
overall view of what is happening in the database. The 
many sets of measurements can lead to data overload for 
the DBA who is tasked with analysing a problem.  

Identification of the root cause of a performance 
problem is not easy [WE02, CH00, HE97, BR94].  It is 
not uncommon for DBAs to spend large amounts of time 
and resources fixing performance symptoms, only to find 
that this had marginal effect on system performance. 
Often a symptom is treated mainly because the DBA has 
seen that symptom before and knows how to treat it. Lack 
of a holistic view of the database leads to incorrect 
diagnosis and misdirected tuning efforts resulting in over-
configured systems increasing the total cost of ownership 
[HU02, CH00, GA96]. 

Even when ‘correct’ analysis is performed it is often 
found that the available data stops short of what is 
required to fully diagnose the root cause of the problem 
and in order to complete the diagnosis the problem must 
be reproduced. Reproducing problems is sometimes non-
trivial and can range from simply asking a user to perform 
an operation again, to requiring the building of a copy of 
the database, which may take weeks to set-up. Many 
times performance issues go unresolved because it is not 
regarded as cost effective to spend the time and resources 
to reproduce the problem. Often, the issue is dropped and 
the DBA hopes that the problem will not reoccur. In most 
cases, the mechanisms provided to capture detailed 
information required to be able to fully analyse a problem 
are not designed to be non-intrusive and have a significant 
overhead. Sometimes tuning experts or ‘gurus’ are called 
in to try and resolve a problem. Specialist skills and 
expertise are required because there are many areas where 
value judgments and rules-of-thumb are involved.  
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One of the things that makes performance tuning 
difficult is that the performance of different components 
of the database is often measured using unrelated metrics 
like buffer hit-ratio, transactions per second and average 
I/O latency. Such unrelated metrics make it infeasible to 
weigh the performance impact of one component of the 
database with the impact of others components. Tuning 
actions that are solely based on such metrics have a 
tendency either to make the DBAs believe that the 
database needs excessive hardware or to make just one 
component of the database perform better with negligible 
effect on the total database throughput. 

Keeping these limitations in mind, we built the 
Automatic Database Diagnostic Monitor (ADDM) in 
Oracle 10g. ADDM automates the entire process of 
diagnosing performance issues and suggests relevant 
tuning recommendations with the primary objective of 
maximizing the total database throughput. 

Modern database systems have complicated 
interactions between their sub-components and have the 
ability to work with a variety of applications. This results 
in a very large list of potential performance issues such 
automatic diagnosis solutions could identify. Also, as new 
database technologies and applications are invented and 
older ones are obsoleted, it is pivotal that automatic 
diagnostic and tuning solutions can easily be adapted to 
accommodate such changes.  

The objectives of an automatic performance diagnosis 
and tuning solution can be summarized as follows: 

• Should posses a holistic view of the database and 
understand the interactions between various 
database components. 

• Should be capable of distinguishing symptoms 
from the actual root-cause of performance 
bottlenecks. 

• Should provide mechanisms to diagnose 
performance issues on their first occurrence. 

• Should easily keep up with changing 
technologies. 

 
The remainder of the paper is organized as follows: 

We discuss related work in both academic research and 
commercially available databases in Section 2. We define 
a new measure, Database Time, and describe in detail our 
methodology to solve this problem in Section 3. We 
discuss the various measurements that were required to 
implement our solution in Section 4. We extend our 
definition of Database Time to other models in Section 5 
and explain how ADDM plays a central role in Oracle 
10g’s self-managing framework in Section 6. We present 
the experiments we used to validate our implementation 
and their results in Section 7. Finally, we summarize our 
conclusions in Section 8. 

2.   Related Work 
The COMFORT project used an online feedback control 
loop to solve individual tuning issues like load control for 
locking, dynamic data placement among others [WE02, 
WE94]. Automated tuning systems have been proposed 
[HE97] that employ a feedback control mechanism 
layered on top of a target system. A different school of 
thought suggests that current database systems have too 
many features, unpredictable performance and very low 
“gain/pain ratio”, and RISC-type simplification of 
database functionality is crucial to achieve automatic 
tuning [WE02, CH00]. 

Oracle’s previous solution for performance tuning was 
Statspack [ORP8, ORP9, ORSP]. Statspack is a tool that 
takes snapshots of database performance statistics and 
generates reports across a pair of snapshots. Though 
Statspack reports reduced the time it took for DBAs to 
diagnose performance issues [ORSP2], it still left the 
interpretation of the report and the actual root-cause 
identification to the DBAs.  Oracle 9i has other self-
optimizing features like dynamic runtime query 
optimization [ORQ9], self-configuring features for space 
and memory management [DA02, ORM9, EL03]. Refer 
to Section 6 for a description of various Oracle 10g’s 
manageability features like “SQL Tuning Advisor” and 
“Segment Advisor”. IBM DB2 version 8.1 has features 
like “Health Center” for database monitoring and 
“Configuration Assistant” to assist DBAs in database 
configuration [IBP8, IBG8]. Similarly, SQL Server 2000 
provides performance tools like “Index Tuning Wizard” 
and “SQL Query Analyzer” to help the DBA achieve 
individual performance goals and has monitoring tools 
like “System Monitor objects” [CH97, MSPD].  

Commercially available databases have features to 
manage some of their sub-components automatically, 
mechanisms to actively monitor database performance, 
and tools that make it easier for the DBA to achieve some 
specific performance goals. However, none of them (until 
Oracle 10g) have a performance diagnosis and tuning 
solution that automatically identifies the root-causes 
affecting total database throughput. 

3.   Automatic Performance Diagnosis 
Performance of various components of the database are 
measured using different metrics. For example, the 
efficiency of the data-block buffer cache is expressed as a 
percentage in buffer hit-ratio; the I/O subsystem is 
measured using average read and write latencies; the 
database throughput is measured using transactions-per-
second. However, using these metrics, finding the 
performance impact of a particular component over the 
total database throughput is extremely hard, if not 
infeasible. For example, determining by how much would 
transactions-per-second decrease if the average I/O 
latency becomes twice as long is not trivial. 



One of the first objectives of this project was to define 
a common currency that can be used to measure the 
performance impact of any component within the 
database. It then becomes possible to be able to compare 
the impact of any two database components. For example, 
one would then be able to compare the performance 
impact due to an under-sized data-block buffer cache with 
the performance impact due to a badly written SQL 
statement. For this purpose, we define a measure called 
‘Database Time’ that would serve as a common currency.  

3.1   Database Time 

Database time is defined as the sum of the time spent 
inside the database processing user requests. Figure 1 
illustrates a simple scenario of a single user submitting a 
request. User’s response time is the time interval between 
the instant the request is sent and the instant the response 

is received. The database time involved in that user 
request is only a portion of that user’s response time that 
is spent inside the database. 

Figure 2 illustrates database time as it is summed over 
multiple users and each user is performing a series of 
operations resulting in a series of requests to the database. 
It can be seen from Figure 2 that database time is directly 
proportional to the number and duration of user requests 
and can be higher or lower than the corresponding wall-
clock time. 

Using database time as a measure, one should be able 
to gauge the performance impact of any entity of the 
database. For example, the performance impact of an 
under-sized buffer cache would be measured as the total 
database time spent in performing additional I/O requests 
that could have been avoided if the buffer cache was 
larger. 
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Figure 2: Database time defined as the sum of the time spent in processing all user requests 
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Figure 1: Database time from a single user’s perspective. 
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Database time is simply a measurement of the total 
amount of work done by the database (analogous to the SI 
unit ‘Joule’ used in Physics to measure energy or work 
done) and the rate at which the database time is consumed 
is the database load average which is analogous to the OS 
load average (measured as ‘Database Time’/second this 
unit is analogous to the SI unit ‘Watt’ or ‘Joules/second’ 
used in Physics to measure power). The objective of 
ADDM is to reduce the amount of database time spent on 
a given workload, which is analogous to consuming less 
energy to perform the same task. Identifying the 
component contributing the most database time is 
equivalent to finding the single database component that 
when tuned will provide the greatest benefit. In other 
words, if we look for ways to process a given set of user 
requests while consuming the least amount of database 
time, we are simply looking for the most efficient way to 
accomplish the given task. 

ADDM uses database time to identify database 
components that require investigation and also to quantify 
performance bottlenecks.  

Database systems often have models or mechanisms, 
like background processes or parallel queries, in which 
the definition of the database time is more complex. In 
Section 5 we discuss database time definitions for these 
models. 

3.2   DBTime-graph and ADDM Methodology 

The first step in automatic performance tuning is to 
correctly identify the causes of performance problems. 
Only when the root-cause of the performance problem is 
correctly identified, it is possible to explore effective 
tuning recommendations to solve or alleviate the issue. 

ADDM looks at the database time spent in two 
independent dimensions.  

• The first dimension looks at the database time 
spent in various phases of processing user 
requests. This dimension includes categories like 
‘connecting to the database’, ‘optimizing SQL 
statements’, and ‘executing SQL statements’.  

• The second dimension looks at the database time 
spent using or waiting for various database 
resources used in processing user requests. The 
database resources considered in this dimension 
include both hardware resources, like CPU and 
I/O devices, and software resources like database 
locks and application locks.  

For a detailed analysis on how we actually measure 
the database time spent on various categories mentioned 
here refer to Section 4. 

To perform automatic diagnosis, ADDM looks at the 
database time spent in each category under both these 
dimensions and drills down into the categories that had 
consumed significant database time. This two-
dimensional drill down process can be represented using a 
directed-acyclic-graph as shown in Figure 3, which we 
call the “DBTime-graph”. 

It should be noted that this DBTime-graph is not a 
decision tree for a rule-based diagnosis system, where a 
set of rules is organized in the form of a decision tree and 
tree is traversed either to find the goal given a particular 
set of data or to find the data given a particular goal 
[BE03]. The DBTime-graph has various properties that 
differentiates itself from rule-based decision trees:  

• Each node in this graph looks at the amount of 
database time consumed by a particular database 
component or resource. 

• All nodes in this graph are gauged with the same 
measure - database time. 
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Figure 3: Sample DBTime graph 
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• All the children of a particular node are 
unconditionally explored whenever the database 
time spent in that node is significant. 

• Database time attributed to a particular node 
should be completely contained in the database 
time attributed to each of its parents.  

Any node that complies with all the properties above 
can be added to the DBTime-graph making it easy to 
maintain with changing technologies, unlike the decision 
tree of a rule-based diagnosis system [BE03]. 

Performance problems often attribute database time 
across many categories in one dimension but not the 
other. For example, a database with insufficient CPU 
capacity will slow down all phases involved in processing 
user requests, which is ADDM’s first dimension. 

However, it would be evident from the second 
dimension that the top performance problem affecting the 
database is insufficient CPU capacity. This two 
dimensional view of looking where the database time is 
consumed gives ADDM a very good judgment in 
zooming in to the more significant performance issues.  

ADDM explores this DBTime-graph starting at the 
root-node and exploring all the children of a node if the 
database time consumed by the component is significant. 
Branch nodes in this graph identify the performance 
impact of what is usually a symptom of some 
performance bottleneck. Whereas the terminal nodes 
identify particular root-causes that can explain all the 
symptoms that were significant along the path in which 
the terminal node was reached. For example, in Figure 3 
the branch node “I/O Capacity” would measure database 
time spent in all I/O requests, which could be significant 
due to various bottlenecks. Whenever significant database 
time was spent in I/O requests all the children of the “I/O 
Capacity” node would be explored, which are the two 
terminal nodes in this example. The “Undersized Buffer 
Cache” node would look for a particular root-cause, 
which is to see if the data-block buffer cache was 
undersized causing excessive number of I/O requests. The 
“Insufficient I/O Bandwidth” node would look for 
hardware issues that could slow down all I/O requests. 

Once a terminal node identifies a root-cause, it 
measures the impact of the root-cause in database time. It 
then explores ways that can solve or alleviate the problem 
identified. It uses the various measurements that are 
discussed in Section 4 to come up with actionable tuning 
recommendations. The nodes also estimate the maximum 
possible database time that could be saved by the 
suggested tuning recommendations, which need not 
necessarily be equal to the database time attributed to the 
root-cause.  

In addition to identifying bottlenecks, ADDM also 
identifies key components that were not experiencing any 
performance bottlenecks. The idea is to prevent the DBA 
from tuning components that have marginal effect on the 
total database throughput. 

It is interesting to note that ADDM need not traverse 
the entire DBTime-graph; it can prune the uninteresting 
sub-graphs. This can be achieved only because the 
DBTime-graph is constructed in a way that a node’s 
database time is contained in the database time attributed 
to its parents. By pruning and not traversing uninteresting 
sub-graphs, which represent database components that are 
not consuming significant database time, the cost of an 
ADDM analysis depends only on the number of actual 
performance problems that were affecting the database. 
The cost of the analysis does not depend on the actual 
load on the database or the number of issues ADDM 
could potentially diagnose. 

The DBTime-graph also makes it very easy for 
ADDM to adapt to new requirements to look for new 
root-causes for performance problems without affecting 
the cost of the analysis. Evidently, removing obsolete 
terminal nodes is also very simple to do. 

At the end of the analysis ADDM reports the top root-
causes identified, ranked by the performance impact 
attributed with each root-cause along with the respective 
tuning recommendations. 

4.   Workload Measurements 
ADDM analysis can only be done if the appropriate data 
is available. In this section we discuss the performance 
data that a system should collect to enable an ADDM 
analysis.  In this section we list the requirements imposed 
by ADDM and describe the types of data we collect for 
any analysis period. Refer to Section 6 for details about 
how the data is stored and used in practice. 

4.1   Data Collection Requirements 

Our first and most important requirement is that we 
collect all the data ADDM needs for each node in the 
DBTime-graph. ADDM needs data for the following 
operations: 

• Quantifying the impact in database time of the 
database components under consideration.  

• Finding recommendations for alleviating root-
cause problems and estimating the potential 
benefit of a recommendation in database time. 

 
Our second requirement is the “minimal intrusion 

principle”; it states that the act of collecting 
measurements for performance diagnostics should not 
cause a significant degradation in performance. 
Obviously, the notion of “significant” is subjective and is 
determined by business considerations—what kind of 
server overhead is acceptable for the customer to get the 
benefit of an ADDM analysis. Any measurement we take 
has an associated cost. At the very least we need to 
increment some counter or an in-memory variable. If we 
need exact timing, we might need to use an operating 
system call to get the current time. This cost might be 



negligible in some cases, but could be prohibitive in 
others.  

In sections 4.2 to 4.5 we describe the different types of  
data we collect for ADDM analysis. In all cases we 
describe both the purpose of the data and how it conforms 
to the minimal intrusion principle. 

4.2   Database Time Measurements 

The first priority in an ADDM analysis is to establish the 
main components that consume significant database time. 
The database server must be instrumented to measure the 
amount of database time spent in specific operations 
ADDM is interested in. This measurement is a cumulative 
non-decreasing function of time. ADDM analysis is 
always performed over a specific time interval called the 
“analysis period” (e.g., yesterday between 10am and 
11am). ADDM finds how much time was spent on a 
specific operation by subtracting the measurement for the 
beginning of the analysis period from the measurement 
for the end of the analysis period.   

We maintain measurements at various granularities so 
an ADDM analysis can go from the symptoms (e.g., 
commit operations consumed significant database time) to 
the root cause (e.g., write I/O to one of the log files was 
very slow—possibly a hardware issue). We need to 

maintain measurements at the coarse level—time spent in 
all commit operations. We also need the finer 
granularity—time spent in write I/O for each log file.   

Direct measurements can only be done on database 
operations that usually take significant time to finish. If 
we try to measure the timing of numerous short operations 
we are likely to violate the minimal intrusion principle. 
The decision about which operations should be measured 
should be based on the cost of measurement (i.e., how 
much time it takes to start and end a timer) and the 
expected length and quantity of such operations. For 
example, measuring the total time spent in I/O operations 
is reasonable because I/O operations take many orders of 
magnitude more time than starting and ending a timer. On 
the other hand, measuring the time we spend in the critical 
section of a commonly used semaphore would be 
prohibitively expensive. Our solution to capture short 
duration operations is to use sampling. We use both 
frequency based sampling, where we sample one 
operation out of every N occurrences, and time based 
sampling which is discussed in detail in the next section. 

4.3   Active Session History 

ADDM often needs a detailed description of the workload 
to be able to find root-causes of problems and give 
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2 2 Execute Waiting for read I/O of block 5 of Emp table 
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effective recommendations. It is not possible to collect a 
complete system trace of operations since the amount of 
data is very large and it will significantly affect database 
performance. Our solution is to provide a time based 
sample of all activity in the system.  We call this sampled 
data the “Active Session History” (ASH).  

ASH is a collection of samples taken at regular time 
intervals. Each sample contains information about what 
the database server is doing on behalf of each connected 
user (a.k.a. “session”) at the time of sampling. We only 
collect data for sessions that are actively using the 
database during the sample time. If a session is waiting 
for the next user command, it does not appear in ASH for 
the specific sample time. 

Figure 4 illustrates a workload and the table in that 
figure shows the resulting ASH samples. The samples in 
ASH describe the database operation performed by each 
session in great detail. For example, when a session is 
waiting for I/O we can tell which database object is read, 
what portion of it is read.  This amount of detail enables 
ADDM to drill down to very specific root-causes.  

The time interval we use for ASH sampling should be 
at least two orders of magnitude shorter than the time 
interval used as an analysis period. This ensures that we 
have at least hundreds of samples of specific session 
states to analyze. If a specific operation consumes 
significant database time (say more than a few percents of 
database time) during the analysis period, there is a high 
probability that this operation will appear in a significant 
number of samples in ASH. This enables ADDM to 
diagnose such operations even if we do not measure them 
directly. The ASH sampling frequency should be chosen 
with care. If sampling is too frequent, it might violate the 
minimal intrusion principle. If sampling is infrequent, 
ADDM may not be able to find the root-cause of a 
problem or an effective recommendation, because there 
may not be enough samples of the specific operation.  

ADDM uses ASH for finding root-causes and 
effective recommendations. For example, suppose we find 
from exact database time measurements that the chief 
source of contention in the system is on locks that deal 
with space allocation to tables. We can use ASH to find 
finer granularity of events like “which are the top tables 
that experienced space allocation contention and what are 
the types of SQL statements used for such contention?” 
We might be able to determine that a specific table suffers 
from contention due to INSERT statements and 
recommend a partitioning scheme to alleviate the 
problem.  While time measurements might be able to lead 
us to the specific type of locks that cause a problem, or 
sometimes to the specific table, only ASH allows us to 
perform a cross analysis with the types of SQL statements 
that contended for the locks. Without ASH, ADDM could 
not recommend the specific solution: partition a specific 
table.  

4.4   System Configuration 

We also collect data that is not numeric in nature or that 
can decrease with time. This data is usually about 
database settings.  We need to maintain a full log of 
changes for this kind of data. Fortunately, database 
settings do not change very often, so the cost of 
maintaining a full log of changes does not cost much. This 
type of data can be crucial to giving recommendations for 
fixing specific problems. Examples of such data are: 

• Size of memory components (like buffer cache) 
• Number of CPUs used by the system. 
• Special query optimizer settings.  

The exact nature of the data depends on the 
implementation of the database server and is outside the 
scope of this paper.    

4.5   Simulations 

Sometimes, estimating the impact of a specific area of the 
database requires a simulation of various possible 
alternatives. For example, we might have significant 
impact of read I/O operations because the buffer cache is 
under-sized. The database time measurement is the time 
we spent on read I/O operations.  However, to find that 
the buffer cache is the root-cause we must determine that 
we spent time reading data blocks that were in the buffer 
cache at some point in time and were removed to make 
room for other data blocks. In other words, we need to 
determine how many read I/O operations could have been 
saved given an infinite buffer cache. Our solution is to 
simulate how much database time would be saved when 
the buffer cache is increased to various sizes and 
recommend an optimal setting given the resources.   

5.   Database Time in Other Models 
The definition of database time in Section 3.1 relies on a 
simple computation model.  The model is characterized 
by the following limitations: 

• Single Machine. This means that we do not have 
a distributed system. Instead, we use a single 
host machine for the database server. 

• No Background Activity.  This means that all 
database work is done while the user is waiting 
for a response. 

• No Parallel Computation. Every user connection 
corresponds to a single thread of computation in 
the database server. This means that work done 
on behalf of a user call cannot use more than one 
CPU at the same time, wait for more than one 
event at the same time, or wait for an event and 
use a CPU at the same time.  

Most database servers support computation models that 
use distributed systems, parallel queries and background 
activity. Therefore, we needed to establish ADDM’s goals 
when each of these assumptions is violated.    



5.1   Distributed Systems 

The simplest distributed system has identical components. 
This means that all the machines that are part of the 
system are identical machines, running the same software, 
have the same network connections, and use the same 
types of I/O devices. In this simple case, all we need to do 
is sum the database time observed on all machines to get 
the total database time for the distributed system.  Every 
subdivision of database time (e.g., the time spent waiting 
for I/O) is summed across all machines as well.  

It is a lot more complicated when there are differences 
between machines. In that case we need to find a common 
currency between machines and not just between different 
areas in the same server. For example, we cannot consider 
one second of CPU usage on one machine equivalent to 
one second of CPU usage on another machines if the two 
CPUs have different computation speeds. We still sum all 
the database times from the different machines because 
this number still corresponds to the total amount time 
spent by users waiting for a response from the database 
server. We just need to consider that moving a thread of 
computation from one machine to another may result in 
changes to the total database time. For example, moving a 
CPU heavy computation from a slow CPU to a fast CPU 
is going to reduce database time if the two machines are 
not CPU bound both before and after the move.  

5.2   Background Activity 

Background activity is an important component in an 
Oracle server. For example, data blocks do not need to be 
written to disk even after a transaction commits. It is 
enough that the appropriate log records are written to 
disk. Therefore, most write I/O to tables and indexes is 
done as a background activity; no user waits for these 
writes to complete.  

We regard background activity as a set of threads of 
computation. The time spent in these threads is not 
counted in database time since no user waits for these 
threads. However, statistics about resource usage by the 
background must be maintained. When ADDM detects 
that a resource is used too much, a possible 
recommendation is to reduce the background activity that 
uses the resource. For example, if the I/O sub-system is 
used so heavily that I/O response time is both very slow 
and responsible for most of the database time, we might 
consider reducing the frequency of checkpoints.  

5.3   Parallel Computation  

The first problem we have with parallel computation is 
how to measure database time. Parallel computation 
implies that a single user connection is responsible for 
multiple threads of computation, which may use multiple 
CPUs and wait for multiple events or resources. Since 
database time is a measurement of throughput, we must 
consider all time spent by all the threads of computation 
as part of database time. The only exception is when one 

thread is waiting for another thread that belongs to the 
same user connection. In that case we consider the wait 
time as idle and we do not add it to database time.  The 
reason for this exception is that we try to gauge what the 
database time would be if the computation were serialized 
while maintaining the same execution plan. In that case, 
all CPU usage and waits for external resources are still 
parts of the computation. However, internal wait between 
threads disappears from the computation.  

Parallel computations are used when we need to 
reduce the response time of a request. As is always the 
case with parallel algorithms throughput is sacrificed to 
get better response time. In many cases, the response time 
of a specific user request is more important than the total 
system throughput. ADDM advises the database 
administrator how much extra database time is spent on 
parallel computations compared to serial computation. In 
this case we must consult the optimizer to find the best 
serial execution plan and compare it to the parallel 
execution plan that was actually used. This is a simulation 
since we do not execute the serial plan and do not know 
the exact cost in terms of database time.  

5.4   Summary 

We have seen how distributed systems, background 
activity and parallel queries can complicate both the 
notion of database time and the goal of an ADDM 
analysis. These are not the only complications we 
encountered and solved when implementing ADDM in 
Oracle 10g. However, a complete list is outside the scope 
of this paper.  The general principle remains the same: 
find a common currency to measure database throughput, 
find ways to increase that throughput and improve the 
performance of the database as users experience it. 

6.   ADDM’s Role in Self-Managing 
Databases 
ADDM is a central part of the manageability framework 
for self-managing a database that was developed in Oracle 
10g (see [ORM10]). This framework enables a 
comprehensive tuning solution by providing the necessary 
components. ADDM is a key component that serves as 
the central intelligence for various tuning activities in the 
system, like SQL Tuning [ORQ10] or Space 
Fragmentation Analysis [ORS10], since it takes a holistic 
view of the database system and identifies the top issues 
affecting overall throughput. ADDM itself relies on the 
framework to a large extent for ready access to the 
performance measurements it needs. 

The manageability solution in Oracle 10g is centered 
around the three phases of the self-managing loop: 
Observe, Diagnose, and Resolve. Each component 
provided by the framework plays a key role in one or 
more of these phases.  These phases refer to a particular 
activity (e.g.: a SQL tuning cycle), and there could be 



many such activities occurring concurrently each in 
different phases. Figure 5 and the subsequent sections 
below illustrate the relationship between the main 
components and how they interact with ADDM. 

6.1   Observe Phase 

This phase is automatic and continuous in Oracle 10g and 
provides the data needed for analysis and feedback as a 
result of the actions taken as part of the analysis. To 
enable accurate system performance monitoring and 
tuning it is imperative that the system under consideration 
exposes relevant measurements and statistics. The 
manageability framework allows for instrumentation of 
the code to  obtain precise timing information, and 
provides a lightweight comprehensive data collection 
mechanism to store these measurements for  further 
online or offline analysis. 

The main component of this phase is the “Automatic 
Workload Repository” (AWR). It is a persistent store of 
performance data for Oracle10g. The database captures 
system and performance data from in-memory views 
every hour and stores it in AWR. Each collection is 
referred to as a snapshot. Any pair of snapshots 
determines an analysis period that can be used for an 
ADDM analysis. The AWR is self-managing; it accepts 
policies for data retention and proactively purges data 
should it encounter space pressure. 

The snapshot mechanism along with the 
comprehensive data it collects solves the “first occurrence 
analysis” requirement. ADDM runs automatically each 
time a snapshot is taken, the period of analysis being 
defined by the two most recent consecutive snapshots. 

6.2 Diagnose Phase 

The activities in this phase refer to the analysis of various 
parts of the database system using the data in AWR or in 
the in-memory views. Oracle 10g introduces a set of 
advisors, ADDM being one of them, for analyzing and 
optimizing the performance of its respective sub-
components. Of particular note is the fact that all the 
advisors provide an impact in terms of Database Time for 
the problems they diagnose. This allows for easy 
comparison across advisors’ results. 

ADDM consults these advisors during its analysis 
depending on the amount of time and resources needed by 
these advisors. If an advisor could potentially take a 
substantial amount of time for its analysis, ADDM  
generates a recommendation to invoke that specific 
advisor instead. The user can then schedule this task when 
appropriate.  

The set of advisors that ADDM can invoke include 
• SQL Tuning Advisor: tunes SQL statements by 

improving the execution plan, by performing 
cost based access path analysis and SQL 
structure analysis. 

• Segment Advisor: analyses space wastage by 
objects due to internal and external 
fragmentation. 

• Memory Advisors: continuously monitor the 
database instance and auto-tune the memory 
utilization between the various memory pools.  

6.3   Resolve Phase 

The various advisors, after having performed their 
analysis, provide as output a set of recommendations that 
can be implemented or applied to the database. Each 
recommendation is accompanied by a benefit, in  database 
time, that the workload would experience should the 
recommendation be applied. The recommendations may 
be automatically applied by the database (e.g., the 
memory resizing by the memory advisors) or it may be 
initiated manually.  This is the Resolve phase. 
      Applying recommendations to the system close an 
iteration of that particular tuning loop. The influence of 
the recommendations on the workload will then be 
observed in future performance measurements. Further  
tuning loops may be initiated until the desired level of 
performance is attained. 

7.   Experiments and Results  
It is not an easy task to test and quantify the results of 
ADDM. The value of ADDM is in helping DBAs manage 
the performance of their databases. Checking if ADDM 
meets the task, we need to survey many customers that 
already adapted Oracle 10g in a production or test 
environment.  It is too early after the release of Oracle 
10g to perform such a survey. However, we provide three 
examples of real ADDM usage in Sections 7.1 to 7.3. 

AWR 
In-memory 
perf data 

 
Recommendations 

Apply to 
system 

ADDM Oracle 10g 
Advisors 

Auto Snapshot 
Collection 

Automatic 
Performance 

Diagnosis 

Figure 5: ADDM and the Self-Managing  
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We used various scenarios to gauge the effectiveness of 
ADDM. 

Blind tests were performed in the initial testing phase; 
performance tuning experts were asked to analyse and 
make recommendations on running systems. In a majority 
of cases ADDM produced comparable results and in some 
cases ADDM’s recommendations produced greater 
benefit than the experts’ recommendations. 

As part of the testing performed internal to Oracle 
Server Technologies group we have a number of tests in 
which we introduced known ‘common faults’ and 
application inefficiencies. When ADDM analysis was 
performed on the data captured during these tests ADDM 
correctly identified the fault in all cases.  

High load stress testing is an integral part of the 
testing of the database product at Oracle and the effect of 
running all of the Oracle 10g manageability features was 
measured. With both typical customer workloads and 
highly tuned industry standard benchmarks the reduction 
in throughput from enabling all of the manageability 
features was approximately 3%. AWR and ADDM were 
two of the features enabled. ADDM runs performed after 
each AWR snapshot were available in a timely manner, 
typically under ten seconds. 

Although Oracle 10g was declared production in 
January 2004 a number of internal production systems 
were running the software for several months before this 
date. ADDM has identified and correctly diagnosed a 
number of performance issues in this time on these 
systems. 

7.1   Experience of Qualcomm 

Qualcomm Centauri Application was upgraded from 
Oracle version 8.1.7.4 to 10g RAC. While testing the 
upgrade they found significant performance problems and 
testers reported poor response times.  The DBA looked at 
the ADDM recommendations which highlighted a SQL 
(update statement) that was causing over 90% of the 
system load. They then ran SQL Tuning Advisor on the 
statement and it recommended the creation of an index.  It 
was later found that the recommended index should have 
been in place. The index was missing because a patch to 
the application was applied to the production system but 
not to the upgraded test system. Identifying the index 
made problem diagnosis easy. 

7.2   Experience in Oracle’s Bug Database 

The Oracle Bug database is used daily by many thousands 
of users and was one of the first production systems to 
move to Oracle 10g. The system runs on an 8 CPU PA-
RISC HP machine. After upgrading to Oracle 10g users 
experienced poor performance. ADDM reported that users 
were spending a large proportion of their time waiting for 
free buffer waits and recommended examining the I/O 
subsystem for write performance (this type of problem 

happens when the buffer cache is filled with dirty buffers 
and faster I/O should solve the problem). When the 
System Administrator looked at the I/O subsystem he 
found that the asynchronous I/O was incorrectly 
configured causing asynchronous I/O requests to fail and 
then be performed synchronously leading to extremely 
slow IO times. 

7.3   Experience of Oracle Applications QA Testing 

An Applications Development DBA reported that a user 
said that the system was slow. Unfortunately there was no 
timescale or details given. Investigation was made harder 
by the fact that the users of the system and the DBAs 
investigating the slowdown where on opposite sides of the 
world, 12 time zones apart. 
Looking at ADDM reports there were a couple of one 
hour periods in which the time spent in the database was 
significantly higher. Both of these ADDM reports showed 
that most of the time was spent in parsing and that the 
parsing was caused by the application generating large 
numbers of  SQL statements containing literal string 
values. (This problem is Oracle’s equivalent of using 
many similar SQL statements instead of a stored 
procedure. The cost of such configurations is time spent 
in parsing, optimizing and compiling the SQL statements-
in Oracle’s terminology it is called “hard parse”). The 
recommendation from ADDM was to modify the 
application to use bind variables rather than literals or to 
change a database configuration parameter to 
automatically convert the literals into binds. When 
application development was approached about the literal 
usage it was discovered that this QA system was running 
a 'known bad' internal build of the application and 
upgrading to the correct build removed the issue. 

8.   Conclusion 
In this paper we described how Oracle 10g offers a 
comprehensive tuning solution by providing automatic 
performance diagnosis and tuning via ADDM. This 
addresses the ever-increasing performance tuning 
challenges currently faced by database administrators. 

We defined a new measure called Database Time that 
allows for comparison of the performance impact of 
various database components with each other. We also 
described what types of performance measurements are 
needed for accurate performance diagnosis, as well as 
how we obtain them in a manner that has marginal impact 
on the system. This solution also obviates the need to 
reproduce a problem in order to diagnose it. 

ADDM incorporates a holistic view of the system, and 
by using database time in conjunction with the two-
dimensional DBTime-graph it is able to quickly isolate 
the root causes of performance bottlenecks affecting the 
throughput of the system. ADDM provides specific 
actionable recommendations with an estimate of the 
benefit for alleviating performance problems.  



The results of running ADDM on a variety of 
workloads and production systems within Oracle 
demonstrates the benefits and practicality of our approach 
for throughput tuning. 
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