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Abstract

If you browse through the articles of
www.junit.org, you will find only one arti-
cle that contains the word database in its ab-
stract. This observation is shocking because,
of course, testing is just as important for
database applications as for any other appli-
cation. The sad truth is that JUnit simply
does not work for database applications, and
there are no alternatives on the market place.
The reason is that there are some fundamen-
tal issues in automatizing regression tests for
database applications. This paper addresses
one particular issue that arises from the fact
that you change the state of a database appli-
cation while you test it.

When you observe a system, you change the system.
Werner Heisenberg (1901-1976)

1 Introduction

Database applications are becoming increasingly com-
plex. They are composed of many components and
stacked in several layers. Furthermore, most database
applications are subject to constant change; for in-
stance, business processes are re-engineered, autho-
rization rules are changed, components are replaced
by other more powerful components, or optimizations
are added in order to achieve better performance for
a growing number of users and data. The more com-
plex an application becomes, the more frequently the
application and its configuration must be changed.

Unfortunately, changing a database application is
very costly. The most expensive part is to carry out
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tests in order to ensure the integrity of the applica-
tion after the change has been applied. In order to
carry out tests, most organizations have test installa-
tions of all their software components and special test
database instances. Furthermore, companies make use
of a variety of tools that support regression testing; the
most popular tool is the JUnit framework that was de-
veloped to carry out regression tests for Java applica-
tions [1, 4]. The advantages of regression testing have
also been quantified in several empirical studies [10, 6].
Unfortunately, however, testing a database application
cannot be carried out automatically using these tools
and, thus, requires a great deal of manual work.

The reason for the need of manual work is that the
current generation of regression test tools has not been
designed for database applications. All the tools we
are aware of have been designed for stateless appli-
cations. In other words, these tools assume that test
runs can be executed in any order. For database ap-
plications this important assumption does not hold:
a test run might change the test database and, thus,
impact the result of another test run. The only spe-
cific work on testing database applications is [3]. That
work gives a framework for testing DB applications.
Furthermore, RAGS [7] has been devised in order to
test database systems (e.g., SQL Server, Oracle, DBS),
but not DB applications.

This work was motivated by a project carried out
for Unilever, one of the big players in the consumer
goods industry (foods, personal care, home care).
Unilever uses a sophisticated e-Procurement applica-
tion (called BTell by i-TV-T AG) that is connected to
a variety of different other applications, including an
ERP system (i.e., SAP R/3). Furthermore, Unilever
has a portal and provides Web-based access to the e-
Procurement application for its own employees and its
suppliers. The whole IT infrastructure is currently un-
der dramatic change: software components of different
business units are harmonized, new modules of dif-
ferent vendors are added and newly customized, and
new business processes involving external users such
as suppliers and customers are implemented. These
changes are carried out gradually in an evolutionary



Figure 1: Architecture of Database Applications

way over the next years. In order to carry out re-
gression tests, this company uses a commercial tool,
called HTTrace. This tool has a teach-in component
in order to record test runs (a sequence of user actions
on the application) and a batch component in order
to automatically run test runs and detect changes in
the answers produced by the application for each user
action. For Unilever, we designed the regression test
methodology and extended the test tool by a control
component that controls in which order the test runs
are executed and when the test database is reset.

The remainder of this paper is organized as follows:
Section 2 describes the process of database application
regression tests in more detail. Section 3 contains ba-
sic control algorithms. Section 4 devises more sophisti-
cated algorithms. Sections 5 and 6 present the results
of performance experiments. Section 7 concludes this
work and proposes avenues for future work.

2 DB Application Regression Tests

2.1 Overview

Figure 1 shows how users interact with a database ap-
plication. The application provides some kind of inter-
face through which the user issues requests, usually a
GUI. The application interprets a request, thereby is-
suing possibly several requests to the database. Some
of these requests might be updates so that the state of
the database changes; e.g., a purchase order is entered
or a user profile is updated. In any event, the user
receives an answer from the application; e.g., query
results, acknowledgments, and error messages.

The purpose of regression tests is to detect changes
in the behavior of an application after the application
or its configuration has been changed. Here, we focus
on so-called black-box tests; i.e., there is no knowledge
of the implementation of the application available [8].
As shown in Figure 2, there are two phases. In the
first phase (Figure 2a), test engineers or a test case
generation tool create test cases. In other words, in-
teresting requests are generated and issued to a re-
gression test tool. The regression test tool forwards
these requests to the application and receives an an-
swer from the application for each request, just as in
Figure 1. During Phase 1, the application is expected

to work correctly so that the answers returned by the
application are correct and the new state of the test
database is expected to be correct, too. The regression
test tool stores the requests and the correct answers.
For complex applications, many thousands of such re-
quests (and answers) are stored in the repository. If
desired, the regression test tool can also record the new
state of the test database, the response times of the
requests, and other quality parameters in the reposi-
tory. The regression test tool handles error messages
that are returned by the application just like any other
answer; this way, regression tests can be used in order
to check that the right error messages are returned.

After the application has changed (e.g., customiza-
tion or a software upgrade), the regression test tool is
started in order to find out how the changes have af-
fected the behavior of the application. The regression
test tool re-issues automatically the requests recorded
in its repository to the application and compares the
answers of the updated application with the answers
stored in the repository. Possibly, the tool also looks
for differences in response time and for inconsistencies
in the test database. At the end, the regression test
tool provides a report with all requests that failed ;
failed requests are requests for which differences were
found. An engineer uses this report in order to find
bugs and misconfigurations in the application. If the
differences are intended (no bugs), then the engineer
uses this report in order to update the repository of
the regression test tool and record the new (correct)
behavior of the application.

Usually, several requests are bundled into test runs
and failures are reported in the granularity of test runs.
For instance, a test run could contain a set of requests
with different parameter settings that test a specific
function of the application. Bundling requests into test
runs improves the manageability of regression tests.
If a function is flawed after a software upgrade, then
the corresponding test run is reported, rather than re-
porting each individual failed request. Furthermore,
bundling series of requests into test runs is important
if a whole business process, a specific sequence of re-
quests, is tested.

For database applications, the test database plays
an important role. The answers to requests strongly
depend on the particular test database instance. Typ-
ically, companies use a version of their operational
database as a test database so that their test runs
are as realistic as possible. As a result, test databases
can become very large. Logically, the test database
must be reset after each test run is recorded (Phase
1) and executed (Phase 2). This way, it is guaranteed
that all failures during Phase 2 are due to updates
at the application layer (possibly, bugs). Sometimes,
companies use several test database instances in order
to test different scenarios. Without loss of generality,
we assume in this paper that only one test database



(a) Phase 1: Teach-In (b) Phase 2: Regression Test

Figure 2: Regression Tests

instance is used.
In theory, a test run is okay (does not fail), if all its

requests produce correct answers and the state of the
test database is correct after the execution of the test
run. In this work, we relax this criterion and only test
for correctness of answers. The reason is that checking
the state of the test database after each test run can be
prohibitively expensive and is difficult to implement
for black box regression tests. Furthermore, in our
experience with real applications, this relaxed criterion
is sufficient in order to carry out meaningful regression
tests. For checking the integrity of the test database,
the interested reader is referred to previous work on
change detection of databases, e.g., [2]. If necessary,
the techniques presented in that work can be applied
in addition to the techniques proposed in this work.

2.2 Definitions and Problem Statement

Based on the observations described in the previous
subsection, we use the following terminology:

Test Database D: The state of an application at
the beginning of each test. In general, this state
can involve several database instances, network
connections, message queues, etc. For the purpose of
this work, we assume that the whole state is captured
in a single database instance.

Reset R: An operation that brings the application
back into state D. Since testing changes the state of
an application, this operation needs to be carried out
in order to be able to repeat tests. Depending on the
database systems used (and possibly other stateful
components of the application), there are several
alternative ways to implement R; in any event, R is
an expensive operation. In the experimental setup
of Section 5, the reset operation took two minutes.
Resetting a database involves reverting to a saved
copy of the database and restarting the database

server process, thereby flushing the database buffer
pool.

Request Q: The execution of a function of the appli-
cation; e.g., processing a new purchase order or car-
rying out a report. For Web-based applications, a re-
quest corresponds to a click in the Internet browser.
Formally, we model a request Q as a pair of functions:

• aQ: database → answer. The aQ function com-
putes the result of the request as seen by the user
(e.g., a Web page), depending on the state of the
application.

• dQ: database → database. The dQ function com-
putes the new state of the application.

Note that Q encapsulates the parameter value settings
of the request.

Test Run T : A sequence of requests Q1, . . . , Qn.
A test run, for instance, tests a specific business
process which is composed of several requests. Just
like requests, test runs can be modelled by a pair of
functions, aT and dT . aT computes the set of answers
returned by each request of T . dT is defined as the
composition of the dQi

functions.

Schedule S: A sequence of test runs and reset
operations. Typically, regression testing involves
executing many test runs and reset operations are
necessary in order to put the application into state D
before a test run is executed.

Failed Test Run: An execution of a test run in
which at least one of the requests of the test run
returns a different answer than expected. Failed test
runs typically indicate bugs in the application. (As
mentioned in the previous subsection, the state of the
database at the end of a test run is not inspected.)



False Negative: A test run fails although the be-
havior of the application has not changed (and there
is no bug). One possible cause for a false negative
is that the application was in the wrong state at
the beginning of the execution of the test run. False
negatives are very expensive because they trigger
engineers looking for bugs although the application
works correctly.

False Positive: A test run does not fail although the
application has a bug. Again, a possible explanation
for false positives is that the application is in a wrong
state at the beginning.

Problem Statement:
The problem addressed in this paper is the follow-

ing. Given a set of test runs find a schedule such that:

• The schedule can be executed as fast as possible;
i.e., the number of R operations in the schedule
is minimized.

• There are no (or very few) false negatives.

• There are no (or very few) false positives.

Unfortunately, as will be shown, there is no perfect
solution: an approach that minimizes the number of
resets might be the cause for false positives. The pur-
pose of the paper is to find practical approaches that
meet all three goals as well as possible.

3 Basic Control Strategies

Going back to the problem statement of Section 2.2,
the purpose of this work is to find good control strate-
gies. A control strategy determines the schedule and,
thus, carries out the following decisions:

1. In which order are the test runs executed?

2. When is the database reset (R operation)?

This section presents basic control strategies. In prin-
ciple, these strategies can be classified by the way they
deal with false negatives. There are two possible alter-
natives: (a) avoidance and (b) resolution. No-Update
and Reset Always are representatives for avoidance-
based strategies. Optimistic and Optimistic++ are
representatives for resolution-based strategies.

3.1 No-Update

The first approach is to create test runs in such a way
that they leave the test database unchanged. In other
words, the dT function of each test run T must be the
identity function. For example, if a test run has a re-
quest in order to insert a purchase order, that test run
must also contain a request in order to delete the new
purchase order. This policy results in the following
do-nothing control strategy:

1. Execute the test runs in any order.

2. Never reset the test database.

This strategy was used by Unilever initially because
it allows the use of existing regression test tools with-
out any change. On the negative side, however, this
approach requires that test engineers know the appli-
cation very well and exercise a great deal of discipline
when they create test runs. A test run that breaks the
convention causes false negatives on other test runs
and, these, are very expensive to resolve. Furthermore,
not all operations of an application can be undone; in
BTell and SAP R/3, for instance, a completed business
process cannot be rolled back. As a result, functions
that cannot be undone need to be tested separately,
thereby significantly increasing the amount of manual
work and cost of carrying out regression tests. The
No-Update approach is never applicable for applica-
tions that implicitly record all user interactions for
personalization; an example for such an application
is amazon.com or any other Web portal. As a result,
this strategy was abandoned and will not be studied
any further in this work.

3.2 Reset Always

The simplest control strategy that does not require
special attention from test engineers and is generally
applicable operates as follows:

1. Execute the test runs in any order.

2. Reset the test database before the execution of
each test run.

In other words, this strategy carries out regression
tests in the following way:

R T1 R T2 R T3 . . .R Tn

3.3 Optimistic

Obviously, the Reset Always strategy is sub-optimal
because it involves n resets, if n is the number of test
runs. The key observation that motivates the Opti-
mistic control strategy is that many of these resets are
unnecessary. Resets are not necessary after the execu-
tion of a test run that does not involve any updates.
Furthermore, a reset between test run Ti and Ti+1 is
not necessary in the following example: Ti tests Mod-
ule A (e.g., human resources) and possibly updates
data used by Module A. Test run Ti+1 tests Module B
(e.g., order processing) such that the updates of Ti

are immaterial for the execution of Ti+1. These obser-
vations give raise to the following Optimistic control
strategy:

1. Execute the test runs in any order.



2. Whenever a test run fails (i.e., returns different
answers), reset the test database, and re-run that
test run. Only if the test run fails again, report
this test run as a failure.

As an example, the Optimistic control strategy
could result in the following schedule.

R T1 T2 T3 R T3 T4 . . . Tn

In this example, the first execution of T3 failed be-
cause T1 or T2 or a combination of both changed data
in the test database that was needed for T3.

In theory, it is possible that the Optimistic control
strategy results in false positives. This situation arises,
if, say, T2 changes the test database in such a way
that a bug in the application that is relevant for T3 is
skirted. In practice, this phenomenon never happens:
for the applications we studied, we were not even able
to manually construct a case with a false positive. To
be on the safe side, however, we recommend using ran-
dom permutations of the test runs and changing these
random permutations periodically (e.g., every month).

3.4 Optimistic++

The trade-offs between the Reset Always and Opti-
mistic strategies are straightforward. The Reset Al-
ways strategy carries out unnecessary resets; on the
other hand, the Optimistic strategy carries out some
test runs twice (e.g, T3 in the example of the previous
subsection). The idea of the Optimistic++ strategy is
to remember invalidations and, therefore, to avoid the
execution of test runs twice. In other words, the Opti-
mistic++ strategy behaves exactly like the Optimistic
strategy for the first time a regression test is executed
(or whenever the permutation is changed), but avoids
double execution of test runs in later iterations. Con-
tinuing the example from the previous subsection, the
Optimistic++ policy produces the following schedule
for the second and later iterations:

R T1 T2 R T3 T4 . . . Tn

3.5 Discussion

The Optimistic++ strategy shows that simple ideas
can improve the performance of database regression
tests significantly. The Optimistic++ strategy shows
better performance in all cases than both the Reset Al-
ways and Optimistic strategies. Nevertheless, as will
be shown in the next section, it is possible to achieve
even better performance than the Optimistic++ strat-
egy by re-ordering the sequence in which the test runs
are executed. Since resetting the test database is a
very expensive operation (order of minutes), perfor-
mance is indeed a critical aspect. A poor control
strategy limits the number of test runs that can be
applied in regression tests and it limits the size of the
test database, thereby resulting in insufficient testing

and poor quality database applications (bugs, long re-
sponse times, etc.).

4 Progressive Algorithms

The previous section described several basic control
strategies. This section contains the description of
several more sophisticated heuristics in order to de-
cide in which order to execute test runs and when to
reset the test database. All these heuristics extend
the Optimistic++ approach; i.e., they only reset the
database if necessary and avoid double execution of
test runs as much as possible. The basic idea is to
progressively change the order in which test runs are
executed based on the experience obtained in previous
regression tests. For example, if one day during the
nightly regression tests, test run T2 was executed after
test run T1 and the test database had to be reset for
T2, then the next day, T2 will be executed before T1.
In general, the progressive algorithms learn which test
runs are in conflict. Based on this conflict information,
these algorithms determine an order of test runs with
as few resets as possible. Typically, the conflict infor-
mation is not available initially and must be learned
by observing the execution of regression tests. If test
engineers are willing and able to provide this informa-
tion or some of this information, then the progressive
algorithms converge faster and find a good order of the
test runs sooner.

4.1 Slice

4.1.1 Basic Idea

The Slice approach re-orders whole sequences of test
runs that can be executed without a reset; these se-
quences are called slices. For illustration purposes,
we use an example with five test runs: T1, . . . , T5. In
this example, test run T1 overwrites data in the test
database that is read by T3; in other words, the test
database must be reset if T1 is executed before T3. We
say that T1 and T3 are in conflict and write T1 → T3.
Furthermore, T3 overwrites data that is read by T2 and
T5; i.e., T3 → T2 and T3 → T5. Initially, the regression
test tool does not have this information.

At the beginning, Slice behaves exactly like Opti-
mistic and executes the test runs in a random order.
In the example, Slice produces the following schedule
with two resets because of T1 → T3 and T3 → T5:

R T1 T2 T3 R T3 T4 T5 R T5

Slices are all sequences of test runs that do not fail.
In this example, 〈T1T2〉 is the first slice, 〈T3T4〉 is the
second slice, and 〈T5〉 is the third slice. At this point,
the algorithm does not know exactly why the first exe-
cution of T3 after 〈T1T2〉 fails; the reason could be that
T1 or T2 overwrite data used in T3 or that the combi-
nation of executing T1 and T2 results into a state of
the test database that causes a failure of T3. In any



event, based on the knowledge Slice has, there is hope
that if T3 is executed before both T1 and T2, then no
reset is necessary. Likewise, there is hope that if T5 is
executed before T3 and T4, then no further reset will
be needed. Furthermore, Slice executes T4 directly af-
ter T3 and T2 directly after T1, knowing that this went
well in the previous iteration. In other words, Slice re-
orders whole slices, rather than individual test runs.
As a result, Slice next tries to execute the test runs in
the following order: T5T3T4T1T2. This is the only or-
dering of the slices for which there is hope that no reset
is necessary. Again, at this point, the algorithm does
not know yet that there is a conflict between T3 and
T2. Using an Optimistic++ approach, this order to
execute the test runs results in the following schedule
due to T3 → T2:

R T5 T3 T4 T1 T2 R T2

As a result, the following two slices are identified:
〈T5T3T4T1〉 and 〈T2〉. In the next iteration, the al-
gorithm tries to execute the second slice before the
first slice. This attempt results in the following perfect
schedule without any resets, after the initial reset:

R T2 T5 T3 T4 T1

Obviously, it is not always possible to achieve such
perfect schedules. This is illustrated in the following
example with cyclic conflicts:

T1 → T2, T2 → T3, T3 → T1

For this example, Slice starts again with a random
order and produces, e.g., the following schedule:

R T1 T2 R T2 T3 R T3

Thus, there are three slices: 〈T1〉, 〈T2〉, and 〈T3〉. Next
the following schedule is produced:

R T3 T2 T1 R T1

The resulting slices are: 〈T3T2〉 and 〈T1〉. At this
point, Slice does not attempt any further re-orderings
because it knows from the first attempt that there is a
conflict between T1 and T2 so that executing slice 〈T1〉
before slice 〈T3T2〉 does not result in any improvement.
Following the Optimistic++ approach, in the next and
all later iterations, the following schedule is produced:

R T3 T2 R T1

When the algorithm does not attempt any further re-
orderings, we say that the algorithm has converged.

4.1.2 Algorithm

The Slice algorithm is shown in Figure 3. The algo-
rithm gets a sequence of slices and a conflict database

Input: sequence of slices 〈s1〉〈s2〉〈sn〉
conflict database c :: slice × test run → bool

Output: new sequence of slices

/* iterate over all slices starting at Slice 2 */
int m := 2
while m ≤ n do

/* can we move this slice to an earlier point */
if ∃k < m : movable(c, 〈sk〉, 〈sm〉) then

k := max{k < m|movable(c, 〈sk〉, 〈sm〉}
move(m, k)

fi
m := m +1

od

Figure 3: Slice Algorithm

movable(c, 〈s1〉, 〈s2〉) = ¬∃t ∈ 〈s1〉 : c(〈s2〉, t)

Figure 4: Criterion to Move 〈s2〉 Before 〈s1〉

as input. At the beginning, there is only one slice
that contains all test runs in a random order. For ev-
ery other iteration, the sequence of slices is defined
by the schedule of the previous iteration. The conflict
database is used in order to re-order slices. If it is
known that T1 is in conflict with T2 (i.e., T1 → T2),
then a slice that contains T1 is not moved directly be-
fore a slice that contains T2. Technically, the conflict
database implements a function that gets a slice 〈s〉
and a test run t as input and returns true, if it is
known that a sub-sequence of test runs in 〈s〉 is in
conflict with t. For instance, for the following sched-
ule

R T1 T2 T3 R T3

〈T1T2〉 → T3 is entered into the conflict database and
the conflict database returns true if it is called for,
say, the slice 〈T1T4T2〉 and test run T3, since 〈T1T2〉
is contained in 〈T1T4T2〉. At the beginning, c(〈s〉, t)
returns false for all slices 〈s〉 and test runs t because
there are no conflicts recorded in the conflict database
initially. (Details of the implementation of the conflict
database are given in Section 4.3.)

The Slice algorithm of Figure 3 works as follows.
For each slice 〈sm〉, it tries to move it before one of
its predecessor slices in order to avoid the reset that
must be carried out between slice 〈sm−1〉 and 〈sm〉.
The exact criterion that determines whether a slice is
moved before another slice is given in Figure 4. As
mentioned earlier, slice 〈sm〉 can be moved before slice
〈sk〉 if it can be expected that no reset will be needed
between 〈sm〉 and 〈sk〉. More precisely, slice 〈sm〉 can
be moved before 〈sk〉 if there is no conflict recorded in
the conflict database between a sub-sequence of 〈sm〉
and a test run in 〈sk〉.



T2 → T3

T3 → T1
R T1T3T2

Iteration 1: R T1 T2 T3 R T3

Iteration 2: R T3 T1 R T1 T2

Iteration 3: R T3 R T1 T2

(a) Conflicts (b) Optimal Schedule (c) Schedules of Slice

Figure 5: Sub-optimality of Slice

4.1.3 Discussion

The Slice heuristics are always better than the ba-
sic Optimistic++ approach. It can be shown that
the number of resets decreases monotonically with the
number of iterations. In other words, re-ordering slices
never results in a worse schedule. Therefore, the Slice
heuristics always converge after a finite number of iter-
ations. Furthermore, the Slice algorithm is very prac-
tical. It is simple, requires no extra effort from test
engineers, and has very low CPU and memory over-
head (Sections 5 and 6). At any time, test runs can
be disabled and new test runs can be added and the
algorithm continues to operate gracefully. As a safety
measure against false positives (Section 3.3), it is pos-
sible to restart with a new random permutation of the
test runs and discard all the information in the con-
flict database. Finally, Slice is able to consider conflict
information that has been provided by test engineers,
rather than fully relying on learning this information
by observing the execution of test runs.

On the negative side, it is easy to see that Slice
is not always optimal. In the following example, Slice
produces a schedule with two resets although a perfect
schedule with only one reset exists. The conflicts for
that example are shown in Figure 5a. The best possi-
ble schedule is shown in Figure 5b. The schedules pro-
duced by the Slice heuristics are shown in Figure 5c.

We tried to extend the Slice heuristics by relaxing
the convergence condition and by merging slices in or-
der to deal with examples such as the example shown
in Figure 5. We do not present the results of these
experiments in this paper because our efforts were not
fruitful. All the optimal algorithms we could think of
had exponential time complexity and were impractical
for a number of other reasons (e.g., graceful operation
when test runs are added or disabled). Finding a good
optimal algorithm and determining whether the prob-
lem of finding a schedule that minimizes the number
of resets is NP hard are two avenues for future work.

4.2 Graph-based Heuristics

Since we were not able to find a practical optimal algo-
rithm, we experimented with a set of other heuristics.
These heuristics were inspired by the way deadlock
resolution is carried out in database systems [9]. The
(known) conflicts are represented in a directed graph:
the test runs are represented as nodes in the graph,
and conflicts are represented by edges. Then, one test
run (i.e., node) is selected from the graph according

to a certain criterion. This test run is executed first
and removed with all its in-going and out-going edges
from the graph. The criterion is applied on the result-
ing graph to find the next test run, and so on.

Details and examples how this approach works can
be found in the long version of this paper which is
available on the Web pages of ETH Zurich. The long
version also describes and evaluates alternative heuris-
tics to select a test run that ought to be executed next.
The best heuristics is referred to as MaxWeighted-
Diff. This criterion assigns weights to the edges in the
graph, depending on the probability that the two test
runs are in conflict. For every test run, MaxWeighted-
Diff computes the sum of the weights of the incom-
ing edges, fan-in, and of the outgoing edges, fan-out.
MaxWeightedDiff selects the test run with the largest
difference fan-in – fan-out. Other criterions only con-
sider the fan-out of a test run and/or do not assign
weights to edges. These approaches are referred to as
MinFanOut, MaxDiff, and MinWeightedFanOut.

Like Slice, these heuristics extend the Optimistic++
approach and are always at least as good as the pure
Optimistic++ strategy. All the graph-based heuristics
converge after a finite number of iterations. Also like
Slice, none of these heuristics are optimal. In order to
compare the trade-offs, we carried out performance ex-
periments which will be presented in Sections 5 and 6.

4.3 Conflict Management

Optimistic++, Slice, and all graph-based heuristics
require the management of conflict information. As
mentioned in Section 4.1, conflicts are recorded in the
form 〈s〉 → t for Slice and Optimistic++, with 〈s〉
a sequence of test runs and t a test run. For the
graph-based heuristics, edges are represented in the
form s → t which is a special case of 〈s〉 → t so that
the same management component can be used.

Conflicts are recorded when regression tests are ex-
ecuted and the control strategies learn. Conflict in-
formation is needed by the control strategies in order
to determine in which order to execute test runs and
when to reset the test database. More precisely, the
conflict management component must support the fol-
lowing operations:

• testSub(〈s〉, t): Test whether there is a sequence
of test runs 〈s′〉 such that 〈s′〉 → t is recorded in
the conflict database and 〈s′〉 is a sub-sequence of
〈s〉. Sub-sequence is defined as follows: all test
runs of 〈s〉 are also in 〈s′〉 and they occur in both



sequences in the same order. The testSub oper-
ation is needed by the Optimistic++ in order to
decide where to place resets and by Slice in order
to decide if a slice is movable. This operation is
also needed when a new conflict 〈s〉 → t is sup-
posed to be inserted into the conflict database.
If testSub(〈s〉, t) returns true, then the conflict
〈s〉 → t must not be recorded in the conflict
database because 〈s′〉 → t which is recorded in
the conflict database superimposes 〈s〉 → t.

• findSuper(〈s〉, t): Find all sequence of test runs
〈s′〉 such that 〈s′〉 → t is recorded in the conflict
database and 〈s〉 is a sub-sequence of s′. This op-
eration is needed in situations when 〈s〉 → t is
inserted into the conflict database in order to find
all conflicts 〈s′〉 → t which must be removed from
the conflict database because they are superim-
posed by 〈s〉 → t.

• record(〈s〉, t): Insert 〈s〉 → t into the conflict
database when it is not superimposed by an ex-
isting conflict.

• delete(〈s〉, t): Remove 〈s〉 → t from the
database. This operation is called when it can be
deduced that a recorded conflict is not a conflict;
for example, if a newly recorded conflict superim-
poses an existing conflict in the database.

• weight(t1, t2): Determine the weight of the edge
between test run t1 and test run t2 in the conflict
graph, as defined in Section 4.2.

• exists(t1, t2): Determine whether there is an
edge between test run t1 and test run t2 in the
conflict graph. This function is needed for the
MinFanOut and MaxDiff heuristics.

In order to implement these functions efficiently, all
conflicts are organized in a tree. The edges of this tree
are labeled with test runs. Paths in the tree, thus,
represent sequences of test runs. Nodes of the tree
contain sets of test runs. This way, a node of the tree
represents a set of conflicts 〈s〉 → t, with 〈s〉 the path
of that node and t a test run stored in that node. As an
example, Figure 6 shows such a tree for the following
conflicts:

〈T1〉 → T3

〈T1T2〉 → T4

〈T1T2〉 → T5

〈T1T4〉 → T5

〈T2T3〉 → T4

〈T2T1〉 → T5

〈T2T1T7〉 → T8

〈T2T8〉 → T6

As mentioned at the beginning of Section 3, all ap-
proaches behave in the same way when a test run fails

Figure 6: Example: Tree of Conflicts

(i.e., there is a difference in the answer of a request
even if the database has been reset). In such an event,
the conflict information for that test run is not up-
dated.

Staleness of the information in the conflict database
is not a problem. As a result, it is not necessary to
adjust the conflict database if test runs are modified,
test runs are disabled, new test runs are added, or
if the application is upgraded. All these events im-
pact conflicts between test runs. Nevertheless, those
events need not be propagated to the conflict database
for two reasons: (a) It does not hurt if a conflict is
not recorded; for example, all approaches work cor-
rectly even if the conflict database is empty. (b) It
does not hurt if a phantom conflict is recorded in the
conflict database that does not exist in reality. Such
phantom conflicts might result in extra resets or sub-
optimal test run orderings, but all approaches continue
to work correctly. In order to deal with the staleness
of the conflict database, we recommend scratching it
periodically (e.g., once a month). Such an approach is
much simpler than trying to keep the conflict database
up-to-date all the time.

5 Real-world Experiments

This section contains the results of performance ex-
periments carried out with a real database application
(BTell), a commercial regression test tool (HTTrace),
and the test database and test runs of Unilever.

5.1 Test Environment

For this set of performance experiments, we used the
test environment of Unilever. In particular, we used
Unilever’s infrastructure to carry out regression tests
for its e-Procurement applications (BTell and SAP
R/3). Among others, these applications maintain
the bill of materials, implement business processes
for price and volume negotiation and factory service
agreements, and carry out complex forecast reports.
Buyers, commercials, and suppliers use these applica-
tions through a Web-based interface. The application
and the corresponding business processes are still un-
der development and, therefore, regression tests are



Approach Running Time Resets

Reset Always 189 min 63
Optimistic 76 min 5
Optimistic++ 74 min 5
Slice 65 min 2
MaxWeightedDiff 63 min 2

Table 1: Real App: Running Time, Resets

Approach CPU Overhead Conflict DB Iterations

Reset Always 0 sec 0 1
Optimistic 0 sec 0 1
Optimistic++ 0 sec 5 2
Slice < 1 sec 66 3
MaxWeightedDiff < 1 sec 159 6

Table 2: Real App: CPU, Conflicts, Convergence

crucial. In order to carry out regression tests, Unilever
uses a commercial tool, HTTrace. HTTrace works to-
gether with Microsoft’s Internet Explorer; it records
test runs entered by test engineers and is able to auto-
matically apply those test runs and report failures as
described in Section 2. A similar capture & replay tool
is provided by Microsoft as part of Visual Studio Dot-
Net, by IBM as part of Rational Rose, and by Mercury
as part of the WinRunner product. Initially, Unilever
used a No-Update strategy (Section 3.1). The No-
Update strategy was abandoned, however, because it
was impractical from a usability point of view. There-
fore, we extended the regression test infrastructure by
the other control strategies described in Sections 3
and 4.

Unilever uses dedicated hardware to carry out re-
gression tests. All applications, the database system,
and the Web server run on a Sun Enterprise E450 with
four 480 MHz CPUs and 1 GB of main memory. So-
laris 8 is the operating system of the server. The test
client is a PC with a 2.4 GHz Pentium processor run-
ning Windows XP. Client and server are connected by
a 100 Mbit Ethernet.

For the experiments reported here, the size of the
test database was 117.5 MB. There were 63 test runs
that were entered by test engineers. These test runs
test different aspects of the e-Procurement application.
On an average, the test runs contained 80 requests.
The shortest test run had 16 requests and the longest
test run had 448 requests. All these test runs were
entered by test engineers having a No-Update strat-
egy in mind. (Nevertheless, as we will see many test
runs violated the basic assumption of that strategy.)
Based on the results of this study, Unilever is currently
building tools (i.e., robots) in order to automatically
generate test runs and achieve a much higher coverage.
The goal is to have 10,000 test runs.

In order to implement the reset database opera-
tion, several strategies were tested (including an ap-
proach that uses the archive logs of the database sys-
tem). The winning approach was the one that simply
remapped the original test database image file into the
file system. This approach involved shutting down and
restarting the database server and it took about two
minutes. Both BTell and SAP R/3 capture all their
state in a relational database so that no further actions
were required in order to implement the R operation.

All experiments reported here were carried out with
a correct application. In other words, the test tool

reported no failures. During the experiments, test runs
failed temporarily due to changes in the test database
if an Optimistic or one of the progressive approaches
were used. Such failures were handled by resetting the
database and re-running the test run, as described in
Section 3.3. Re-running a test run never resulted in a
failure.

5.2 Results

Table 1 shows how long it took and how many resets
were needed in order to carry out the regression tests,
depending on the control strategy. The Reset Always
strategy performed worst; it took more than three
hours to carry out the 63 test runs using this strat-
egy because the database was reset before each test
run. Clearly, this strategy is not viable if the company
wishes to increase the size of its test database and num-
ber of test runs by several orders of magnitude because
the running time grows linearly with the size of the test
database and the number of test runs. All other con-
trol strategies performed well in this experiment (run-
ning time of about an hour and only few resets). The
Optimistic strategies worked particularly well in this
scenario because test engineers created most test runs
having a No-Update policy in mind. However, the Slice
and MaxWeightedDiff heuristics performed even bet-
ter due to re-ordering the test runs so that conflicting
test runs were not executed consecutively. We stud-
ied the MaxWeightedDiff heuristics as the only graph-
based heuristics in this experiment because it turned
out to be the best graph-based heuristics; we will study
the trade-offs of the other graph-based heuristics in
Section 6. Virtually, Slice and MaxWeightedDiff per-
formed equally well in this experiment because they
both found schedules with the same number of resets;
the difference in running time was due to instabilities
in the test environment while the tests were carried
out (e.g., network interferance).

Table 2 shows the CPU time to carry out the con-
trol strategies (the CPU Overhead column); the over-
heads are negligible in all cases. Furthermore, Ta-
ble 2 gives the sizes of the conflict databases for each
strategy and the number of iterations it took before
the strategy converged. Obviously, the Reset Always
and Optimistic strategies converged after one iteration
and recorded no conflicts. The Optimistic++ strat-
egy always converges after two iterations (Section 3.4)
and recorded 5 conflicts in the conflict database in
this experiment. Slice converged after three itera-



tions and recorded 23 conflicts; MaxWeightedDiff con-
verged later and recorded 159 conflicts. In summary,
all strategies converged quickly and all strategies ex-
cept Reset Always produced good schedules from the
very beginning. Also, the storage requirements and
management of the conflict database were negligible
in this experiment.

6 Simulation Results

This section presents the results of simulation results
that were carried out in order to find out how the
alternative control strategies scale. We carried out ex-
periments with more test runs and studied scenarios
where more test runs were in conflict. Such scenarios
arise, for instance, if test runs are generated automat-
ically or if test engineers do not follow a No-Update
strategy and do not make sure that all changes are
compensated within a test run.

6.1 Test Environment

The simulations were carried out in the following way.
First, we generated simple test runs and random con-
flicts between these test runs by explicitly controlling
the data that was read and updated in each test run.
Then, we iteratively executed all the test runs using
the alternative control strategies, thereby using the
expimental set-up described in Section 5.1. We mea-
sured up to 100 iterations so that the progressive con-
trol strategies were able to learn and converge. In a
real-world environment with nightly regression tests,
100 iterations correspond to a period of approximately
three months. At the end, we measured the number of
resets needed to execute all test runs, the CPU over-
head of the control strategies and the size of the con-
flict database. We repeated each experiment many
times (new random permutations to start, new ran-
dom conflicts) in order to make sure that the 90%
confidence intervals are within ±5%; the confidence
intervals were computed using batch means [5]. In all
experiments, the variance was low so that we do not
report it here.

In order to study the trade-offs of the alternative
approaches, we varied the following parameters:

• number of test runs: we carried out experi-
ments with 100 and 1000 test runs.

• number of conflicts: we studied scenarios with
few and many conflicts. The more conflicts there
are, the more difficult it is to find a good ordering
of the test runs.

• distribution: the distribution controls which
test runs are in conflict. In practice, some test
runs are update-heavy and are in conflict with
many other test runs. An example is a test run
that tests the processes that are carried out in a
corporation at the beginning of each quarter. For

Approach 10c 100c 1000c 8000c

Reset Always 100 100 100 100
Optimistic/++ 3.2 8.6 26.4 83.6

Slice 1.9 3.0 8.5 36.6
MinFanOut 1.1 5.8 21.9 83.4

MaxDiff 1.0 4.3 19.4 79.0
MinWeigthedFanOut 1.4 5.3 24.7 79.5

MaxWeightedDiff 1.0 2.8 17.6 78.8

Table 3: Simulation: Resets
Uniform, 100 test runs, Vary Conflicts

Approach 10c 100c 1000c 10000c

Reset Always 1000 1000 1000 1000
Optimistic/++ 3.2 8.7 25.7 80.5

Slice 1.9 2.8 6.7 23.4
MinFanOut 1.5 5.8 19.4 65.8

MaxDiff 1.0 3.4 12.4 52.2
MinWeigthedFanOut 1.3 4.1 15.2 72.3

MaxWeightedDiff 1.0 1.1 3.7 27.9

Table 4: Simulation: Resets
Uniform, 1000 test runs, Vary Conflicts

the simulation experiments, we tested two differ-
ent distributions:

1. Uniform: all test runs are in conflict with
other test runs with the same probability.

2. Zipf: some test runs are in conflict with
many other test runs according to a Zipf dis-
tribution.

6.2 Results

6.2.1 Resets

Table 3 shows the average number of resets for each
control strategy in a scenario with 100 test runs and
a Uniform distribution. We do not show the running
time to execute all test runs because the test runs were
generated synthetically (consisting of only a few up-
dates and reads) and measuring their running time
was not meaningful. The number of conflicts was var-
ied between 10 and 8000. Again, the Reset Always
strategy performed worst in this experiment: it car-
ried out 100 resets, as many resets as there are test
runs. The Optimistic strategies performed very well,
on an average, if there were few conflicts. The perfor-
mance of the Optimistic strategies degraded radically
with an increasing number of conflicts between the test
runs. The more conflicts there are, the more impor-
tant it becomes to re-order the test runs in such a way
that conflicting test runs are not executed sequentially.
Optimistic and Optimistic++ showed the same perfor-
mance in this experiment because only the number of
resets was counted.

Slice and all graph-based heuristics clearly out-
performed Optimistic in this experiment. Among
the graph-based heuristics, MaxWeightedDiff was the



clear winner, outperforming all other graph-based
heuristics in all cases. For 10 conflicts, MaxWeighted-
Diff was almost always able to find perfect schedules
(1.0 resets); occasionally, there were cycles in the con-
flicts such that perfect schedules were not possible,
but on an average, these cases did not have a notice-
able impact. Comparing the performance, of Slice and
MaxWeightedDiff, MaxWeightedDiff was clearly bet-
ter if there were few conflicts (100 or less), whereas
Slice was better, if there were many conflicts. We ob-
served this behavior in all our experiments. We do
not have a comprehensive explanation for this behav-
ior. Analyzing the traces, it seems that Slice is good
for many conflicts because it acts positively ; i.e., it
keeps non-conflicting test runs together (in slices). On
the negative side, Slice does a comparably poor job of
isolating bad test runs which are in conflict with many
other test runs. Those test runs should be executed
last, but they end up in the middle of slices. On the
other hand, the graph-based heuristics act negatively :
they are able to identify bad test runs, but they are
not able to keep test runs together and execute them
sequentially, if it is known that these test runs are not
in conflict.

Table 4 shows the average number of resets for each
control strategy in a scenario with a Uniform distribu-
tion. Again, the number of conflicts was varied. This
time, however, sets of 1000 instead of 100 test runs
were studied. The trends are the same as in Table 3:
Reset Always performed worst, Optimistic was next,
MaxWeightedDiff was the best graph-based approach,
and Slice was very good if there were many conflicts
and worse than MaxWeightedDiff if there were few
conflicts. Comparing Tables 3 and 4, it can be seen
that the number of resets decreased for an increasing
number of test runs, if the number of conflicts stays
constant. In other words, the density of conflicts has
a strong impact on the number of resets required. The
higher the density, the more difficult it is to find good
schedules.

Table 5 shows the average number of resets in a sce-
nario with 1000 test runs, varying the number of con-
flicts. This time, a Zipf distribution was used. Again,
the major observations were the same as in the previ-
ous two simulation experiments and the overall results
are very similar. Comparing Tables 4 and 5, it can
be observed that the results with the Zipf distribution
were slightly better than with the Uniform distribu-
tion. The reason is that the Zipf distribution con-
centrates more conflicts to few bad test runs. Having
those bad test runs out of the way, then makes it eas-
ier to order the remaining test runs which have fewer
conflicts between them.

6.2.2 Convergence Speed

Figure 7 shows how quickly the individual strategies
converge. As mentioned in the description of the test

Approach 10c 100c 1000c 10000c

Reset Always 1000 1000 1000 1000
Optimistic/++ 3.2 8.1 23.1 67.7

Slice 1.9 2.8 6.3 17.8
MinFanOut 1.0 4.7 14.4 61.0

MaxDiff 1.0 3.4 11.2 45.3
MinWeigthedFanOut 1.3 3.9 13.2 54.3

MaxWeightedDiff 1.0 1.1 4.1 31.0

Table 5: Simulation: Resets
Zipf, 1000 test runs, Vary Conflicts
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Figure 7: Simulation: Convergence
Zipf, 1000 test runs, 1000 conflicts

environment, we carried out 100 iterations for each set
of test runs and then repeated the experiments many
times with different sets of test runs in order to com-
pute confidence intervals. In the previous subsection,
we reported the average number of resets needed for
each control strategy for the 100th iteration. Figure 7
shows the number of resets by iteration, 1 to 100. In
this experiment we used 1000 test runs with 1000 con-
flicts and a Zipf distribution.

In the first iteration, all control strategies behaved
in the same way. (An exception was the Reset Al-
ways strategy which is not shown in Figure 7 because
it alway had 1000 resets.) The Optimistic approaches
did not improve with the number of iterations because
these approaches do not learn and do not re-order test
runs. (Again, Optimistic and Optimistic++ showed
the same performance because we counted the num-
ber of resets only.) The other strategies improved with
the number of iterations, thereby learning more and
more conflicts and adjusting the order correspondingly.
In all our experiments, Slice improved and converged
the fastest. With Slice, it took only a few iterations
before very good schedules were found. The graph-
based heuristics were much slower in the experiment
shown in Figure 7 and in all other experiments (not
shown here). Furthermore, the graph-based heuristics
are bumpy; they sometimes produced worse schedules
from one iteration to the next. In this particular exper-



Approach CPU Time Conflict DB

Slice 8.0secs 58375.4 nodes
MinFanOut 1.9secs 23004.3 nodes

MaxDiff 3.0secs 46857.6 nodes
MinWeigthedFanOut 3.8secs 56672.4 nodes

MaxWeightedDiff 2.5secs 87466.7 nodes

Table 6: Simulation: Overheads
Uniform, 1000 test runs, 10,000 Conflicts

iment, MaxWeightedDiff was better than Slice at the
end, but it took almost 50 iterations before it did so.
In a company with nightly regression tests, this means
that Slice is better in the first two months. Slice is
always better if conflict information is scratched on a
monthly basis.

6.2.3 Overheads

Table 6 shows the CPU time and the size of the con-
flict database for each control strategy. These times
were recorded for the 100th iteration of an experiment
with a Uniform distribution, 1000 test runs, and 10.000
conflicts. These were the highest overheads we could
observe in all our experiments. (For the Zipf distri-
bution, the overheads were lower by about a factor of
2; for less conflicts, the overheads were much lower.)
Table 6 shows that the running times of the control
strategies were only a few seconds, compared to sev-
eral hours that it takes to actually execute the test runs
and to reset the test database for a real commercial ap-
plication (Section 5). In other words, it is worth-while
to use progressive heuristics in order to optimize re-
gression tests because the overhead of the progressive
approaches is much lower than the savings these ap-
proaches achieve. Furthermore, the size of the conflict
database was at most in the order of hundreds of kilo-
bytes, and, therefore, fitted easily into main memory.
It is possible that the conflict database records more
conflicts than actually exist. Nevertheless, the number
of conflicts recorded in the conflict database is always
constrained by the square of the number of test runs
and is much lower than that upper bound in practice.

7 Conclusion

Regression testing is a well-studied technique in soft-
ware engineering. The most prominent framework
is JUnit. Furthermore, there are several commercial
tools which have been developed for a variety of ap-
plications and architectures; e.g., WinRunner, IEPad,
Jedi, LIXTO, and Andes. Unfortunately and some-
what surprisingly, all these tools do not work well for
database applications; these tools only work well if ap-
plications are stateless or tests can be designed in such
a way that they do not alter the state. The AGENDA
framework is the only related work that specifically
addresses the testing of database applications [3].

This work presented a general black box approach

in order to carry out regression tests for database ap-
plications. Furthermore, it was shown that the order
in which test runs are applied is important. Naive
approaches to carry out regression tests either do not
scale well, or put a heavy burden on test engineers, or
limit the number of tests that can be carried out au-
tomatically. This paper proposed and evaluated alter-
native approaches. The evaluation was carried out us-
ing a real test scenario of an industrial user (Unilever)
and simulations. As a result, two heuristics, Slice
and MaxWeightedDiff, were identified that perform
very well, have low overhead, and require no extra ef-
fort from test engineers. Between these two heuristics
no clear winner could be identified: MaxWeightedDiff
performs slightly better if there are only few conflicts;
on the other hand, Slice finds good schedules faster
which is important if new test runs are added and the
conflict information is scratched periodically. Unilever
decided to use the Slice heuristics.

The whole topic of testing database applications is
still in its infancy. No rigorous methodologies have
been devised yet and there are are several open issues
such as the automatic generation and evolution of test
runs, the generation of test databases, and the devel-
opment of platform independent tools. We plan to
study these challenges as part of future work.
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