
Two Can Keep a Secret: A Distributed Architecture for

Secure Database Services

G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina,
K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, Y. Xu

Stanford University
{gagan, bawa, prasannag, hector, kngk, rajeev, usriv, dilys, xuying}@cs.stanford.edu

Abstract

Recent trends towards database outsourcing,
as well as concerns and laws governing data
privacy, have led to great interest in enabling
secure database services. Previous approaches
to enabling such a service have been based
on data encryption, causing a large overhead
in query processing. We propose a new, dis-
tributed architecture that allows an organiza-
tion to outsource its data management to two
untrusted servers while preserving data pri-
vacy. We show how the presence of two servers
enables efficient partitioning of data so that
the contents at any one server are guaranteed
not to breach data privacy. We show how to
optimize and execute queries in this architec-
ture, and discuss new challenges that emerge
in designing the database schema.

1 Introduction

The database community is witnessing the emergence
of two recent trends set on a collision course. On
the one hand, the outsourcing of data management
has become increasingly attractive for many organiza-
tions [HIM02]; the use of an external database service
promises reliable data storage at a low cost, eliminat-
ing the need for expensive in-house data-management
infrastructure, e.g., [CW02]. On the other hand, esca-
lating concerns about data privacy, recent governmen-
tal legislation [SB02], as well as high-profile instances
of database theft [WP04], have sparked keen interest
in enabling secure data storage.

This work was supported in part by NSF Grant ITR-0331640.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 2005 CIDR Conference

The two trends described above are in direct con-
flict with each other. A client using a database service
needs to trust the service provider with potentially sen-
sitive data, leaving the door open for damaging leaks
of private information. Consequently, there has been
much recent interest in a so-called Secure Database
Service – a DBMS that provides reliable storage and
efficient query execution, while not knowing the con-
tents of the database [KC04]. Such a service also helps
the service provider by limiting their liability in case
of break-ins into their system – if the service providers
do not know the contents of the database, neither will
a hacker who breaks into the system.

Existing proposals for secure database services
have typically been founded on encryption [HILM02,
HIM04, AKSX04]. Data is encrypted on the (trusted)
client side before being stored in the (untrusted) ex-
ternal database. Observe that there is always a trivial
way to answer all database queries: the client can fetch
the entire database from the server, decrypt it, and ex-
ecute the query on this decrypted database. Of course,
such an approach is far too expensive to be practical.
Instead, the hope is that queries can be transformed
by the client to execute directly on the encrypted data;
the results of such transformed queries could be post-
processed by the client to obtain the final results.

Unfortunately, such hopes are often dashed by the
privacy-efficiency trade-off of encryption. Weak en-
cryption functions that allow efficient queries leak far
too much information and thus do not preserve data
privacy [KC04]. On the other hand, stronger encryp-
tion functions often necessitate resorting to Plan A for
queries – fetching the entire database from the server
– which is simply too expensive. Moreover, despite in-
creasing processor speeds, encryption and decryption
are not exactly cheap, especially when performed over
data at fine granularity.

We propose a new approach to enabling a secure
database service. The key idea is to allow the client
to partition its data across two, (and more generally,
any number of) logically independent database sys-
tems that cannot communicate with each other. The

partitioning of data is performed in such a fashion as
to ensure that the exposure of the contents of any
one database does not result in a violation of privacy.
The client executes queries by transmitting appropri-
ate sub-queries to each database, and then piecing to-
gether the results at the client side.

The use of such a distributed database for obtain-
ing secure database services offers many advantages,
among which are the following:

Untrusted Service Providers The client does not
have to trust the administrators of either database to
guarantee privacy. So long as an adversary does not
gain access to both databases, data privacy is fully pro-
tected. If the client were to obtain database services
from two different vendors, the chances of an adversary
breaking into both systems is reduced greatly. Fur-
thermore, “insider” attacks at one of the vendors do
not compromise the security of the system as a whole.

Provable Privacy The presence of two databases en-
ables the efficient encoding of sensitive attributes in an
information-theoretically secure fashion. To illustrate,
consider a sensitive fixed-length numerical attribute,
such as a credit-card number. We may represent a
credit card number c, by storing c XORed with a ran-
dom number r in one database, and storing r in the
other database. The set of bits used to represent the
credit-card number in either database is completely
random, thus providing perfect privacy. However, we
may recover the number merely by XORing the values
stored in the two databases, which is more efficient
than using expensive encryption and decryption func-
tions.

Efficient Queries The presence of multiple databases
enables the storage of many attribute values in unen-
crypted form. Typically, the exposure of a set of at-
tribute values corresponding to a tuple may result in
a privacy violation, while the exposure of only some
subset of it may be harmless. For example, revealing
an individual’s name and her credit card number may
be a serious privacy violation. However, exposing the
name alone, or the credit card number alone, may not
be a big deal [SB02]. In such cases, we may place in-
dividuals’ names in one database, while storing their
credit-card number in the other, avoiding having to en-
crypt either attribute. A consequence is that queries
involving both names and credit-card numbers may be
executed far more efficiently than if the attributes had
been encrypted.

The rest of this paper is organized as follows. In
Section 2, we present a general architecture for the use
of multiple databases in preserving privacy, describ-
ing the space of techniques available for partitioning
data and the trade-offs involved. In Section 3, we de-
fine a specific notion of privacy based on hiding sets
of attribute values, and consider how to achieve such
privacy using a subset of the available partitioning
techniques. Section 4 expands upon this framework

(Trusted)
Client

Provider 2

Provider 1

���������������������������
���������������������������
�������������������������
�������������������������

interface
SQL

User/App

SQL
interface

Answers

SQL Queries

Figure 1: The System Architecture

and describes how queries may be transformed, opti-
mized and executed in a privacy-preserving fashion.
Section 5 discusses how one may design the database
schema in order to minimize the execution cost of a
given query workload, while obeying the constraints
imposed by the needs of data privacy.

2 General Architecture

The general architecture of a distributed secure
database service, as illustrated in Figure 1, consists
of a trusted client as well as two or more servers that
provide a database service. The servers provide reli-
able content storage and data management but are not
trusted by the client to preserve content privacy.

The client wants to out-source the (high) costs of
managing permanent storage to the service providers;
hence, we assume that the client does not store any
persistent data. However, the client has access to
cheap hardware – providing processing power as well
as temporary storage – which is used to provide three
pieces of functionality:

1. Offer a DBMS Front-End The client exports a
standard DBMS front-end to client-side applications,
supporting standard SQL APIs.

2. Reformulate and Optimize Queries The
queries received by the client need to be translated
into appropriate SQL sub-queries to be sent to the
servers; such translation may involve limited forms of
query-optimization logic, as we discuss later in the pa-
per.

3. Post-process Query Results The sub-queries
are sent to the servers (using a standard SQL API),
and the results are gathered and post-processed before
being returned in a suitable form to the client-side
application.

We note that all three pieces of functionality are
fairly cheap, at least if the amount of post-processing
required for queries is limited, and can be performed
using inexpensive hardware, without the need for ex-
pensive data management infrastructure or personnel.

Security Model As mentioned earlier, the client does
not trust either server to preserve data privacy. Each

server is honest, but potentially curious: the server
may actively monitor all the data that it stores, as
well as the queries it receives from the client, in the
hope of breaching privacy; it does not, however, act
maliciously by providing erroneous service to the client
or by altering the stored data.

The client maintains separate, permanent channels
of communication to each server. We do not require
communication to be encrypted; however, we assume
that no eavesdropper is capable of listening in on both
communication channels. The two servers are assumed
to be unable to communicate directly with each other
(depicted by the “wall” between them in Figure 1)
and, in fact, need not even be aware of each other’s
existence.

Note that the client side is assumed to be com-
pletely trusted and secure. There would not be much
point in developing a secure database service if a
hacker can simply penetrate the client side and trans-
parently access the database. Preventing client-side
breaches is a traditional security problem unrelated to
privacy-preserving data storage, and we do not con-
cern ourselves with this problem here.

2.1 Relation Decomposition

We now consider different techniques to partition
data across the two servers in the distributed ar-
chitecture described above. Say the client needs
to support queries over the “universal” relation
R(A1, A2, . . . , An). Since the client itself possesses no
permanent storage, the contents of relation R need to
be decomposed and stored across the two servers. We
require that the decomposition be both lossless and
privacy preserving.

A lossless decomposition is simply one in which it
is possible to reconstruct the original relation R us-
ing only the contents in the two servers S1 and S2.
The exact manner in which such a reconstruction is
performed is flexible, and may involve not only tra-
ditional relational operators such as joins and unions,
but also other user-defined functions, as we discuss
shortly. We also require the decomposition to be pri-
vacy preserving: the contents stored at server S1 or
S2 must not, in themselves, reveal any private infor-
mation about R. We postpone our discussion of what
constitutes private information to the next section.

Traditional relation decomposition in distributed
databases is of two types:

Horizontal Fragmentation Each tuple of the rela-
tion R is stored at S1 or S2. Thus, server S1 contains
a relation R1, and S2 contains a relation R2 such that
R = R1 ∪ R2.

Vertical Fragmentation The attributes of relation
R are partitioned across S1 and S2. The key attributes
are stored at both sites to ensure lossless decomposi-
tion. Optionally, other attributes may also be repli-

cated at both sites in order to improve query perfor-
mance. If the relations at S1 and S2 are R1 and R2

respectively, then R = R1 ./ R2, where ./ refers to the
natural join on all common attributes.

We believe that horizontal fragmentation is of lim-
ited use in enabling privacy-preserving decomposition.
For example, a company might potentially store its
American sales records as R1 and its European records
as R2 to prevent an adversary from gathering statis-
tics about overall sales, thus providing a crude form of
privacy. In this paper, we will focus on vertical frag-
mentation which appears to hold much more promise.

We now discuss a variety of extensions to vertical
fragmentation which all aid in making the decomposi-
tion privacy preserving.

Unique Tuple IDs Vertical partitioning requires a
key to be present in both databases in order to en-
sure lossless decomposition. Since key attributes may
themselves be private (and can therefore not be stored
in the clear), we may introduce a unique tuple ID for
each tuple and replicate this tuple ID alone across the
two sites. (This concept is not new. Tuple IDs have
been considered as an alternative to key replication to
lower update costs in distributed databases [OV99].)

There are a variety of ways to generate unique tu-
ple IDs when inserting new tuples. Tuple IDs could
simply be sequence numbers generated independently
at the two servers with each new tuple insertion; so
long as the client ensures that tuple insertions are
atomic, both servers will automatically generate the
same sequence number for corresponding tuples. Al-
ternatively, the client could generate random numbers
as tuple IDs, potentially performing a query to a server
to make sure that the tuple ID does not already exist.

Semantic Attribute Decomposition It may be
useful to split an attribute A into two separate, but
related, attributes A1 and A2, in order to exploit pri-
vacy constraints that may apply to A1 but not to A2.
To illustrate, consider an attribute representing peo-
ple’s telephone numbers. The area code of a person’s
number may be sufficiently harmless to be considered
public information, but the phone number, in its en-
tirety, is information subject to misuse and should be
kept private. In such a case, we may decompose the
phone-number attribute into two: a private attribute
A1 representing the last seven digits of the phone num-
ber, and a public attribute A2 representing the first
three digits.

We can immediately see the benefits of such at-
tribute decomposition. Selection queries based on
phone numbers, or queries that perform aggregation
when grouping by area code, could benefit greatly from
the availability of attribute A2. In contrast, in the ab-
sence of A2, and if the phone numbers were completely
hidden (e.g., by encryption), query processing becomes
more expensive.

Attribute Encoding It may be necessary to encode
an attribute value across both databases so that nei-
ther database can deduce the value. For example, con-
sider an attribute that needs to be kept private, say the
employee salary. We may encode the salary attribute
A as two separate attributes A1 and A2, to be stored
in the two databases. The encoding of a salary value
a as two separate values a1 and a2 may be performed
in different fashions, three of which we outline here:

1. One-time Pad: a1 = a
⊕

r, a2 = r, where r is a
random value;

2. Deterministic Encryption: a1 = E(a, k), a2 =
k, where E is a deterministic encryption function
such as AES or RSA;

3. Random Addition: a1 = a + r, a2 = r, where r
is a random number drawn from a domain much
larger than that of a.

In all the above cases, observe that we may recon-
struct the original value of a using the values a1 and
a2. The three different encoding schemes above offer
different trade-offs between privacy and efficiency.

The first scheme offers true information-theoretic
privacy, since both a1 and a2 consist of random bits
that reveal no information about a1. It also offers
fast reconstruction of a from a1 and a2, since only a
XOR is required. However, such an encoding rules out
any hope of “pushing down” a selection condition on
attribute A; such conditions can be evaluated only on
the client side, after fetching all corresponding a1 and
a2 values from the servers and reconstructing value a.

The second scheme offers no benefits over the first if
the key k is chosen to be an independent random value
for each tuple. However, one could use the same key k
for all tuples, i.e., all values for attribute A2 are equal
to the same key k. In such a case, we may be able to
execute selection conditions on A more efficiently by
pushing down a condition on A1. Consider the selec-
tion condition σA=v. We may evaluate this condition
efficiently as follows, assuming key k is stored at S2:

1. Fetch key k from database S2.

2. Send selection condition σA1=E(v,k) to database
S1.

3. Obtain matching tuples from S1.

However, a drawback of such an encoding scheme
is a loss in privacy. For example, if two different tu-
ples have the same value in attribute A, they will also
possess the same encrypted value in attribute A1, thus

1We assume that attribute A is of fixed length. Variable-
length attributes may leak information about the length of the
value unless encoded as fixed-length.

allowing database S1 to deduce that the two tuples cor-
respond to individuals with identical salaries. A sec-
ond drawback of the scheme is that it requires encryp-
tion and decryption of attribute values at the client
side which may be computationally expensive. Finally,
such an encryption scheme does not help if the selec-
tion condition is a range predicate on the attribute
rather than an equality predicate.

The third scheme outlined above is useful when han-
dling queries that perform aggregation on attribute A.
For example, a query that requires the average salary
of employees may be answered by obtaining the aver-
age of attribute A1 from database S1, and subtracting
out the average of attribute A2 from database S2. The
price paid for this efficiency is once again a compromise
of true privacy: in theory, it is possible for database
S1 to guess whether the salary value in a particular
tuple is higher than that in another tuple.

Adding Noise Another technique for enabling pri-
vacy is the addition of “noise” tuples to both databases
S1 and S2 in order to improve privacy. Recall that the
actual relation R is constructed by the natural join
of R1 and R2. We may thus add “dangling tuples”
to both R1 and R2 without compromising the lossless
decomposition property. The addition of such noise
may help provide privacy, say by guaranteeing that the
probability of any set of attribute values being part of
a “real” tuple is less than a desired constant.

3 Defining the Privacy Requirements
and Achieving It

So far, we have not stated the exact requirements of
data privacy. There are many different formulations
of data privacy, some of which are harder to achieve
than others, e.g., [AS00, Swe02]. We introduce one
particular definition that we believe is appropriate for
the database-service context. We refer the reader to
Appendix A to see how our definition captures privacy
requirements imposed in legislation such as California
bill SB1386 [SB02].

Our privacy requirements are specified as a set of
privacy constraints P , expressed on the schema of re-
lation R2. Each privacy constraint is represented by a
subset, say P , of the attributes of R, and informally
means the following:

Let R be decomposed into R1 and R2, and let an
adversary have access to the entire contents of either
R1 or R2. For every tuple in R, the value of at least
one of the attributes in P must be completely opaque
to the adversary, i.e., the adversary should be unable
to infer anything about the value of that attribute.
Note that it is permissible for the values of some at-
tributes in P to be open, so long as there is at least

2Other notions of privacy, such as k-anonymity [Swe02], are
defined on the actual relation instances and may be harder to
enforce in an efficient fashion.

one attribute completely hidden from the adversary.
We illustrate this definition by an example. Con-

sider a company desiring to store relation R consisting
of the following attributes of employees: Name, Date
of Birth (DoB), Gender, Zipcode, Position, Salary,
Email, Telephone. The company may have the fol-
lowing considerations about privacy:

1. Telephone and Email are sensitive information
subject to misuse, even on their own. Therefore
both these attributes form singleton privacy con-
straints and cannot be stored in the clear under
any circumstances.

2. Salary, Position and DoB are considered private
details of individuals, and so cannot be stored
together with an individual’s name in the clear.
Therefore, the sets {Name, Salary}, {Name, Po-
sition} and {Name, DoB} are all privacy con-
straints.

3. The set of attributes {DoB, Gender, Zipcode} can
help identify a person in conjunction with other
publicly available data. Since we already stated
that {Name, DoB} is a privacy constraint, we also
need to add {DoB, Gender, Zipcode} as a privacy
constraint.

4. We may also want to prevent an adversary from
learning sensitive association rules, for example,
between position and salary, or between age and
salary. Therefore, we may add two privacy con-
straints: {Position, Salary}, {Salary, DoB}.

What does it mean to not be able to “infer the
value” of an attribute A? We have left this defini-
tion intentionally vague to accommodate the require-
ments of different applications. On one end, we may
require true information-theoretic privacy – the adver-
sary must be unable to gain any information about the
value of the attribute from examining the contents of
either R1 or R2. We may also settle for weaker forms
of privacy, such as the one provided by encoding an at-
tribute using encryption or random addition. Neither
of these schemes provides true information-theoretic
privacy as above, but may be sufficient in practice. In
this paper, we will restrict ourselves to the stricter no-
tion of privacy, noting the advantages of the weaker
forms where appropriate.

3.1 Obtaining Privacy via Decompositions

Let us consider how we might decompose data, us-
ing the methodologies outlined in Section 2, into two
relations R1 and R2 so as to obey a given set of pri-
vacy constraints. We will restrict ourselves to the case
where R1 and R2 are obtained by vertical fragmenta-
tion of R, fragmented by unique tuple IDs, with some
of the attributes possibly being encoded. (We ignore

semantic attribute decomposition, as well as the addi-
tion of noise tuples. The former may be assumed to
have been applied beforehand, while the latter is not
useful for obeying our privacy constraints.)

We abuse notation by allowing R to refer to the
set of attributes in the relation. We may then denote
a decomposition of R as D(R) = 〈R1, R2, E〉, where
R1 and R2 are the sets of attributes in the two frag-
ments, and E refers to the set of attributes that are
encoded (using one of the schemes outlined in Sec-
tion 2.1). Note that R1 ∪ R2 = R, E ⊆ R1, and
E ⊆ R2, since encoded attributes are stored in both
fragments. We denote the privacy constraints P as a
set of subsets of R, i.e., P ⊆ 2R.

From our definition of privacy constraints, we
may state the following requirement for a privacy-
preserving decomposition:

The decomposition D(R) is said to obey the
privacy constraints P if, for every P ∈ P,
P

�
(R1 − E) and P

�
(R2 − E).

To understand how to obtain such a decomposi-
tion, we observe that each privacy constraint P may
be obeyed in two ways:

1. Ensure that P is not contained in either R1 or R2,
using vertical fragmentation. For example, the
privacy constraint {Name, Salary} may be obeyed
by placing Name in R1 and Salary in R2.

2. Encode at least one of the attributes in P . For
example, a different way to obey the privacy con-
straint {Name, Salary} would be to use, say, a
one-time pad to encode Salary across R1 and R2.
Observe that such encoding is the only way to
obey the privacy constraint on singleton sets.

Example Let us return to our earlier example and
see how we may find a decomposition satisfying all
the privacy constraints. We observe that both Email
and Telephone are singleton privacy constraints; the
only way to tackle them is to encode both these at-
tributes. The constraints specified in items (2) and
(3) may be tackled by vertical fragmentation of the
attributes, e.g., R1(ID, Name, Gender, Zipcode), and
R2(ID, Position, Salary, DoB), with Email and Tele-
phone being stored in both R1 and R2.

Such a partitioning satisfies the privacy constraints
outlined in item (2) since Name is in R1 while Salary,
Position and DoB are in R2. It also satisfies the con-
straint in item (3), since DoB is separated from Gender
and Zipcode. However, we are still stuck with the con-
straints in item (4) which dictate that Salary cannot
be stored with either Position or DoB. We cannot fix
the problem by moving Salary to R1 since that would
violate the constraint of item (2) by placing Name and
Salary together.

The solution is to resort to encoding Salary across
both databases. Thus, the resulting decomposition
is R1 ={ID, Name, Gender, Zipcode, Salary, Email,
Telephone}, R2 = {ID, Position, DoB, Salary, Email,
Telephone} and E = {Salary, Email, Telephone}.
Such a decomposition obeys all the stated privacy con-
straints.

Identifying the Best Decomposition It is clear by
now that it is always possible to obtain a decomposi-
tion of attributes that obeys all the privacy constraints
– in the worst case, we could encode all the attributes
to obey all possible privacy constraints. A key question
that remains is: What is the best decomposition to use,
where “best” refers to the decomposition that mini-
mizes the cost of the workload being executed against
the database?

An answer to the above question requires us to un-
derstand two issues. First, we need to know how an ar-
bitrary query on the original relation R is transformed,
optimized and executed using the two fragments R1

and R2. We will address this issue in the next section.
We will then consider how to exploit this knowledge in
formulating an optimization problem to find the best
decomposition in Section 5.

4 Query Reformulation, Optimization
and Execution

In this section, we discuss how a SQL query on relation
R is reformulated and optimized by the client as sub-
queries on R1 and R2, and how the results are com-
bined to produce the answer to the original query. For
the most part, it turns out that simple generalizations
of standard database optimization techniques suffice to
solve our problems. In Sections 4.1 and 4.2, we explain
how to repurpose the well-understood distributed-
database optimization techniques [OV99] for use in our
context. We discuss the privacy implications of query
execution in Section 4.3 and present some open issues
in query optimization in Section 4.4.

4.1 Query Reformulation

Query reformulation is straightforward and identical
to that in distributed databases. Consider a typical
conjunctive query that applies a conjunction of selec-
tion conditions C to R, groups the results using a set
of attributes G, and applies an aggregation function
to a set of attributes A. We may translate the logi-
cal query plan of this query into a query on R1 and
R2 by the following simple expedient: replace R by
R1 ./ R2 (with the understanding that the ./ oper-
ation also replaces encoded pairs of attribute values
with the unencoded value). When the query involves
a self-join on R, we simply replace each occurrence of
R by the above-mentioned join3.

3Note that since R is considered to be the universal relation,
all joins are self-joins.

Figure 2 shows how a typical query involving se-
lections and projections on R (part (a) of figure) is
reformulated as a join query on R1 and R2 (part (b)
of figure).

4.2 Query Optimization

The trivial query plan for answering a query reformu-
lated in the above fashion is as follows: Fetch R1 from
S1, fetch R2 from S2, execute all plan operators locally
at the client. Of course, such a plan is extremely ex-
pensive, as it requires reading and transmitting entire
relations across the network.

Optimizing the Logical Query Plan The logical
query plan is first improved, just as in traditional
query optimization, by “pushing down” selection con-
ditions, with minor modifications to account for at-
tribute fragmentation. Consider a selection condition
c:

• If c is of the form 〈Attr〉 〈op〉 〈value〉, and 〈Attr〉
has not undergone attribute fragmentation, condi-
tion c may be pushed down to R1 or R2, whichever
contains 〈Attr〉. (In case 〈Attr〉 is replicated on
both relations, the condition may be pushed down
to both.)

• If c is of the form 〈Attr1〉 〈op〉 〈Attr2〉, and both
〈Attr1〉 and 〈Attr2〉 are unfragmented and present
in either R1 or R2, the condition may be pushed
down to the appropriate relation.

Similarly, projections may also be pushed down to
both relations, taking care not to project out tuple
IDs necessary for the join. Group-by clauses and ag-
gregates may also pushed down, provided all attributes
mentioned in the Group-by and aggregate are unfrag-
mented and present together in either R1 or R2. Self-
joins of R with itself, translated into four-way joins
involving two copies each of R1 and R2, may be rear-
ranged to form a “bushy” join tree where the two R1

copies, and the two R2 copies, are joined first.
Figure 2(c) shows the pushing down of selections

and projections to alter the logical query plan. We
assume attributes are fragmented as in the example
of Section 3: R1 contains Name, while DoB is in R2

and Salary is encoded across both relations. Thus, the
condition on Name is pushed down to R1, while the
condition on DoB is pushed down to R2. The selec-
tion on Salary cannot be pushed down since Salary is
encoded. In addition, we may push down projections
as shown in the figure.

Choosing the Physical Query Plan Having opti-
mized the logical query plan, the physical plan needs
to be chosen, determining how the query execution is
partitioned across the two servers and the client. The
basic partitioning of the query plan is straightforward:
all operators present above the top-most join have to

Site 1 Site 2

Client

(a) (b) (c)

Name

./

σ

π

π

R1

σ

π

R2

σ

Salary > 80K

Name
π

σ

Salary > 80K

R

Name
π

σ

Salary > 80K

./

R1 R2
Name LIKE ′Bob′

Name LIKE ′Bob′
∧

ID,Name, SalaryName LIKE ′Bob′
∧

DoB > 1970∧

DoB > 1970∧

DoB > 1970

ID,Salary

Figure 2: Example of Query Reformulation and Optimization

be executed on the client side; all operators under-
neath the join and above Ri are executed by a sub-
query at server Si for i = 1, 2 (shown by the dashed
boxes in Figure 2).

In the ideal case, it may be possible to push all
operators to one of R1 or R2, eliminating the need for
a join. Otherwise, we are left with a choice in deciding
how to perform the join.

The first option is to send sub-queries to both S1

and S2 in parallel, and join the results at the client.
The second option is to send only one of the two sub-
queries, say to server S1; the tuple IDs of the results
obtained from S1 are then used to perform a semi-join
with the content on server S2, in addition to applying
the S2-subquery to filter R2.

To illustrate with the example of Figure 2(c), con-
sider the following two sub-queries:
Q1: SELECT Name, ID, Salary FROM R1 WHERE
(Name LIKE Bob)
Q2: SELECT ID, Salary FROM R2 WHERE (DoB >
1970)

There are then three options available to the client
for executing the query:

1. Send sub-query Q1 to S1, send Q2 to S2, join the
results on ID at the client, and apply the selection
on Salary.

2. Send sub-query Q1 to S1. Apply πID to the re-
sults of Q1; call the resulting set Λ. Send S2 the
query Q3: SELECT ID, Position, Salary FROM
R2 WHERE (ID IN Λ) AND (DoB > 1970). Join
the results of Q3 with the results of Q1.

3. Send sub-query Q2 to S2. Apply πID to the re-
sults of Q2 and rewrite Q1 in an analogous fashion

to the previous case.

The first plan may be expensive, since it requires a
lot of data to be transmitted from site S2. The second
plan is potentially a lot more efficient, since only tu-
ples that match the condition Name LIKE Bob are ever
transmitted from both S1 and S2. However, there may
be a greater delay in obtaining query answers; the re-
sults from S1 need to be obtained before a query is
sent to S2. In our example, the third plan is unlikely
to be efficient unless the company consists only of old
people.

We illustrate query optimization with two more ex-
amples.

Example 2 Consider the query:
SELECT SUM(Salary) FROM R

Say Salary is encoded using Random Addition in-
stead of by a one-time pad. In this case, the client
may simultaneously issue two subqueries:

Q1: SELECT SUM(Salary) FROM R1

Q2: SELECT SUM(Salary) FROM R2

The client then computes the difference between the
results of Q1 and Q2 as the answer.

Example 3 Consider the query:
SELECT Name FROM R
WHERE DoB> 1970 AND Gender=M

The client first issues the following sub-query to S2:
Q2: SELECT ID FROM R2 WHERE DoB> 1970
After it gets the ID list Λ from Q2 , it sends S1 the

query: SELECT Name FROM R1 WHERE Gender=M AND
ID in Λ. Note that the alternative plan – sending
sub-queries in parallel to both S1 and S2 – may be
more efficient if the condition DoB> 1970 is highly un-
selective.

4.3 Query Execution and Data Privacy

One question that may arise from our discussion of
query execution is: Is it possible for an adversary mon-
itoring activity at either S1 or S2 to breach privacy
by viewing the queries received at either of the two
databases?

We claim that the answer is ‘No’. Observe that
when using simple joins as the query plan, the sub-
queries sent to S1 and S2 are dependent only on the
original query and not on the data stored at either
location; thus, the sub-queries do not form a “covert
channel” by which information about the content at S1

could potentially be transmitted to S2 or vice versa.

However, when semi-joins are used, we observe that
the query sent to S2 is influenced by the results of the
sub-query sent to S1. Therefore, a legitimate concern
might be that the sub-query sent to S2 leaks informa-
tion about the content stored at S1. We avoid privacy
breaches in this case by ensuring that only tuple IDs
are carried over from the results of S1 into the query
sent to S2. Since knowledge of some tuple IDs being
present in S1 does not help an adversary at S2 in in-
ferring anything about other attribute values, such a
query execution plan continues to preserve privacy.

4.4 Discussion

The above discussion does not by any means exhaust
all query-optimization issues in the two-server context.
We now list some areas for future work, with prelimi-
nary observations about potential solutions.

Maintaining Statistics for Optimization Our dis-
cussion of the space of query plans implicitly assumed
that the client has sufficient database statistics at
hand, and a sufficiently good cost model, for it to
choose the best possible plan for the query. More work
is required to validate both the above assumptions.

For example, one question is to understand where
the client obtains its statistics from. Statistics on
the individual relations R1 and R2 could be obtained
directly from the servers S1 and S2. The statistics
may be cached on the client side in order to avoid
having to fetch them from the servers for each opti-
mization. There may potentially be statistics, e.g.,
multi-dimensional histograms, that require knowledge
of both relations R1 and R2 in order to be maintained.
If necessary, such statistics could conceivably be main-
tained on the client side and may be constructed by
means of appropriate SQL sub-queries sent to the two
servers.

Supporting Other Decomposition Techniques

Our discussion of query optimization so far has only
covered the case of vertical fragmentation with at-
tribute encoding using one-time pads or random addi-
tion. It is possible to optimize the query plans further
when performing attribute encoding by deterministic

encryption, or when using semantic attribute decom-
position.

For example, when an attribute is encrypted by a
deterministic encryption function, it is possible to push
down selection conditions of the form 〈attr〉 = 〈const〉,
by obtaining the encryption key from one database and
encrypting 〈const〉 with this key before pushing down
the condition.

When an attribute is decomposed by semantic de-
composition, the resulting functional dependencies
across the decomposed attributes may potentially be
used to push down additional selection conditions.
To illustrate, consider a PhoneNumber (PN) attribute
which is decomposed into AreaCode (AC) and Lo-
calNumber(LN). A selection condition of the form
σPN=5551234567 could still be pushed down partially
as σAC=555 and σLN=1234567. (Note that the orig-
inal condition cannot be eliminated, and still needs
to be applied as a filter at the end.) Such rewrit-
ing depends on the nature of the semantic decomposi-
tion; the automatic application of such rewriting there-
fore requires support for specifying the relationship be-
tween attributes in a simple fashion.

5 Identifying the Optimal Decomposi-
tion

Having seen how queries may be executed over a de-
composed database, our next task at hand is to iden-
tify the best decomposition that minimizes query costs.
Say, a workload W consisting of the actual queries to
be executed on R is available. We may then think of
the following brute-force approach:

For each possible decomposition of R that obeys the
privacy constraints P :

• Optimize each query in W for that decomposition
of R, and

• Estimate the total cost of executing all queries in
W using the optimized query plans.

We may then select that decomposition which of-
fers the lowest overall query cost. Observe that such
an approach could be prohibitively expensive, since
there may be an extremely large number of legitimate
decompositions to consider, against each of which we
need to evaluate the cost of executing all queries in the
workload.

To work around this difficulty, we attempt to cap-
ture the effects of different decompositions on query
costs in a more structured fashion, so that we may ef-
ficiently prune the space of all decompositions without
actually having to evaluate each decomposition inde-
pendently. A standard framework to capture the costs
of different decompositions, for a given workload W ,
is the notion of the affinity matrix [OV99] M , which
we adopt and generalize as follows:

1. The entry Mij represents the “cost” of placing
the unencoded attributes i and j in different frag-
ments.

2. The entry Mii represents the “cost” of encoding
attribute i across both fragments.

We assume that the cost of a decomposition may
be expressed simply by a linear combination of en-
tries in the affinity matrix. Let R = {A1, A2, . . . An}
represents the original set of n attributes, and con-
sider a decomposition of D(R) = 〈R1, R2, E〉. Then,
we assume that the cost of this decomposition C(D)
is

∑
i∈(R1−E),j∈(R2−E) Mij +

∑
i∈E Mii. (For sim-

plicity, we do not consider replicating any unencoded
attribute, other than the tupleID, at both sites.)

In other words, we add up all matrix entries corre-
sponding to pairs of attributes that are separated by
fragmentation, as well as diagonal entries correspond-
ing to encoded attributes, and consider this sum to be
the cost of the decomposition.

Given this simple model of the cost of decomposi-
tions, we may now define an optimization problem to
identify the best decomposition:

Given a set of privacy constraints P ⊆ 2R and
an affinity matrix M , find a decomposition D(R) =
〈R1, R2, E〉 such that

(a) D obeys all privacy constraints in P, and
(c)

∑
i,j:i∈(R1−E),j∈(R2−E) Mij +

∑
i∈E Mi is mini-

mized.
We are left with two questions:

• How is the affinity matrix M generated from a
knowledge of the query workload?

• How can we solve the optimization problem?

We address the first question in Appendix B, where
we present heuristics for generating the affinity matrix.
We discuss the second question next.

5.1 Solving the Optimization Problem

We may define our optimization problem as the fol-
lowing hypergraph-coloring problem:

We are given a complete graph G(R), with
both vertex and edge weights defined by the
affinity matrix M . (Diagonal entries stand
for vertex weights.) We are also given a set
of privacy constraints P ⊆ 2R, representing
a hypergraph H(R,P) on the same vertices.
We require a 2-coloring of the vertices in R
such that (a) no hypergraph edge in H is
monochromatic, and (b) the weight of bichro-
matic graph edges in G is minimized. The
twist is that we are allowed to delete any ver-
tex in R (and all hyperedges in P that con-
tain the vertex) by paying a price equal to
the vertex weight.

Observe that coloring a vertex is equivalent to plac-
ing it in one of the two partitions. Deleting the vertex
is equivalent to encoding the attribute; so, all privacy
constraints associated with that attribute are satisfied
by the vertex deletion. Also observe that vertex dele-
tion may be necessary, since it is not always possible
to 2-color a hypergraph.

The above problem is very hard to solve – even if
we remove the feature of vertex deletion (allowing en-
coding), say by guaranteeing that the hypergraph is 2-
colorable. In fact, much more restrictive special cases
are NP-hard, even to approximate, as the following
result shows:

It is NP-hard to color a 2-colorable, 4-
uniform hypergraph using only c colors for
any constant c [GHS00].

In other words, even if all privacy constraints were
4-tuples of attributes, and it is known that there exists
a partitioning of attributes into two sets that satisfies
all constraints, it is NP-hard to partition the attributes
into any fixed number of sets, let alone two, to satisfy
all the constraints!

Given the hardness of the hypergraph-coloring
problem, we consider three different heuristics to solve
our optimization problem. All our heuristics utilize
the following two solution components:

Approximate Min-Cuts If we were to ignore the
privacy constraints for a moment, observe that the re-
sulting problem is to two-color the vertices to minimize
the weight of bichromatic edges in G(R); this is equiv-
alent to finding the min-cut in G (assuming that at
least one vertex needs to be of each of the two colors).
This problem can be solved optimally in polynomial
time, but we will be interested in a slightly more gen-
eral version: We will require all cuts of the graph that
have a weight within a specified constant factor of the
min-cut.

Intuitively, we want to produce a lot of cuts that
are near-optimal in terms of their quality, and we will
choose among the cuts to pick one that helps satisfy
the most privacy constraints. This approximate min-
cut problem can still be solved efficiently in polyno-
mial time using an algorithm based on edge contrac-
tion [KS96]. (Note that this also implies that the num-
ber of cuts produced by the algorithm is only polyno-
mially large.)

Approximate Weighted Set Cover Our second
component uses a well-known tool in order to tackle
the satisfaction of the privacy constraints via vertex
deletion. Let us ignore the coloring problem and con-
sider the following problem instead: Find the mini-
mum weight choice of vertices to delete so that all hy-
pergraph edges are removed, i.e., each set P ∈ P loses
at least one vertex.

This is the minimum weighted set-cover problem,
and the best known solution is to use the following

greedy strategy: keep deleting the vertex that has the
lowest cost per additional set that it covers, until all
sets are covered. This greedy strategy offers a (1 +
log |P|)-approximation to the optimal solution [Joh73,
Chv79] and will be used by us in our heuristics.

We now present three different heuristics which uti-
lize the above two components:

Heuristic 1 Our first heuristic is to solve the opti-
mization problem in three phases:

1. Ignore fragmentation, and delete vertices to
cover all the constraints using Approximate

Weighted Set Cover. Call the set of deleted
vertices E.

2. Consider the remaining vertices, and use Ap-

proximate Min-Cuts to find different 2-
colorings of the vertices, all of which approxi-
mately minimize the weight of the bichromatic
edges in G.

3. For each of the 2-colorings obtained in step (2):
Find all deleted vertices that are present only
in bichromatic hyperedges, and consider “rolling
back” their deletion, and coloring them instead,
to obtain a better solution.

4. Choose the best of (a) the solution from step (3)
for each of the 2-colorings, and (b) the decompo-
sition 〈R − E, E, E〉.

In the first step, we cover all the privacy constraints
by ensuring that at least one attribute in each con-
straint is encoded. Note that this step leads us directly
to one possible decomposition: place all deleted ver-
tices in both fragments, and all the remaining vertices
in one of the two fragments. Call this decomposition
D1.

In the next two steps, we attempt to improve on D1

by avoiding encrypting all these attributes, hoping to
use fragmentation to cover some of the constraints in-
stead. To this end, we find different approximate min-
cuts in step (2), each of which fragments the attributes
differently. In each fragmentation, we try to roll back
some of the attribute encoding (vertex deletion) that
had earlier been necessary to cover some constraints,
but is no longer needed thanks to the fragmentation
satisfying the constraints instead.

Finally, we compare the quality of the different so-
lutions obtained from step (3), with the basic solu-
tion D1 obtained directly from step 1, and select the
best of the lot. Note that the entire heuristic runs in
polynomial time, because the number of different cuts
considered is only a polynomial function of |R|.

Heuristic 2 Our second heuristic reverses the order in
which fragmentation (2-coloring) and encoding (dele-
tion) are attempted. We first apply Approximate

Min-Cuts to the original graph G(R) to obtain a set

of possible cuts. For each such cut, we perform the
following steps:

(a) Some of the privacy constraints are already sat-
isfied by the fragmentation; we therefore delete these
constraints from P ,

(b) We apply Approximate Weighted Set

Cover to the modified P , deleting vertices until all
constraints are satisfied.

Finally, we may once again compare the solutions
obtained from each cut and select the best one.

Heuristic 3 The third approach we consider is to in-
terleave the execution of our approximate min-cut and
set-cover components, instead of just using one after
the other. We start with some 2-coloring obtained by
running Approximate Min-cuts. We then repeat
the following steps until all constraints are satisfied:

1. Use Approximate Set Cover to greedily select
one vertex to delete. (Note that we only delete
one vertex, instead of deleting as many as neces-
sary to satisfy all constraints.)

2. Having deleted this vertex, re-run Approximate

Min-Cuts and attempt to find a 2-coloring that
satisfies even more constraints than the current
coloring. (If we can’t find such a coloring, retain
the current coloring.)

Observe that the above heuristic uses many more
invocations of the min-cut algorithm in order to re-
compute colorings after each vertex deletion. To ob-
tain some intuition as to why this heuristic is useful,
consider some vertex v which has high-weight graph
edges to some of its neighbors v1, v2, . . . vk. A min-cut
on the original graph will tend to force v together with
all these neighbors (i.e., all these vertices will have the
same color) since the edges from v to v1, v2, . . . vk are
all of high weight. However, once v is deleted, the
nature of the coloring may change dramatically; the
different vertices v1, v2, . . . vk may no longer need to
have the same color, which opens the door for color-
ings that can satisfy many more privacy constraints
(specifically, constraints that can be satisfied by sepa-
rating some of the vertices in v1, v2, . . . vk).

5.2 Discussion

There are many open questions surrounding the above
decomposition problem. One question is to under-
stand the relative performance of our different design
heuristics on different relation schemata and privacy
constraints. Another is to develop better theoretical
approaches to the optimization problem. Formulating
the optimization problem itself is based on a number
of heuristics (discussed in Appendix B) which are also
open to improvement. The scope of the optimization
problem may also be expanded in a number of different
directions.

For example, we could allow attributes to be repli-
cated across partitions, trying to exploit such replica-
tion to lower query costs. In the terminology of the
optimization problem, vertices are allowed to take on
both colors. Edges in G emanating from a vertex v
with two colors will not be considered bichromatic;
however, hyperedges involving v will need to be bichro-
matic even when ignoring v.

Another extension is to deal with constraints im-
posed by functional dependencies, normal forms and
multiple relations. For example, we may want our de-
composition to be dependency-preserving, which dic-
tates that functional dependencies should not be de-
stroyed by data partitioning. Different partitioning
schemes may have different impacts on the cost of
checking various constraints. Factoring these issues
into the optimization problem is a subject for future
work.

Finally, expanding the definition of the optimiza-
tion problem to accommodate the space of different
encoding schemes for each attribute is also an area as
yet unexplored.

6 Related Work

Secure Database Services As discussed in the in-
troduction, the outsourcing of data management has
motivated the model where a DBMS provides reliable
storage and efficient query execution, while not know-
ing the contents of the database [HIM02]. Schemes
proposed so far for this model encrypt data on the
client side and then store the encrypted database on
the server side [HILM02, HIM04, AKSX04]. However,
in order to achieve efficient query processing, all the
above schemes only provide very weak notions of data
privacy. In fact a server that is secure under formal
cryptographic notions can be proved to be hopelessly
inefficient for data processing [KC04]. Our architec-
ture of using multiple servers helps to achieve both
efficiency and provable privacy together.

Trusted Computing With trusted computing
[TCG03], a tamper-proof secure co-processor could be
installed on the server side, which allows executing a
function while hiding the function from the server. Us-
ing trusted tamper-proof hardware for enabling secure
database services has been proposed in [KC04]. How-
ever, such a scheme could involve significant compu-
tational overhead due to repeated encryption and de-
cryption at the tuple level. Understanding the role of
tamper-proof hardware in our architecture remains a
subject of future work.

Secure Multi-party Computation Secure multi-
party computation [Yao86, GMW87] discusses how to
compute the output of a function whose inputs are
stored at different parties, such that each party learns
only the function output and nothing about the inputs
of the other parties. In our context, there are two par-

ties – the server and the client – with the server’s input
being encrypted data, the client’s input being the en-
cryption key, and the function being the desired query.
In principle, the client and the server could then en-
gage in a one-sided secure computation protocol to
compute the function output that is revealed only to
the client. However, “in principle” is the operative
phrase, as the excessive communication overhead in-
volved makes this approach even more inefficient than
the trivial scheme in which the client fetches the entire
database from the server. More efficient specialized
secure multi-party computation techniques have been
studied recently[LP00, AMP04, FNP04]. However all
of this work is to enable different organizations to se-
curely analyze their combined data, rather than the
client-server model we are interested in.

Privacy-preserving Data Mining Different ap-
proaches for privacy-preserving data mining stud-
ied recently include: (1) perturbation techniques
[AS00, AA01, EGS03, DN03, DN04] (2) query restric-
tion/auditing [CO82, DJL79, KPR00] (3) k-anonymity
[Swe02, MW04, AFK+04]. However, research here is
motivated by the need to ensure individual privacy
while at the same time allowing the inference of higher-
granularity patterns from the data. Our problem is
rather different in nature, and the above techniques
are not directly relevant in our context.

Access Control Access control is used to control
which parts of data can be accessed by different users.
Several models have been proposed for specifying and
enforcing access control in databases [CFMS95]. Ac-
cess control does not solve the problem of maintaining
an untrusted storage server as even the the adminis-
trator or an insider having complete control over the
data at the server is not trusted by the client in our
model.

7 Conclusions

We have introduced a new distributed architecture
for enabling privacy-preserving outsourced storage of
data. We demonstrated different techniques that could
be used to decompose data, and explained how queries
may be optimized and executed in this distributed sys-
tem. We introduced a definition of privacy based on
hiding sets of attribute values, demonstrated how our
decomposition techniques help in achieving privacy,
and considered the problem of identifying the best
privacy-preserving decomposition. Given the increas-
ing instances of database outsourcing, as well as the
increasing prominence of privacy concerns as well as
regulations, we expect that our architecture will prove
useful both in ensuring compliance with laws and in
reducing the risk of privacy breaches.

A key element of future work is to test the viability
of our architecture through a real-world case study.
Other future work includes identifying improved al-

gorithms for decomposition, expanding the scope of
techniques available for decomposition, e.g., support-
ing replication, and incorporation of these techniques
into the query optimization framework.

References

[AA01] D. Agrawal and C. Aggarwal. On the de-
sign and quantification of privacy preserving
datamining algorithms. In Proc. PODS, 2001.

[AFK+04] G. Aggarwal, T. Feder, K. Kenthapadi, R. Mot-
wani, R. Panigrahy, D. Thomas, and A. Zhu.
Anonymizing tables. Technical report, Stanford
University, 2004.

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan
Srikant, and Yirong Xu. Order-preserving en-
cryption for numeric data. In Proc. SIGMOD,
2004.

[AMP04] G. Aggarwal, N. Mishra, and B. Pinkas. Se-
cure computation of the k-th ranked element.
In Proc. EUROCRYPT, 2004.

[AS00] R. Agrawal and R. Srikant. Privacy-preserving
data mining. In Proc. SIGMOD, 2000.

[CFMS95] S. Castano, M. Fugini, G. Martella, and
P. Samarati. Principles of Distributed Database
Systems. Addison Wesley, 1995.

[Chv79] Vasek Chvatal. A greedy heuristic for the set-
covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979.

[CO82] F. Chin and G. Ozsoyoglu. Auditing and infer-
ence control in statistical databases. In IEEE
TSE, 8(6), 1982.

[CW02] J.P. Morgan signs outsourcing deal with IBM.
ComputerWorld, Dec 30, 2002.

[DJL79] D. Dobkin, A. Jones, and R. Lipton. Secure
databases: Protection against user influence. In
ACM TODS, 4(1), 1979.

[DN03] I. Dinur and K. Nissim. Revealing information
while preserving privacy. In Proc. PODS, 2003.

[DN04] C. Dwork and K. Nissim. Privacy-preserving
datamining on vertically partitioned databases.
In Proc. CRYPTO, 2004.

[EGS03] A. Evfimievski, J. Gehrke, and R. Srikant. Lim-
iting privacy breaches in privacy preserving
data mining. In Proc. PODS, 2003.

[FNP04] M. Freedman, K. Nissim, and B. Pinkas. Effi-
cient private matching and set intersection. In
Proc. EUROCRYPT, 2004.

[GHS00] V. Guruswami, J. Hastad, and M. Sudan. Hard-
ness of approximate hypergraph coloring. In
Proc. 41st Annual Symposium on Foundations
of Computer Science (FOCS), 2000.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson.
How to play any mental game – a completeness
theorem for protocols with a honest majority.
In Proc. STOC, 1987.

[HILM02] H. Hacigumus, B. Iyer, C. Li, and S. Mehro-
tra. Executing sql over encrypted data in the
database-service-provider model. In Proc. SIG-
MOD, 2002.

[HIM02] H. Hacigumus, B. Iyer, and S. Mehrotra. Pro-
viding database as a service. In Proc. ICDE,
2002.

[HIM04] H. Hacigumus, B. Iyer, and S. Mehrotra. Effi-
cient execution of aggregation queries over en-
crypted relational databases. In Proc. DAS-
FAA, 2004.

[Joh73] David S. Johnson. Approximation algorithms
for combinatorial problems. In Proc. 5th an-
nual ACM Symposium on Theory of Comput-
ing(STOC), 1973.

[KC04] Murat Kantarcioglu and Chris Clifton. Security
issues in querying encrypted data. Technical
Report TR-04-013, Purdue University, 2004.

[KPR00] Jon M. Kleinberg, Christos H. Papadimitriou,
and Prabhakar Raghavan. Auditing boolean at-
tributes. In Proc. PODS, 2000.

[KS96] David Karger and Clifford Stein. A new ap-
proach to the minimum cut problem. Journal
of the ACM, 43(4):601–640, July 1996.

[LP00] Y. Lindell and B. Pinkas. Privacy-preserving
data mining. In Proc. CRYPTO, 2000.

[MW04] A. Meyerson and R. Williams. On the complex-
ity of optimal k-anonymity. In Proc. PODS,
2004.

[OV99] M. Tamer Ozsu and Patrick Valduriez. Princi-
ples of Distributed Database Systems. Prentice
Hall, 2nd edition, 1999.

[SAC+79] Patricia G. Selinger, Morton M. Astrahan,
Donald D. Chamberlin, Raymond A. Lorie, and
Thomas G. Price. Access path selection in a re-
lational database management system. In Proc.
SIGMOD, pages 23–34, 1979.

[SB02] California senate bill SB 1386. http:

//info.sen.ca.gov/pub/01-02/bill/sen/
sb_1351-1400/sb_1386_bill_20020926_

chaptered.html, Sept. 2002.

[Swe02] L. Sweeney. k-Anonymity: A model for preserv-
ing privacy. In International Journal on Un-
certainty, Fuzziness and Knowledge-based Sys-
tems, 10(5), 2002.

[TCG03] TCG TPM specification version 1.2.
https://www.trustedcomputinggroup.org,
Nov 2003.

[WP04] Advertiser charged in massive database theft.
The Washington Post, July 22, 2004.

[Yao86] Andrew Yao. How to generate and exchange
secrets. In Proc. FOCS, 1986.

A Extract from California SB 1386

The California Senate Bill SB 1386, which went into ef-
fect on July 1, 2003, defines what constitutes personal
information of individuals, and mandates various pro-
cedures to be followed by state agencies and businesses
in California in case of a breach of data security in that
organization. We present below its definition of per-
sonal information, observing how it is captured by our
definition of privacy constraints (the italics are ours):

For purposes of this section, “personal in-
formation” means an individual’s first name
or first initial and last name in combination
with any one or more of the following data
elements, when either the name or the data
elements are not encrypted:

(1) Social security number.

(2) Driver’s license number or California
Identification Card number.

(3) Account number, credit or debit card
number, in combination with any required
security code, access code, or password that
would permit access to an individual’s finan-
cial account.

For purposes of this section, “personal infor-
mation” does not include publicly available
information that is lawfully made available
to the general public from federal, state, or
local government records. [SB02]

B Computing the Affinity Matrix

Let us revisit the definition of the affinity matrix to
examine its semantics: the entry Mij is required to
represent the “cost” of placing attributes i and j in
different partitions of a decomposition, while the entry
Mii represents the “cost” of encoding attribute i, with
the overall cost of decomposition being expressed as a
linear combination of these entries.

Note that it is likely impossible to obtain a ma-
trix that accurately captures the costs of all decom-
positions. The costs of partitioning different pairs of
attributes are unlikely to be independent; placing at-
tributes i and j in different partitions may have differ-
ent effects on query costs, depending on how the other
attributes are placed and encoded. Our objective is to
come up with simple heuristics to obtain a matrix that
does a reasonable job of capturing the relative costs of
different decompositions.

Similar matrices are used to capture costs in other
contexts too, e.g., the allocation problem in dis-
tributed databases [OV99]. Our problem is compli-
cated somewhat by the fact that we need to account
for the effects of attribute encoding on query costs, as
well as the interactions between relation fragmentation
and encoding.

A First Cut As a first cut, we may consider the fol-
lowing simple way to populate the affinity matrix from
a given query workload, along the lines of earlier ap-
proaches [OV99]:

• Mij is set to be the number of queries that refer-
ence both attributes i and j.

• Mii is set to be the number of queries involving
attribute i.

Of course this simple heuristic ignores many issues:
different queries in the workload may have different
costs and should not be weighted equally; the effect of
partitioning attributes i and j may depend on how i
and j are used in the query, e.g., in a selection condi-
tion, in the projection list, etc.; the cost of encoding
an attribute may be very different from that of par-
titioning two attributes, so that counting both on the
same scale may be a poor approximation.

In order to improve on this first cut, we dig deeper
to understand the effects of fragmentation and encod-
ing on query costs.

B.1 The Effects of Fragmentation

Let us consider a query that involves attributes i and
j and evaluate the effect of a fragmentation that sepa-
rates i and j on the query. We may make the following
observations:

• If i and j are the only attributes referenced in the
query, the fragmentation forces the query to touch
both databases, and increases the communication
cost for the query; the extra communication cost
is proportional to the number of tuples satisfying
the most selective conditions on one of the two
attributes.

• If attributes other than i and j are involved in
the query, it is possible that the query may have
to touch both databases even if i and j were held
together, since the separation of other attributes
may be the culprit. Therefore, the query cost that
may be attributed to Mij should be only a fraction
of the query overhead caused by fragmentation.

• If i or j is part of a GROUP BY clause, fragmen-
tation makes it impossible to apply the GROUP
BY, making the query overhead very high.

Using the above observations, we may devise a
scheme to populate the matrix entries Mij for i 6= q.
Each entry Mij is computed as a sum of “contribu-
tions” from each query that references both i and j.
The contribution of a query Q to Mij , for any pair i
and j referenced in Q, is a measure of the fraction of
extra tuple fetches from disk, and transmissions across
the network, that are induced by the partitioning of i
and j. We define this contribution as follows: (Let si

be the selectivity of Q, ignoring all conditions involv-
ing i, and sj be its selectivity ignoring all conditions
involving j.)

• If Q involves either i or j in a GROUP BY, or a
selection condition, the contribution of Q to Mij

is set to min(si, sj).

• If Q involves i and j only in the projection list,
the contribution of Q to Mij is set to min(si, sj)/n
where n is the number of attributes referenced in
Q’s projection list.

Note that the approach above requires the estima-
tion of query selectivities; this may be performed us-
ing standard database techniques, i.e., using a combi-
nation of selectivity estimates from histograms, inde-
pendence assumptions, and ad hoc guesses about the
selectivity of predicates [SAC+79].

B.2 The Effects of Encoding

Let us now consider the effects of encoding attributes
on query costs. We make the following observations
about the effects of encoding attribute i on a query
Q: (We will assume that encoding is performed using
one-time pads or random addition.)

• If Q contains a selection condition involving i, the
condition cannot be pushed down; the overhead
due to this is proportional to the selectivity of
the query ignoring the conditions on i.

• If Q involves i only in the projection list, there
may be additional overhead equal to the cost of
fetching i from both sides.

• If Q involves i in the GROUP BY clause, grouping
cannot be pushed down, and may cause additional
overhead.

• If Q involves i only as an attribute to be aggre-
gated, the use of Random Addition for encoding
ensures that the overhead of encoding is low.

From these observations, we use the following rules
to determine the contributions of Q to Mii: (Again, we
let si be the selectivity of the query ignoring predicates
involving i.)

• If i is in a selection condition or a GROUP BY
clause, the contribution to Mii is set to si.

• Else, if i is in the projection list, the contribution
to Mii is set to 1/n, where n is the total number
of attributes referenced by Q.

