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Abstract 
We illustrate the benefits of combining database 
systems and Grid technologies for data-intensive 
applications. Using a cluster of SQL servers, we 
reimplemented an existing Grid application that 
finds galaxy clusters in a large astronomical 
database. The SQL implementation runs an order 
of magnitude faster than the earlier Tcl-C-file-
based implementation. We discuss why and how 
Grid applications can take advantage of database 
systems. 
 
Keywords: Very Large Databases, Grid 
Applications, Data Grids, e-Science, Virtual 
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1. Introduction 
Science faces a data avalanche. Breakthroughs in 
instruments, detector and computer technologies are 
creating multi-Terabyte data archives in many disciplines.  
Analysis of all this information requires resources that no 
single institution can afford to provide.   In response to 
this demand, Grid computing has emerged as an important 
research area, differentiated from clusters and distributed 
computing. Many definitions of the Grid and Grid 
systems have been given [17]. In the context of this paper, 
we think of the Grid as the infrastructure and set of 
protocols that enable the integrated, collaborative use of 
high-end computer, networks, databases, and scientific 
instruments owned and managed by multiple 
organizations, referred to virtual organizations [18][27]. 

The need to integrate databases and database 
technology into the Grid was already recognized, in order 

to support science and business database applications as 
well as to manage metadata, provenance data, resource 
inventories, etc. [16].  Significant effort has gone into 
defining requirements, protocols and implementing 
middleware  to access databases in Grid environments 
[19][20][21][22][23]. Although database management 
systems (DBMS) have been introduced as useful tools to 
manage metadata, data, resources, workflows, etc [24] 
[25][26], the presence of databases is minimal in science 
applications running on the Grid.  Today the typical data-
intensive science Grid application still uses flat files to 
process and store the data and cannot benefit from the 
power that database systems offer.  

To evaluate the benefit of combining database and 
Grid technologies, this paper compares an existing file-
based Grid application, MaxBCG [6], with an equivalent 
SQL implementation.  This paper describes the MaxBCG 
algorithm and its relationship to the Sloan Digital Sky 
Survey (SDSS) and the Virtual Observatory (VO) project. 
Next, we describe in detail the file-based and database 
implementations, and compare their performance on 
various computer systems. Finally, we discuss how the 
SQL implementation could be run efficiently on a Grid 
system.  We conclude by speculating why database 
systems are not being used on the Grid to facilitate data 
analysis. 

 

2. Finding Galaxy Clusters for SDSS 
Some Astronomy knowledge is needed to understand the 
algorithm’s computational requirements [28]. Galaxies 
may be categorized by brightness, color, and redshift. 
Brightness is measured in specific wavelength intervals of 
light using standard filters. Color is the difference in 
brightness through two different filters. Due to the Hubble 
expansion of the Universe, the Doppler redshift of light 
from a galaxy is a surrogate for its distance from Earth. 

Galaxy clusters are collections of galaxies confined 
by gravity to a compact region of the universe. Galaxy 
clusters are useful laboratories for studying the physics of 
the Universe. Astronomers are developing interesting new 
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ways to find them systematically. The brightest galaxy in 
a cluster (BCG) is typically the most massive and so tends 
to be near the cluster center.  

The Maximum-likelihood Brightest Cluster Galaxy 
algorithm [1], MaxBCG, finds galaxy clusters.   It has 
been used to search the Sloan Digital Sky Survey (SDSS) 
catalog for Cluster candidates [2].  MaxBCG was 
originally implemented as Tcl scripts orchestrating the 
SDSS Astrotools package [3] and ran on the Terabyte 
Analysis Machine (TAM), a 5-node Condor cluster 
specifically tuned to solve this type of problem [4][5].  
The same application code was integrated with the 
Chimera Virtual Data System created by the Grid Physics 
Network (GriPhyN) project to test Grid technologies [6]. 
As is common in astronomical file-based Grid 
applications, the TAM and Chimera implementations use 
hundreds of thousands of files fetched from the SDSS 
Data Archive Server (DAS) to the computing nodes. 

SkyServer is the Web portal to the SDSS Catalog 
Archive Server (CAS) – the relational database system 
hosting the SDSS catalog data. All the data required to 
run MaxBCG is available in the SkyServer database.  
SDSS is part of the Virtual Observatory also known as the 
World Wide Telescope. The Virtual Observatory is being 
implemented in many countries [7]. It is developing 
portals, protocols, and standards that federate and unify 
many of the world’s astronomy archives into a giant 
database containing all astronomy literature, images, raw 
data, derived datasets, and simulation data integrated as a 
single intelligent facility [8].   

The World-Wide Telescope is a prototypical data Grid 
application supporting a community of scholars 
cooperating to build and analyze a data Grid that 
integrates all astronomy data and literature.  The 
MaxBCG search for clusters of galaxies is typical of the 
tasks astronomers will want to perform on this data Grid. 

2.1   The Algorithm 

The MaxBCG algorithm solves the specific 
astronomical problem of locating clusters of galaxies in a 
catalog of astronomical objects. It searches for galaxy 
clusters over a wide range of redshifts and masses. The 
search relies on the fact that the brightest cluster galaxies 
(BCG) in most clusters have remarkably similar 
luminosities and colors [9]. The MaxBCG algorithm 
works on a 5-dimensional space and calculates the cluster 
likelihood of each galaxy. The 5-space is defined by two 
spatial dimensions, Right Ascension, ra, and Declination, 
dec; two color dimensions, g-r and r-i; and one 
brightness dimension, i. The algorithm includes six steps: 

 
Get galaxy list extracts the five-dimensions of interest     

from the catalog. 
Filter calculates the unweighted BCG likelihood for each 

galaxy (unweighted by galaxy count) and discards 
unlikely galaxies. 

Check neighbors weights the BCG likelihood with the 
number of neighbors. 

Pick most likely for each galaxy, determines whether it is 
the most likely galaxy in the neighborhood to be the 
center of the cluster. 

Discard compromised results removes suspicious results 
and stores the final cluster catalog. 

Retrieve the members of the clusters retrieves the 
galaxies that the MaxBCG algorithm determined are 
part of the cluster. 

2.2   The TAM Implementation 

The MaxBCG algorithm was implemented as Tcl scripts 
driving Astrotools, which is an SDSS software package 
comprised of Tcl and C routines layered over a set of 
public domain software packages [3].  The CPU intensive 
computations are done by Astrotools using external calls 
to C routines to handle vector math operations. The 
algorithm ran on the TAM Beowulf cluster [4]. 

The TAM MaxBCG implementation takes advantage 
of the parallel nature of the problem by using a divide-
and-conquer strategy which breaks the sky in 0.25 deg2 
fields. Each field is processed as an independent task. 
Each of these tasks require two files: a 0.5 x 0.5 deg2 
Target file that contains galaxies that will be evaluated 
and a 1 x 1 deg2 Buffer file with the neighboring galaxies 
needed to test for the presence of a galaxy cluster. Ideally 
the Buffer file would cover 1.5 x 1.5 deg2 = 2.25 deg2 to 
find all neighbors within 0.5 deg of any galaxy in the 
Target area and estimate the likelihood that a galaxy is 
the brightest one in a cluster. But the time to search the 
larger Buffer file would have been unacceptable because 
the TAM nodes did not have enough RAM storage to hold 
the larger files: the compromise was to limit the buffer to 
cover only to 1 x 1 deg2 areas [Figure1].  
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Figure 1.  Each galaxy in the Target area is 
examined to calculate its BCG likelihood. The 
computation then searches the neighborhood to see if 
the galaxy is the center of a cluster. Ideally, Buffer 
should be the 1.5 deg2 dashed area. In the TAM 
implementation is limited to the smaller 1 deg2 area 
due to performance issues. 
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A Target field of 0.25 deg2 contains approximately 
3.5 x 103 galaxies.  Initially, every galaxy in the catalog is 
a possible BCG. The observed brightness and color of 
each candidate is compared with entries in a k-correction 
table, which contains the expected brightness and color of 
a BCG at 100 possible redshifts. This comparison yields a 
(perhaps null) set of plausible redshifts for each candidate 
BCG. If, at any redshift, a galaxy has even a remote 
chance of being the right color and brightness to be a 
BCG, it is passed to the next stage.      

Given a candidate galaxy, the next stage uses the 
Buffer file to compute the number of neighbor galaxies at 
every redshift.  This every redshift search is required 
because the color window, the magnitude window, and 
the search radius all change with redshift. The BCG 
likelihood is computed at each redshift. The maximum 
likelihood, over the entire range of redshifts for the object 
with at least one neighbor, is recorded in the BCG 
Candidates file, C.  About 3% of the galaxies are 
candidates to be a BCG. 

In order to determine whether a candidate galaxy is a 
BCG, rather than just a member of the cluster, the 
algorithm compares it with the neighboring candidates 
which are compiled into the BufferC file [Figure 2].   
Ideally, each candidate should be compared with all 
candidates within 0.5 deg as this corresponds to a 
reasonable low redshift cutoff. However, as explained 
earlier [Figure 1], TAM is restricted to 1 x 1 deg2 area to 
meet its computation time and storage budget, leaving 
only a 0.25 deg buffer surrounding the 0.5 x 0.5 deg2. The 
algorithm finds approximately 4.5 clusters per target area 
(0.13% of the galaxies are BCGs). 

The last step is to retrieve the galaxies in the cluster. A 
galaxy is considered to be part of the cluster if it is inside 
a radius of 1 Mpc (3.26 million light years, converted into 
degrees using the redshift) of the BCG and inside the 
R200 radius containing 200 times the background mass 
density. The R200 radius is derived from the cluster mass 
(number of galaxies) using a lookup table. In the TAM 

implementation these spherical neighborhood searches are 
reasonably expensive as each one searches the Buffer file. 

Once the Buffer and Target files are loaded into 
RAM the algorithm is CPU-bound. The 600 MHz CPUs 
of the TAM could process a Target field of 0.25 deg2 in 
about a thousand seconds. Processing the many target 
fields is embarrassingly parallel, so the time scales 
lineally with the number of target areas being processed. 
TAM is composed of 5 nodes, each one a dual-600-MHz 
PIII processor nodes each with 1 GB of RAM. The TAM 
cluster could process ten target fields in parallel.  

2.3   SQL Server DBMS Implementation 

We implemented the same MaxBCG algorithm using the 
SDSS CAS database [10].  This new implementation 
includes two main improvements. First, it uses a finer k-
correction table with redshift steps of 0.001, instead of 
0.01.  Second, it uses a 0.5 deg buffer on the target field. 
Although these two improvements give better scientific 
results, would have increased the TAM processing time 
by a factor of about 25. The implementation is available 
from [29].  

As described in Section 2.2, the TAM approach builds 
two files, Target and Buffer, for each 0.25 deg2 target 
field.  The SQL application processes much larger pieces 
of the sky all at once. We have been using a target area of 
11 deg x 6 deg = 66 deg2 inside a buffer area of 13 deg x 
8 deg = 104 deg2; but, in principle the target area could be 
much larger. Larger target areas give better performance 
because the relative buffer area (overhead) decreases 
[Figure 3].  Using a database and database indices allows 
this much large area because the database scans the areas 
using high-speed sequential access and spatial indices 
rather than keeping all the data in the RAM. 
 

 
The SQL application does not extract the data to files 

prior to doing the processing.  It uses the power of the 

SELECT a1, a2 .. FROM P
FROM    Galaxy g
WHERE g.ra between 172 and 185

and g.dec between -3 and 5
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Figure 3.  Selection of the galaxy parameters 
required to solve the finding galaxy cluster problem.  
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Figure 2.  Candidates in the target area, 
CandidatesT, are compared with all candidates in 
the buffer area, BufferC, to find the brightest 
candidate of the cluster.   
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database system to SELECT the necessary data and to do 
some processing and filtering inside the database.  The 
processing requires basically one SELECT statement to 
extract the 5 parameters of interest from the general 
Galaxy table.  Each of these rows or galaxies is JOINED 
with the 1000-row redshift lookup k-correction table to 
compute the BCG likelihood. This process eliminates 
candidates below some threshold very early in the 
computation.  

These two steps are fairly simple and fast. The next 
step, counting the number of neighbors to estimate the 
BCG likelihood, is a bit more complex.  

Neighborhood searches are usually very expensive 
because they imply computing distances between all pairs 
of objects in order to select those within some radius. 
Relational databases are well suited to look for objects 
meeting some criteria. However, when the searches are 
spatial, they usually require a special indexing system. 
We used the techniques described in [11] to perform the 
neighborhood searches.  We tried both the Hierarchical 
Triangular Mesh (HTM) [12] and the zone-based 
neighbor techiniques.  As explained below, the Zone 
index was chosen to perform the neighbor counts because 
it offered better performance. 

The concept behind the zone-indexing schema is to 
map the celestial sphere into stripes of certain height 
called Zones. Each object at position (ra, dec) is assigned 
to a Zone by using the fairly simple formula Zone = 
floor((dec + 90) / h), where h is the Zone height.  

 
Zone-indexing has two benefits. First, using relational 

algebra the algorithm performs the neighborhood searches 
by joining a Zone with itself and discarding those objects 
beyond some radius. This pure SQL approach avoids the 
cost of using expensive calls to the external C-HTM 

libraries to do the spatial searches. Second, the data and 
computation partition very easily by assigning different 
Zones to each SQL Server and running the MaxBCG code 
in parallel.  

The SQL MaxBCG algorithm works as follows. Given 
a target area T, all objects inside T and up to 0.5 deg away 
from T (buffer area B) are inspected to decide whether 
they are candidates to be the brightest cluster galaxy 
[Figure 4]. Searches for neighbors include all objects 
inside P which guarantees 0.5 deg buffer for objects near 
the border. This computation is therefore more accurate 
than the TAM version which used only a 0.25 deg buffer 
only. Area T differs from area B because deciding 
whether a candidate is the brightest cluster galaxy 
requires knowledge about candidate neighbors within 0.5 
deg. To avoid unnecessary dependencies, we do in 
advance what will be required later. This task generates a 
Candidates table C. 

In the next stage, all candidate galaxies in target area 
T are inspected to decide whether or not they have the 
maximum likelihood to be the brightest galaxy of their 
cluster. This neighbor search is done only among objects 
in the Candidate table, C [Figure 5]. This step creates a 
Cluster catalog where the likelihood of all candidates has 
been properly computed using 0.5 deg buffer around each 
candidate. 

 

 
 
Processing a target field of 66 deg2 as described 

above, requires about 5 hours with a dual 2.6 GHz 
machine running Microsoft SQL Server 2000. However, 
SQL Server is usually I/O bound instead of CPU bound so 
algorithm performance will not scale exactly with CPU 
speed. 

 

SELECT a1, a2 .. FROM C
WHERE  c.ra between 173and 184

and c.dec between -2 and 4
For each of object in T selects the candidate with the 
maximum likelihood to be the center of the cluster.
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Figure 5. Candidate galaxies inside the target area, 
T, are inspected to decide whether or not they have 
the maximum BCG likelihood. 

SELECT a1, a2 .. FROM P --- >objects in B
WHERE  p.ra between 172.5 and 184.5

and p.dec between -2.5 and 4.5
For each object inside area B calculates the BCG 
likelihood.
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For each object inside area B calculates the BCG 
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Figure 4.  Objects inside T and 0.5 deg away from 
T (Region B) are inspected to decide whether or not 
they are candidates to be a BCG. 
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Resolving the same target area of 66 deg2 with only 
one of the TAM CPUs using the file-oriented approach 
required about 73 hours (1000 s per each 0.25 deg2 field), 
but that computation had only a 0.25 deg surrounding 
buffer and only 100 redshift steps.  TAM would require 
about 25 times longer to do the equivalent SQL-
calculation with a 0.5 deg buffer and redshift steps of 
0.001. 

2.4   SQL Server Cluster 

The SQL implementation can run either on a single 
SQL Server or on a cluster of SQL Servers. As mentioned 

before, the problem is intrinsically parallel; each target 
area T can be processed in parallel. Using the Zone 
strategy described in section 2.3, a single target area may 
be processed in parallel by distributing the Zones among 
several servers allowing parallel execution of MaxBCG 
on different partitions of the target area [Figure 6].   

When running in parallel, the data distribution is 
arranged so each server is completely independent from 
the others. We achieve this by duplicating some data and 
processing on different servers. The duplicated 
computations are insignificant compared to the total work 
involved when processing big volumes of data, or 
equivalently, big areas of the sky. We benchmarked this 
partitioning approach using a Microsoft SQL Server 2000 
cluster composed of 3 nodes, each one a dual 2.6 GHz 
Xeon with 2 GB of RAM. 

Table 1 shows the elapsed times, CPU times, and I/O 
operations used by SQL Server when solving MaxBCG 
with and without partitioning.  SpZone is the task that 
arranges the data in Zones so the neighborhood searches 
are efficient. This task assigns a ZoneID and creates a 
clustered-index on the data. fBCGCandidate is the main 
task. It includes the BCG likelihood computations. Here is 
where the main neighborhood searches are performed to 
estimate properly the BCG likelihood. The fact that the 
I/O density is low during fBCGCandidate indicates the 
required data is usually in memory, which is always 
highly desired. Finally, fIsCluster screens the 
Candidates table and decides whether or not a candidate 
is a BCG. Although not included in Table 1, we also have 
the function that collects the galaxies that belong to a 

Table 1. SQL Server cluster performance, with no partitioning and with 3-way partitioning. 
  Task elapse (s) cpu (s) I/O Galaxies on each partition 

No Partitioning spZone 563.7 210.2 102,144 
  fBCGCandidate 15,758.2 15,161.0 562 
  fIsCluster 2,312.7 6,58.5 16,043 
  total 18,635 16,030 118,749 1,574,656 

3-node Partitioning  
P1 spZone 285.5 65.5 46,758 
  fBCGCandidate 6,099.1 5,850.7 209 
  fIsCluster 286.6 189.4 2,910 
  total 6,671.2 6,105.6 49,877 729,234 
P2 spZone 325.4 77.9 50,519 
  fBCGCandidate 8,210.7 7,907.7 306 
  fIsCluster 451.8 306 476 
  total 8,987.9 8,291.6 51,301 898,916 
P3 spZone 326.3 65.6 46,275 
  fBCGCandidate 6,121.5 5,783.5 283 
  fIsCluster 189.4 158.1 1,955 
  total 6,637.2 6,007.2 48,513 719,900 
Partitioning Total  8,988 20,404 149,691 2,348,050 
Ratio 1node/3node  48% 127% 126%   

 

Applying a zone strategy, P gets partitioned homogenously 
among 3 servers.

• S1 provides 1 deg buffer on top
• S2 provides 1 deg buffer on top and bottom 
• S3 provides 1 deg buffer on bottom
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among 3 servers.
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Figure 6. Data distribution among 3 SQL Servers.   
Total duplicated data = 4 x 13 deg2.  
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cluster. This is a fairly simple and fast operation which 
searches for neighboring galaxies within some radius for 
each detected cluster.  

The union of the answers from the three partitions is 
identical to the BCG candidates and clusters returned by 
the sequential (one node) implementation.  Overall the 
parallel implementation gives a 2x speedup at the cost of 
25% more CPU and I/O (including the cost of rezoning). 

2.5   Time Performance 

Tables 2 and 3 present a side-by-side comparison showing 
that the relational database solution is about 40 times 
faster per node than the file-based approach. For the 
specific cluster configurations considered here the 3-node 
SQL Server approach is about 20 times faster than the 5-
node TAM. 

Even if one were willing to wait 20 times longer, 
TAM nodes do not have enough memory to handle z-
steps of 0.001 and a buffer of 0.5 deg. As mentioned 
before, a single TAM CPU takes 1000 s to process a 
target field of 0.25 deg2 with a buffer of 0.25 deg and z-
steps of 0.01 TAM performance is expected to scale 
lineally with the number of fields. 

 
Table 2. Time scale factors for converting the TAM 
test case to the SQL server test case. 
 TAM SQL 

Server Scale Factor 

CPUs used 1 2 0.5 
CPU 600 MHz 2.6 GHz ~ 0.25 
Target 
field 0.25 deg2 66 deg2 264 

z- steps 0.01 0.001 
Buffer 0.25 deg 0.5 deg 

25 

Total Scale Factor 825 
 
Table 2 compares both configurations and provides 

the scale factor to convert the TAM test case into the SQL 
test case.  We normalize for the fact that the TAM CPU is 
about 4 times slower by dividing by 4 -- in fact much of 
the time is spent waiting for disk so this is being generous 
to the TAM system which had a comparable disk 
subsystem. Even with that the ratio is about 2 hours to 
about 2 days.    

 
Table 3. Scaled TAM vs. Measured SQL Server 
performance for a target field of 66 deg2. 
Cluster Nodes Time(s) Ratio 
TAM 1 825,000 
SQL Server 1 18,635 

44 

TAM 5 165,000 
SQL Server 3 8,988 

18 

 

2.6   Performance Analysis 

What makes things run faste in SQL than in the file-based 
application?  We wish we knew but we can no longer run 
the original code so we can only make educated guesses 
(one of the authors wrote the original code). 

First, the SQL implementation discards candidates 
early in the process by doing a natural JOIN with the k-
correction table and filtering out those rows where the 
likelihood is below some threshold. This reduces the 
number of operations for subsequent INNER JOINs with 
the k-correction table and other tables. The SQL design 
uses the redshift index as the JOIN attribute which speeds 
the execution.  So, early filtering and indexing are a big 
part of the answer. Second, the main advantage comes 
from using the Zone [11] strategy to index the data and 
speed up the neighborhood searches. 

The SQL design could be further optimized. The 
iteration through the galaxy table uses SQL cursors which 
are very slow. But there was no easy way to avoid them. 
Our tests used a galaxy table of roughly 1.5 million rows 
(44 bytes each). About 1.2 million of those galaxies need 
to be joined with the k-correction table (1000 rows x 40 
bytes).  Joining this in memory would require at least 80 
GB. A possible optimization is to define some sort of sky 
partitioning algorithm that breaks the sky in areas that can 
fit in memory, 2 GB in our case. Once an area has been 
defined, the MaxBCG task is scheduled for execution. 
This approach would be similar to the cluster 
implementation described in section 2.4 but at the level of 
cluster nodes since different computer may have different 
memory resources.  

 

3. Discussion 
This work demonstrates that using a relational database 
management system and SQL can improve computational 
performance on data-intensive applications.  But 
performance is not the only advantage of using general 
database management systems rather than implementing 
custom applications. There is no magic in a relational 
DBMS; anything it does can also be done in a custom 
application (e.g. one implemented in TCL and C!). In fact, 
a quality custom solution should outperform a general-
purpose DBMS.  

The SQL implementation of MaxBCG was 
considerable simpler than the Tcl-Astrotools 
implementation primarily because it leveraged the 
features of the SQL system for data access, indexing, and 
parallelism. 

The scientist, in our case an astronomer, should be 
free to focus on the science and minimize the effort 
required to optimize the application. Database 
management systems are designed to do fast searches, 
workload balancing and manage large data volumes and 
certainly will do a better job compared to what an average 
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scientist could code. Database management systems allow 
simultaneous data access from different applications 
providing a good sharing environment.  

So, the first lesson to learn for scientists working in 
data-intensive disciplines like astronomy, biology, etc. is 
that database systems are powerful tools to analyze big 
volumes of data and share results with others. On the 
other hand, the community researching database systems 
should ask itself why scientists are so reluctant to use 
database technologies. 

As stated in the introduction, although the potential 
benefits of using database systems on the Grid has been 
recognized [16], their actual use as analysis tools is 
minimal. To our knowledge, most of the data-intensive 
applications that run on the Grid today focus on moving 
hundreds of thousands of files from the storage archives 
to the thousands of computing nodes. Many of these 
applications, like the one described in this paper, could 
solve the same problem more efficiently using databases.  

We believe there is a basic reason for the absence of 
database technology in the Grid science community. 
While it is relatively easy to deploy and run applications 
coded in C, Fortran, Tcl, Python, Java, etc.; it is difficult 
to find resources to do the equivalent tasks using 
databases. Grid nodes hosting big databases and facilities 
where users can have their own database with full power 
to create tables, indexes, stored procedures, etc. are 
basically nonexistent. However, such facilities are needed 
to minimize the distance between the stored data and the 
analysis nodes, and in this way to guarantee that is the 
code that travels to the data and not the data to the code.  

With the motivation of minimizing the distance 
between the SDSS CAS databases and analysis computing 
nodes, we implemented the SDSS Batch Query System, 
CasJobs [13][14]. The next section describes CasJobs and 
our work to develop an efficient Grid-enabled 
implementation of MaxBCG that instead of transferring 
hundreds of thousands of files over the network [6], 
leverages database technologies as parallel querying 
processing and indexing. 

 

4. CasJobs, MaxBCG and Data Grids 
CasJobs is an application available through the SkyServer 
site [15] that lets users submit long-running SQL queries 
on the CAS databases. The query output can be stored on 
the server-side in the user’s personal relational database 
(MyDB).  Users may upload and download data to and 
from their MyDB. They can correlate data inside MyDB 
or with the main database to do fast filtering and searches.  
CasJobs allows creating new tables, indexes, and stored 
procedures. CasJobs provides a collaborative environment 
where users can form groups and share data with others. 

MaxBCG can be run using CasJobs, but that 
implementation is equivalent to the one described in 
section 2.3, which uses only one server. We want to take 

it one step further. Inspired by our SQL Server cluster 
experience, we plan to implement an application able to 
run in parallel using several systems. So for example 
when the user submits the MaxBCG application, upon 
authentication and authorization, the SQL code (about 
500 lines) is deployed on the available Data-Grid nodes 
hosting the CAS database system. Each node will analyze 
a piece of the sky in parallel and store the results locally 
or, depending on the policy, transfer the final results back 
to the origin.  We aim for a general implementation that 
makes it easy to bring the code to the data, avoids big data 
transfers, and extrapolates easily to solve other problems. 

At the moment, two different organizations host the 
CAS database and the CasJobs system; Fermilab (Batavia, 
IL, USA) and The Johns Hopkins University (Baltimore, 
MD, USA). In the near future, the Inter-University Centre 
for Astronomy and Astrophysics (IUCCA) in Pune, India, 
will also host the system. Other organizations have 
showed interest in DB2 implementations of the CAS 
database. These are institutions with different access 
policies, autonomous and geographically distributed. 
CasJobs is accessible not only through the Web interface 
but also through Web services. Once the GGF DAIS 
protocol [21] becomes a final recommendation, it should 
be fairly easy to expose CasJobs Web services wrapped 
into the official Grid specification. We are working on 
issues of security, workflow tracking, and workload 
coordination, which need to be resolved to guarantee 
quality of service. Autonomy, geographical distribution, 
use of standards and quality of service are the key 
characteristics that a system requires in order to be 
accepted as a Grid system [27]. 

 

5. Conclusion 
This paper presents a typical astronomical data-

intensive application which aims to find galaxy clusters in 
SDSS catalog data. It demonstrates that using a database 
cluster achieves better performance than a file-based Tcl-
C implementation run on a traditional Grid system.  It also 
describes future work to “gridify” the implementation. 

It points out that even though database systems are 
great tools for data-intensive applications, and even 
though one of the main goals of the Grid is providing 
infrastructure and resources for such applications, the are 
virtually no database management systems on the Grid to 
do effective data analysis.  

In current Grid projects, databases and database 
systems are typically used only to access and integrate 
data, but not to perform analytic or computational tasks. 
Limiting usage in this manner neglects a strength of 
database systems, which is their ability to efficiently 
index, search, and join large amounts of data – often in 
parallel. It is a mistake to move large amounts of data to 
the query, when you can move the query to the data and 
execute the query in parallel.  For this reason, it would be 
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useful for nodes on the Grid to support different Database 
Management Systems so that SQL applications could be 
deployed as easily as traditional Grid applications coded 
in C, Fortran, etc. 
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