
Cracking the Database Store

Martin Kersten Stefan Manegold

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
{Martin.Kersten,Stefan.Manegold}@cwi.nl

Abstract

Query performance strongly depends on finding an exe-
cution plan that touches as few superfluous tuples as possi-
ble. The access structures deployed for this purpose, how-
ever, are non-discriminative. They assume every subset of
the domain being indexed is equally important, and their
structures cause a high maintenance overhead during up-
dates. This approach often fails in decision support or
scientific environments where index selection represents a
weak compromise amongst many plausible plans.

An alternative route, explored here, is to continuously
adapt the database organization by making reorganization
an integral part of the query evaluation process. Every
query is first analyzed for its contribution to break the
database into multiple pieces, such that both the required
subset is easily retrieved and subsequent queries may bene-
fit from the new partitioning structure.

To study the potentials for this approach, we developed
a small representative multi-query benchmark and ran ex-
periments against several open-source DBMSs. The results
obtained are indicative for a significant reduction in system
complexity with clear performance benefits.

1 Introduction

The ultimate dream for a query processor is to touch only
those tuples in the database that matter for the production
of the query answer. This ideal cannot be achieved easily,
because it requires upfront knowledge of the user’s query
intent.

In OLTP applications, all imaginable database subsets
are considered of equal importance for query processing.
The queries mostly retrieve just a few tuples without statis-
tically relevant intra-dependencies. This permits a physical

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 2005 CIDR Conference

database design centered around index accelerators for in-
dividual tables and join-indices to speed up exploration of
semantic meaningful links.

In decision support applications and scientific databases,
however, it is a priori less evident what subsets are relevant
for answering the -mostly statistical- queries. Queries tend
to be ad-hoc and temporarily localized against a small por-
tion of the databases. Data warehouse techniques, such as
star- and snowflake schemas and bit-indices, are the primary
tools to improve performance [Raf03].

In both domains, the ideal solution is approximated by
a careful choice of auxiliary information to improve nav-
igation to the database subset of interest. This choice is
commonly made upfront by the database administrator and
its properties are maintained during every database update.
Alternatively, an automatic index selection tool may help in
this process through analysis of the (anticipated) work load
on the system [ZLLL01, ACK+04]. Between successive
database reorganizations, a query is optimized against this
static navigational access structure.

Since the choice of access structures is a balance be-
tween storage and maintenance overhead, every query will
inevitably touch many tuples of no interest. Although the
access structures often permit a partial predicate evaluation,
it is only after the complete predicate evaluation that we
know which access was in vain.

In this paper we explore a different route based on the
hypothesis that access maintenance should be a byproduct
of query processing, not of updates. A query is interpreted
as both a request for a particular database subset and as an
advice to crack the database store into smaller pieces aug-
mented with an index to access them. If it is unavoidable to
touch Una-interesting tuples during query evaluation, can
we use that to prepare for a better future?

To illustrate, consider a simple query select * from R
where R.a <10 and a storage scheme that requires a full
table scan, i.e. touching all tuples to select those of interest.
The result produced in most systems is a stream of quali-
fying tuples. However, it can also be interpreted as a task
to fragment the table into two pieces, i.e. apply horizontal
fragmentation. This operation does not come for free, be-
cause the new table incarnation should be written back to
persistent store and its properties stored in the catalog. For
example, the original table can be replaced by a UNION TA-

BLE [MyS] or partitioned table over all its pieces in Oracle,
DB2, and Microsoft SQL-Server. The subsequent query op-
timizer step now has to deal with a fragmented table.

The key question is why this seemingly simple approach
has not been embraced? Possible answers are: the overhead
of continuous cracking a table is utterly expensive, the cat-
alog of pieces and their role in query plan generation leads
to an explosion in the search space, and there is no refer-
ence benchmark to study its effect in a multi-query scenario
under laboratory conditions. Although database develop-
ers’ wisdom may indeed point into the right direction for
existing database systems, our research into next generation
kernels calls for exploring new territories.

This paper’s contributions are threefold: (i) it introduces
a database organization scheme based on cracking, (ii) it
introduces a multi-query benchmark to analyze the cracking
scheme, and (iii) evaluates a prototype implementation of
the key algorithms.

The experiments are run against out-of-the-box versions
of a few open-source databases. The results provide a
glimpse of the conditions to make cracking a success and
the bottlenecks encountered in current DBMS offerings.
The prospect of embedding cracking in a database kernel is
further studied in the context of MonetDB[Mon]. Although
this system takes an off-beat approach to physical organize
the database and its processing, it illustrates the potentials
in a software area we control.

The remainder of this paper is organised as follows. In
Section 2, we scout the notion of database crackers in the
context of the lowest denominator of database access, i.e.
table scans. The cracker algorithm, administration, and op-
timization issues are reviewed in Section 3. Section 4 in-
troduces a characterisation of multi-query streams for per-
formance evaluations. An initial performance outlook using
open-source database systems is given in Section 5.

2 Cracking the Database Store

The departure taken to invest in database reorganization
in the critical path of ordinary query processing is based on
a small experiment described in Section 2.1. An outlook
on the performance challenge in long query sequences is
presented in Section 2.2

2.1 Table Scans

Table scans form the lowest access level of most database
kernels. They involve a sequential read of all tuples fol-
lowed by predicate evaluation. The qualified tuples are
moved to a result table, passed onward to the next opera-
tor in a query evaluation pipeline, or sent to a GUI. The
expected gross performance is easy to predict. The source
operand has to be read once, and the fragment of interest
has to be written back to persistent store (or shipped to the
application front-end).

For a query with selectivity factor σ and table size of N
tuples, we know that (1−σ) N tuples do not contribute to
the final result. Unfortunately, to know which tuples dis-
qualify, the predicate has to be evaluated against each tuple
first. This raises the question at how much additional cost
could we retain this information by concurrently fragment-
ing the table into pieces and building a catalog of table frag-
ments. An experiment against existing systems provides an
outlook of interest for the remainder.

Consider a table R[int,int] with 1 M tuples against which
we fire a sequence of range queries

INSERT INTO newR
SELECT * FROM R WHERE R.A>=low AND R.A<high

with varying selectivity. Figure 1 illustrates the response
time encountered for (a) materialization into a temporary
table, (b) sending the output to the front-end, and (c) just
counting the qualifying tuples.1 Aside from very small ta-
bles, the performance of materialization is linear in the size
of the fragment selected; a key observation used in most
cost-models for query optimization. For large tables it be-
comes linear in the number of disk IOs.

The performance figures also highlight the relative cost
of the basic operations. Storing the result of a query in a
new system table (a) is expensive, as the DBMS has to en-
sure transaction behavior. Sending it to the front-end (b) is
already faster, although the systems behave quite differently
on this aspect. Finally, the cost of finding qualifying tuples
itself (c) is cheap in some systems.

These differences are crucial in pursuing the cracking
approach. It already indicates that the marginal overhead
for writing a reorganized table back into the database store
might be acceptable for relatively low selectivity factors
when the result has to be delivered to the front-end anyway.
Conversely, if the query is only interested in a count of qual-
ifying tuples, it does not make sense to store the fragment
at all. The system catalog maintenance would be too high.

Furthermore, when seen from the perspective of a single
query with low selectivity factor, one is not easily tempted
to repartition the table completely, a performance drop of an
order of magnitude may be the result. A simple experiment
suffices to reconsider this attitude.

2.2 An Outlook

Assume that we are confronted with an application that
continuously fires range queries. Hundreds of them are is-
sued in rapid succession and each query splits the fragments
touched as part of the process. The catalog system — sup-
ported by an in-memory datastructure — keeps track of
them as a partitioned table. With time progressing the re-
trieval speed would increase dramatically and the per-query

1All experiments are run on a dual Athlon 1400 processor with 1GB
memory system. The systems considered are MonetDB, MySQL with
ISAM backend, PostgreSQL, and SQLite. They ran out-of-the-box without
any further optimization. Experiments against commercial systems show
similar behavior.

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

Selectivity in %

Selectivity test 1M

30
MySQL

PostgreSQL
MonetDB/SQL

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70 80 90 100
R

es
po

ns
e

tim
e

in
 s

ec
on

ds

Selectivity in %

Selectivity print test 1M

30
SQLite

PostgreSQL
MySQL

MonetDB/SQL

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

Selectivity in %

Selectivity count test 1M

30
SQLite

PostgreSQL
MySQL

MonetDB/SQL

(a) (b) (c)

Figure 1. Response time for relational algebra operations

overhead dwindles to a small fraction. In essence, this pro-
cess is an incremental buildup of a search accelerator, driven
by actual queries rather than database updates and guide-
lines given by a DBA. With proper engineering the total
CPU cost for such an incremental scheme is in the same or-
der of magnitude as sorting, plus the catalog maintenance
cost.

The actual performance impact of this continual database
reorganization strongly depends on the database volatility
and query sequence. For a full table scan, we need N reads
and σN writes for the query answer. Furthermore, in a
cracker approach we may have to write all tuples to their
new location, causing another (1−σ)N writes; an invest-
ment which is possibly hard to turn to our advantage.

A small-scale simulation provides the following outlook.
Consider a database represented as a vector where the el-
ements denote the granule of interest, i.e. tuples or disk
pages. From this vector we draw at random a range with
fixed σ and update the cracker index. During each step we
only touch the pieces that should be cracked to solve the
query.

Figure 2 illustrates the fractional overhead in terms of
writes for various selectivity factors using a uniform distri-
bution and a query sequence of up to 20 steps. Selecting
a few tuples (1%) in the first step generates a sizable over-
head, because the database is effectively completely rewrit-
ten. However, already after a query sequence of 5 steps and
a selectivity of 5%, the writing overhead due to cracking
has dwindled to less than the answer size.

Figure 3 illustrates the corresponding accumulated over-
head in terms of both reads and writes. The baseline (=1.0)
is to read the vector. Above the baseline we have lost perfor-

mance, below the baseline cracking has become beneficial.
Observe that the break-even point is already reached after a
handful of queries.

An alternative strategy (and optimal in read-only set-
tings) would be to completely sort or index the table up-
front, which would require Nlog(N) writes. This invest-
ment would be recovered after log(N) queries. Beware,
however, that this only works in the limited case where the
query sequence filters against the same attribute set. This
restriction does not apply to cracking, where each and every
query initiates breaking the database further into (irregular)
pieces.

The experiment raises a number of questions. What kind
of application scenarios would benefit from the cracking ap-
proach? How can the processing overhead of cracking in a
real DBMS be reduced? What are the decisive factors in de-
ciding on the investments to be made? What are the effects
of updates on the scheme proposed? And, finally, how does
the performance compare to the more traditional approach
of secondary index maintenance? In the sequel, we can only
address parts of these questions, leaving many desirable re-
search questions for the future.

3 A Database Cracker Architecture

In this section, we introduce the architecture of a
database cracker component. It is positioned between the
semantic analyzer and the query optimizer of a modern
DBMS infrastructure. As such, it could be integrated eas-
ily into existing systems, or used as a pre-processing stage
before query processing. Section 3.1 introduces a class of
database crackers, followed by the cracker index in Section

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

na
l o

ve
rh

ea
d

in
du

ce
d

Sequence step

Cracking overhead with n% cracking

80 %
60 %
40 %
20 %
10 %

5 %
1 %

Figure 2. Cracking overhead

 1

 0 2 4 6 8 10 12 14 16 18 20

F
ra

ct
io

na
l o

ve
rh

ea
d

in
du

ce
d

Sequence length

Cummulative cost of cracking versus scans

0.4

0.7

2 80 %
60 %
40 %
20 %
10 %

5 %
1 %
1.00

Figure 3. Accumulated overhead

3.2. In Section 3.4, we sketch the algorithms needed in a
DBMS and, Section 3.3 identifies the effect on the query
optimizer and plan generation.

3.1 Cracker Concepts

Informally, database crackers are queries that break a re-
lational table into multiple, disjoint pieces. They are derived
during the first step of query optimization, i.e. the transla-
tion of an SQL statement into a relational algebra expres-
sion. Without loss of generality, we assume that a query is
in disjunctive normal form and each term organized as the
expression:

πa0,...,ak γgrpσpred(R1 Z R2...Rm−1 Z Rm) (1)

The selection predicates considered are simple (range) con-
ditions of the form attr ∈ [low,high] or attr θ cst with θ in
{<,<=,>,>=,=, ! =}. For simplicity, the (natural-) join
sequence is a join-path through the database schema. The γ
operator denotes an aggregate grouping (GROUP BY).

This representation by no means implies a query eval-
uation order. It forms the basis to localize and extract the
database crackers only. A traditional query optimizer is
called upon in the second phase of the query evaluation pro-
cess to derive an optimal plan of action.

The selection predicates and projection list form the first
handle for cracking the database. It has been known for
a long time, that they can be used to construct a hori-
zontally/vertical fragmented table for distributed processing
[OV91]. Once chosen properly, it will significantly improve
performance both using parallel processing and being able
to early filter tuples of no-interest to a query. It is this latter
aspect we exploit.

Relational algebra operations, like πattr(R), σpred(R), or
R Z S, suggest natural and intuitive ways to split their input
table(s) into two fragments each, on containing the ”inter-
esting” tuples and the other one the ”non-interesting” tu-
ples. A projection πattr(R), for instance, suggests to verti-
cally split a table such that one piece contains all attributes

from the projection list attr, and the other one contains all
attributes of R that are not in attr. Likewise, a (natural) join
R Z S suggest to horizontally split each table in two pieces,
one containing all tuples that find matches in the other re-
lation, and a second that contains all tuples that do not find
a match in the join. Obviously, the piece of either table is
simply made-up by the semi-join with the other table.

As discussed earlier, a selection σpred(R) suggests to
horizontally split R into two pieces, where the first consists
of all tuples that fulfill the predicate, and the non-qualifying
tuples are gathered in the second piece. For single-side
range predicates on only one attribute (attr θ cst), the re-
sulting pieces do have the ”nice” property, that the values
of the selection attribute form a consecutive range within
each piece. However, this property gets lost in case of
point-selections (attr θ cst with θ in {=, ! =}) and double-
sided range predicates attr ∈ [low,high]. To re-gain the
consecutive ranges property, we propose a second version
a selection-cracking that yields three pieces: attr < low,
attr ∈ [low,high], and attr > high In this scenario, point-
selections can be viewed as double-sided range selections
with low == high. Beware, that this property globally holds
only for the first cracking step on a ”virgin” table. Once a
table has been cracked, subsequent selection cracking main-
tain the consecutiveness only locally within the previous
pieces.

Finally, group-by operation merely produce an n-way
partitioning based on singleton values.

This leads to the following cracker definitions for a
relational model and illustrated graphically for Ψlarge
Diamond(R) in Figure 4:

• Ψ-cracking The cracking operation Ψ(πattr(R)) over
an n-ary relation R produces two pieces
P1 = πattr(R),
P2 = πattr(R)−attr(R).

• Ξ-cracking The cracking operation Ξ(σpred(R)) over
an n-ary relation R produces two pieces in case of
pred ≡ attr θ cst,θ ∈ {<,<=,>,>=} P1 = σpred(R),
P2 = σ¬pred(R);

and three pieces in case of pred ≡ attr ∈ / < [low,high]
P1 = σattr<low(R),
P2 = σattr∈[low,high](R),
P3 = σhigh<attr(R).

• ^-cracking The cracking operation^(RZ S) over two
relations produces four pieces,
P1 = RnS,
P2 = R\(RnS),
P3 = SnR,
P4 = S\(SnR).

• Ω-cracking The cracking operation Ω(γgrpR) produces
a collection {P−→i }−→i ∈πgrpR = σgrp=

−→
i (R).

All four crackers are loss-less, i.e., the original table can
be reconstructed from the pieces generated by each cracker.
For Ξ, ^, and Ω the inverse of cracking is simply a union
of all pieces. For Ψ, we assume that each vertical fragment
includes (or is assigned) a unique (i.e., duplicate-free) sur-
rogate (oid), that allows simple reconstruction by means of
a natural 1:1-join between the surrogates of both pieces.

3.2 Cracker Index

Cracking the database into pieces should be comple-
mented with information to reconstruct its original state and
result tables, which means we have to administer the lineage
of each piece, i.e. its source and the Ξ, Ψ,^ or Ω operators
applied.

This information can be stored in the system catalog, as
it involves a partitioned table, or as a separate access struc-
ture. The former approach does not seem the most efficient
track, given the way a partitioned table is administered in
current DBMS implementations. Each creation or removal
of a partition is a change to the table’s schema and catalog
entries. It requires locking a critical resource and may force
recompilation of cached queries and update plans.

Instead, we propose a cracker index, which for each
piece keeps track of the (min,max) bounds of the (range)
attributes, its size, and its location in the database. The lo-
cation is a new table or a view over the table being cracked.
The boundary information is maintained for all ordered at-
tributes. It is used to navigate the cracker index and it pro-
vides key information for the query cost model.
Consider the query sequence:

select * from R where R.a<10;
select * from R,S where R.k=S.k and R.a<5;
select * from S where S.b>25;

Figure 5 illustrates the cracker index produced. Rela-
tion R is broken into two pieces R[1] with R.a>= 10 and
R[2] with R.a<10 tuples. In the next step term R.a<5 lim-
its search to just R[2] and only R[4] is used to initiate the
^ cracker. R[6] and S[3] contain the elements that will join
on attribute k. The last query now has to inspect both S[3]

and S[4] because nothing has been derived about attribute
b. Since we are interested in all attributes, cracking causes
only two pieces in each step. Observe that R can be re-
construction by taking the union over R[1], R[3], R[5], and
R[6], and S using S[5], s[6], s[7], and S[8].

The cracker index can be represented as a global graph
datastructure or organized on a per table basis. Its size can
be controlled by selectively trimming the graph applying
the inverse operation to the nodes.

Observe that for cracking we do not assume a priori
knowledge of the query sequence. Each time a query ar-
rives, it is validated against the cracker index and may ini-
tiate a change. For all but simple queries this calls for a
difficult decision, because a relational algebra expression
provides many cracking options. An alternative cracker in-
dex is shown in Figure 6 where the Ξ and ^ operations in
the second query are interchanged.

This phenomenon calls for a cracking optimizer which
controls the number of pieces to produce. It is as yet un-
clear, if this optimizer should work towards the smallest
pieces or try to retain large chunks. A plausible strategy is
to optimize towards many pieces in the beginning and shift
to the larger chunks when we already have a large cracker
index.

Whatever the choice, the cracker index grows quickly
and becomes the target of a resource management chal-
lenge. At some point, cracking is completely overshad-
owed by cracker index maintenance overhead. A foresee-
able track is to introduce a separate process to coalesce
small pieces into larger chunks, but which heuristic works
best with minimal amount of work remains an open issue.

3.3 Optimizer Issues

The cracker strategy leads to an explosion in the num-
ber of table fragments. For example, a Ξ cracker over an
ordered domain breaks a piece into three new pieces. As
pieces become smaller, the chance of being broken up also
reduces. Furthermore, for each query only the pieces at the
predicate boundaries should be considered for further crack-
ing. Likewise, the ^-cracker produces two pieces for each
operand involved in a join. This means for a linear k-way
join 4(k − 1) pieces are added to the cracker index. The
Ω cracker adds another 2|g| pieces for a grouping over g
attributes. Overall these numbers suggest a possible dis-
astrous effect on an optimizer. Especially if it builds a
complete set of alternative evaluation plans to pick the best
strategy upfront. We hypothesize that an optimizer in the
cracker context has an easier job. This can be seen as fol-
lows.

The prime task of an optimizer is to align the operators in
such a way that the minimal number of intermediate results
are produced. The cracking index helps here, because each
query sub-plan will be highly focused on a portion of the
target result and involve mostly small tables. They hardly

P1 P2

P3

S
P4 P5

P6P3

P2 P1
R R

join

Figure 4. Ξ and ^ cracking

S[6]S[5]

(S[4])ψ

S[8]S[7]

(R)ψ

(R[2])ψ

S)(R[4],

R[6] (S[3])ψ

R[3]

R[1]

R[5]

Figure 5. Cracker lineage

S[6]S[5]

(S[4])ψ

S[8]S[7]

(R)ψ

R[5] R[6]

R[1]
S)(R[2],

(S[3])ψ

R[7] R[8]

(R[3]) ψ (R[4])ψ

Figure 6. Alternate cracker lineage

touch unwanted tuples and, therefore, need only be materi-
alized when the user retrieves their content.

The Ξ cracker effectively realizes the select-push-down
rewrite rule of the optimizer. The pieces of interest for
query evaluation are all available with precise statistics.
The ^ cracker effectively builds a semi-join-index, split-
ting each input in two pieces containing those tuples that
find a match in the join, and those that do not, respectively.
The first piece can by used to calculate the join without car-
ing about non-matching tuples, the second piece contains
the additional tuples for an outer-join. The Ω cracker clus-
ters the elements into disjoint groups, such that subsequent
aggregation and filtering are simplified. Since we do not as-
sume any additional index structure, the optimizer merely
has to find an efficient scheme to combine the pieces. Lo-
calization cost has dropped to zero, due to the cracker, and
the optimizer can focus on minimization of intermediate re-
sults only.

3.4 Cracking Algorithms

Ideally, the database is cracked with minimal CPU cost,
and with minimal additional storage overhead. Database
extensibility and piggybacking on the query evaluation are
the prime tools considered for this.

3.4.1 Crackers in a Query Processor

Cracking can be used in a conventional DBMS where it
takes the form of continual data reorganization, e.g. par-
titioning decisions at each query step. Rather than relying
upon the help of a separate database partitioning tool, one
could piggyback cracking over normal query evaluations as
follows.

Most systems use a Volcano-like query evaluation
scheme [Gra93]. Tuples are read from source relations
and passed up the tree through filter-, join-, and projection-
nodes. The cracker approach can be readily included in this
infrastructure.

The Ξ-cracker can be put in front of a filter node to write
unwanted tuples into a separated piece. The tuples reaching
the top of the operator tree are stored in their own piece.
Taken together, the pieces can be used to replace the original
tables. The storage overhead, however, is the total size of
the base tables used during query processing. The overhead
for tuple inserts can be reduced using the knowledge that
no integrity checking is needed. The transaction processing
overhead due to moving tuples around can, however, not be
ignored. A similar technique can be applied to the Ψ,^ and
Ω crackers.

3.4.2 Crackers in an Extensible DBMS

A cracking scheme can also be implemented in an extensi-
ble DBMS as a new accelerator structure. We provide de-
tails for one such system.

byte offset

ac
tu

al
 B

AT
 c

on
te

nt

byte offset

treeindex
hashtable

heap

hashtable

Binary UNit (BUN)

Binary Association Table

bunsHash Table
index next

Binary Search Tree

(BAT record)

(BUN heap)

Variable Sized Atom Heap

var-sized atom

Head Tail
deleted

inserted

hole

base

size

base
free
size

free

treeindex
heap

fixed sized

Figure 7. BAT layout

The MonetDB2, developed at CWI, is our major platform
for experimentation in core database technologies. It is built
around a storage structure for binary relations only, called
Binary Association Tables (BATs) [BMK00]. The physical
structure of a BAT is shown in Figure 7. It is a contigu-
ous area of fixed-length records with automatically main-
tained search accelerators. Variable length elements are col-
lected in separate storage areas, called the heaps. New ele-
ments are appended and elements to be deleted are moved
to the front until transaction commit. The BATs are mem-
ory mapped from disk and the memory management unit of
the system is used to guarantee transaction isolation.

N-ary relational tables are mapped by MonetDB’s SQL
compiler into a series binary tables with attributes head and
tail of type bat[oid,t pe], where oid is the surrogate key
and t pe the type of the corresponding attribute. For more
details see: [BMK00, MBK02].

The cracking algorithms are collected into a user defined
extension module, which can be moved transparently be-
tween the SQL compiler and the existing kernel by over-
loading the key algebraic operators: select, join, and
aggregate.

The Ξ cracker algorithm takes a value-range and per-
forms a shuffle-exchange sort over all tuples to cluster them
according to their tail value. The shuffling takes place in the
original storage area, relying on the transaction manager to
not overwrite the original until commit.

With the data physically stored in a single container, we
can also use MonetDB’s cheap mechanism to slice portions
from it using a BAT view. A BAT view appears to the user as
an independent binary table, but its physical location is de-
termined by a range of tuples in another BAT. Consequently,
the overhead incurred by catalog management is less se-

2MonetDB, an opensource DBMS http://www.monetdb.com

vere. The MonetDB BATviews provide a cheap represen-
tation of the newly created table. Their location within the
BAT storage area and their statistical properties are copied
to the cracker index. Of course, only pieces that need to be
cracked are considered.

The ^ cracker algorithm is a slight modification of the
existing join algorithms. Instead of producing a separate
table with the tuples being join-compatible, we shuffle the
tuples around such that both operands have a consecutive
area with matching tuples. The Ω operation can be imple-
mented as a variation of the Ξ cracker.

The research challenge on the table is to find a balance
between cracking the database into pieces, the overhead it
incurs in terms of cracker index management, query opti-
mization, and query evaluation plan. Possible cut-off points
to consider are the disk-blocks, being the slowest granular-
ity in the system, or to limit the number of pieces admin-
istered. If the cracker dictionary overflows, pieces can be
merged to form larger units again, but potentially defeating
the benefit of ignoring unwanted tuples altogether.

Finding answers to these questions call for a laboratory
setting to study the contribution of the design parameters.
Therefore, we have formulated a multi-query benchmark
generation kit, introduced below. It can be used in a much
wider setting to study progress in multi-query optimization.

4 Application areas

The application areas foreseen for database cracking are
data warehouses and scientific databases. Datawarehouses
provide the basis for datamining, which is characterized by
lengthly query sequences zooming into a portion of statisti-
cal interest [BRK98].

In the scientific domain, the databases may be composed
of a limited number of tables with hundreds of columns
and multi-million rows of floating point numbers. For ex-
ample, the tables keep track of timed physical events de-
tected by many sensors in the field [SBN+99]. In addition,
the database contains many derived tables, e.g. to repre-
sent model fitting experiments. It is topped with a version
scheme to keep track of the lineage of the tables being man-
aged. In practice, a coarse-grain fragmentation strategy is
used to break up a terabyte database into pieces of a few
tens of gigabytes each.

For studying database crackers, we step away from ap-
plication specifics and use a generic, re-usable framework.
The space of multi-query sequences is organized around a
few dimensions based on idealistic user behavior. Within
this setting, we distinguish between a homerun, a hiking,
and a strolling user profile. They are introduced in more
detail below.

Homeruns

The homerun user profile illustrates a user zooming into
a specific subset of σN tuples, using a multi-step query re-

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

S
el

ec
tiv

ity

Steps

Linear contraction
Exponential contraction
Logarithmic contraction

Target selectivity

Figure 8. Selectivity distribution (σ = 0.2, k = 20)

finement process. It represents a hypothetical user, who
is able to consistently improve his query with each step
taken, such that he reaches his final destination in precisely
k steps (the length of the query sequence). Zooming presup-
poses lack of a priori knowledge about the database content,
which leads to initially ill-phrased queries.

There are many ways to model this convergence process.
In our benchmark, we consider three extreme cases: linear,
logarithmic, and exponential convergence. Under a linear
convergence model, a user is consistently able to remove
a constant number of tuples from an intermediate answer
to reach his goal. The selectivity factor at each step of the
sequence can be described by a selectivity distribution func-
tion ρ(i,k,σ), which in this case produces a subset of size
(1− i(1 − σ)/k)N tuples at the i-th step in the query se-
quence.

A more realistic scenario is a sequence where, in the ini-
tial phase, the candidate set is quickly trimmed and where,
in the tail of the sequence, the hard work takes place by
fine-tuning the query expression to precisely fit the target
set. This scenario can be modeled with an exponential dis-
tribution function: ρ(i,k,σ) = σ+(1−σ)e−(1−σ)/2ki2.

The complementary case is a logarithmic distribution
function, where the quick reduction to the desired target
takes place in the tail of the sequence. This is modeled by
the function ρ(i,k,σ) = 1− (1−σ)e−(1−σ)/2(k−i). The be-
havior of these models is illustrated in Figure 8.

The homerun models a sequence of range refinements
and a monotonously reducing answer sets. It models a case,
where the user already has knowledge of the whereabouts
of the target set, but needs to fine-tune the parameters for its
retrieval.

Hiking

In many sessions, though, discovering attributes of in-
terest is an integral part of the job. This means that a user
will explore not only different range selections on a fixed
attribute set, but will try out different attributes or navigate
through join relationships inspired by the database schema.

It also occurs in situations where the database is continu-
ously filled with stream/sensor information and the applica-
tion has to keep track or localize interesting elements in a
limited window.

In the hiking profile, we assume that such shifts in focus
are not random. Instead, the answer sets of two consecutive
queries partly overlap. They steer the search process to the
final goal. We assume that our ideal user is able to identify
at each step precisely σN tuples, which aligns with an inter-
action sequence driven by sampling and top-n queries. The
overlap between answer sets reaches 100% at the end of the
sequence. The selectivity distribution functions can be used
to define overlap by δ(i,k,σ) = ρ(i,k,0).

Strolling

The base line for a multi-query sequence is when the user
has no clue where to look for specifically. He samples the
database in various directions using more or less random
steps until he stumbles upon a portion that can be explored
further with a homerun or hiking strategy.

In this situation, we only assume ultimately retrieving
σN tuples from the database. There is no zooming behav-
ior and there is no exploration of the navigational semantic
structure.

The selectivity function shown in Figure 8 can be used
to generate meaningful sequences. A convergence sequence
can be generated using the i-th selectivity factor to select a
random portion of the database. Alternatively, we can use
the function as a selectivity distribution function. At each
step we draw a random step number to find a selectivity
factor. Picking may be with or without replacement. In all
cases, the query bounds of the value range are determined
at random.

Multi-Query Sequences

The databases used for experimentation are generated by
the DBtapestry program. The output of this program is an
SQL script to build a table with N rows and α columns.
The value in each column is a permutation of the numbers
1..N. SQL updates can be used to mold the tapestry table to
create one with the data distributions required for detailed
experimentation.

The tapestry tables are constructed from a small seed ta-
ble with a permutation of a small integer range, which is
replicated to arrive at the required table size, and, finally,
shuffled to obtain a random distribution of tuples.

The dimensions for multi-query sequences against the
tapestry table can be combined in many ways, giving a large
space to pick from. This space can be concisely defined as
follows:

DEFINITION The query sequence space can be charac-
terised by the tuple

MQS(α,N,k,σ,ρ,δ) (2)

where α denotes the table arity
N the cardinality of the table
k the length of the sequence to reach the target set
σ the selectivity factor of the target set
ρ the selectivity distribution function ρ(i,k,σ)
δ the pair-wise overlap as a selectivity factor over N

A study along the different dimensions provides insight
in the ability of a DBMS to cope with and exploit the nature
of such sequences. For the remainder of this paper, we use
the search space to assess our cracking approach.

5 Experimentation

A cracking approach is of interest if and only if its em-
bedding within mature relational systems is feasible per-
formance wise. Although the necessary data structures
and algorithms can readily be plugged into most architec-
tures, it is unclear whether the envisioned benefits are not
jeopardized by fixed overhead of fragment management
or other global database management tasks. To obtain an
outlook on the global benefits, we conducted a series of
experiments against PostgreSQL[Pos], MySQL[MyS], and
MonetDB[Mon]. The former two are open-source tradi-
tional n-ary relational engines, while MonetDB’s design is
based on the binary relational model.

For the preliminary experiments, we used a tapestry table
of various sizes, but with only two columns. It is sufficient
to highlight the overheads incurred and provides a baseline
for performance assessment.

In Section 5.1, we introduce an approach for SQL based
systems. For extensible databases it may be possible to in-
troduce a new module. This is illustrated using MonetDB
in Section 5.2.

5.1 Crackers in an SQL Environment

To peek into the future with little cost, we analyze the
crackers using an independent component at the SQL level
using the database engine as a black box. To illustrate, con-
sider a database with the relational table:

create table R(k integer, a integer);

A Ξ cracker attr θ constant breaks it into two pieces.
As SQL does not allow us to move tuples to multiple result
tables in one query, we have to resort to two scans over the
database.

select into frag001
r.k, r.a from r where pred(r.a);

select into frag002
r.k, r.a from r where not pred(r.a);

The cost components to consider are: i) creation of the
cracker index in the system catalog, ii) the scans over the
relation and (iii) writing each tuple to its own fragment.

This involves rudimentary database operations, whose per-
formance is already summarized in Figure 1. They illus-
trate that materialization of a temporary table in a DBMS
involves a sizable overhead. It ranges from 40 to 1200 ms
per table. On top of this, the DBMS needs anywhere be-
tween 3 to 250 ms/10000 tuples to evaluate the predicate
and create the tuple copy.

For example, consider a query with a selectivity of 5%
ran against MySQL and delivering the information to the
GUI. Such a query would cost in this database setup around
0.5 second. Storing the same information in a temporary ta-
ble adds another 1.5 seconds. This is not all, because crack-
ing requires the original table to be broken into two pieces,
effectively raising the total response time to around 10 sec-
onds. The investment of 9.5 seconds during this cracking
step is hard to turn into a profit using less scan cost in the
remainder of the sequence. To put it in perspective, sorting
the table on this attribute alone took about 250 seconds.

The simulation of the Ψ, ^ and Ω operators in an SQL
setting require multiple scans as well.

During result construction, the pieces localized in the
cracker index should be combined to produce the result ta-
ble. This requires fast table unions and join operations to
undo Ξ and^ cracking. Since cracking may produce many
tables with just a few attributes and a few tuples linked with
surrogate keys, we have to rely on the DBMS capabilities to
handle large union expressions and long foreign-key join se-
quences efficiently to construct the result tables. Although
join algorithms and join optimization schemes belong to
the most deeply studied areas, an experiment against our
database clearly showed a bottleneck when cracking is de-
ployed in a traditional context.

For example, consider the relational table above, com-
prised of only two columns and just a million elements. The
tuples form random integer pairs, which means we can ’un-
roll’ the reachability relation using lengthly join sequences.
We tested the systems with sequences of up to 128 joins.
The results are shown in Figure 9. It demonstrates that the
join-optimizer currently deployed (too) quickly reaches its
limitations and falls back to a default solution. The effect is
an expensive nested-loop join or even breaking the system
by running out of optimizer resource space.

The practical consequence is that cracking in older sys-
tems is confined to tables breaking it up in just a small col-
lection of vertical fragments. Otherwise the join implemen-
tation becomes a stand in the way to glue the partial results
together. A notable exception is MonetDB, which is built
around the notion of binary tables and is capable handling
such lengthly join sequences efficiently.

Taken into account these performance figures and the
baseline cost of primitive operators, it does not seem pru-
dent to implement a cracker scheme within the current of-
ferings. Unless one is willing to change the inner-most al-
gorithms to cut down the overhead.

 1

 10

 100

 1000

 10000

 10 100

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

Join-sequence length

k-way linear join

PostgreSQL
SQLite
MySQL

MonetDB/SQL

Figure 9. Linear join experi-
ment

 0.1

 1

 0 20 40 60 80 100 120
R

es
po

ns
e

tim
e

in
 s

ec
on

ds

Query-sequence length

k-way homeruns

0.5

50
nocrack 75%
nocrack 45%
nocrack 5%

crack 75%
crack 45%
crack 5%

Figure 10. Homerun experi-
ment (MonetDB)

 0.1

 1

 0 20 40 60 80 100 120

R
es

po
ns

e
tim

e
in

 s
ec

on
ds

Query-sequence length

k-step strolling converge

0.5

50
nocrack

sort
crack

Figure 11. Random converge
experiment (MonetDB)

5.2 Crackers in MonetDB

A cracker module has been implemented to assess
whether the cost structure encountered at the SQL level can
be countered. The module implements the Ξ and ^ crack-
ers and relies on the systems efficient memory manage-
ment scheme to guarantee transaction safety during crack-
ing. The cracker index is organized as a decorated inter-
val tree. Each table comes with its own cracker index and
they are not saved between sessions. They are pure aux-
iliary datastructures to speedup processing of queries over
selected binary tables.

The initial experiments reported here were targeted
at converging query sequences using both homerun and
strolling strategies.

Homeruns

A cracking strategy is expected to work best when a multi-
query sequence zooms into a target set and where answers
to previous queries help to speedup processing. Figure 10
is an illustrative result we obtained using the multi-query
benchmark. It illustrates the total response time for a linear
homerun sequence of k (<128) steps. The selectivity factor
indicates the target size to reach after those steps. The time
for both with and without cracking support is shown. The
latter merely results in multiple scans over the database and
any performance gain is an effect of a hot table segment
lying around in the DBMS cache.

The lines for cracking indicate its adaptive behavior. Af-
ter a few steps it outperforms the traditional scans and ulti-
mately leads to a total reduction time of a factor 4. Under a

cracking strategy the response times for the individual steps
also quickly reduce. It provides a response time of a nearly
completely indexed table.

Strolling

The baseline test is to simulate a random walk through the
database, i.e. the user (or multiple users) fire selection
queries against the database without evident intra-query de-
pendencies. Figure 11 is an illustrative example for the case
where we use the selectivity distribution function to con-
verge to a desired target size of 5%. Sequences up to 128
steps are executed and compared against the non-cracking
approach, and the situation where in the first step we sort
the table for fast lookup.

The results confirm the performance improvement over
non-cracking. It also shows that cracking is a viable alterna-
tive to sorting (or secondary index construction) if the num-
ber of queries interested in the attribute is rather low. Invest-
ment in an index becomes profitable performance cost-wise
when the query sequence exceeds 100 steps and randomly
browses the database.

6 Related Research

The cracker approach is inspired by techniques from dis-
tributed database research [OV91], partial indexing [SS95],
and clustered indices.

From distributed databases, we take derived-horizontal
and vertical fragmentation to crack the database into smaller
pieces. The cracking scheme, however, is not a one-time
action. It is performed continuously and produces irregular

fragments upon need. The database partitioning scheme is
a byproduct of each query. Their lineage is made available
for dynamic adjustments and continual reorganizations.

Modern research in distributed databases, e.g. sensor
networks and P2P systems, tend to extrapolate the tradi-
tional DDBMS design routes where a profile of interest is
translated into advice on caching and locality of informa-
tion. The balanced profiles of multiple users are defined by
the DBA using a powerful description language[CGFZ03].
In a cracking scheme, the equivalent to profiles are the
queries being fired and resource balancing takes place con-
tinuously.

Even in non-distributed systems, partitioning large ta-
bles has become an important technique to reduce index
maintenance and to improved query responsiveness. For ex-
ample, MySQL, DB2 and Oracle advice the DBA to spec-
ify range-partitioned tables for large datawarehouses. The
cracker scheme extends this practice using a cracker index
defined implicitly by query use, rather then by intervention
of a DBA.

A second source of inspiration came from partial in-
dices, an area largely neglected in database research. Al-
ready in 1989, Stonebraker identified the opportunity to
incrementally built/maintain an index as part of the query
execution phase [Sto89]. The technique has been imple-
mented in Postgres, but appears hardly ever used. The
prospects of partial indexing has been studied by Sheshadri
and Swami using a simulation tool in [SS95]. It demon-
strates convincingly the potential for improved performance
and lower maintenance cost under a wide variety of param-
eter settings. However, the upfront knowledge required are
database statistics and a workload. The cracker index can
be considered a partial index; it is built as part of accessing
portions of interest. It follows the idea of partial indexing
by shifting the cost of maintenance to the query user.

Clustering tuples has long been an important technique
to achieve high performance. Tuples within a single rela-
tion are grouped together using a cluster index, but also
tuples from different tables may be clustered in the same
disk page to speedup foreign-key joins. An interesting ap-
proach in this direction is presented in [Gra03], where the
B-tree structure is extended to support dynamic reorganiza-
tion. It might provide the proper setting to experiment with
the crackers in a commercial system. The implementation
of the MonetDB cracker module dynamically clusters tuples
within the same table space. The experiments so far are con-
fined to range-based clustering and the cracker index binds
the fragments together into an interval tree structure. Clus-
tering significantly reduces the IO cost and is known to be
effective in a main-memory/cache setting as well [MBK02].

A solution to index selection, clustering and partition
is addressed by emerging toolkits, such as DB2 Design
Advisor [ZLLL01], Microsoft Database Tuning Advisor
[ACK+04], and Oracle’s SQL Tuning Advisor[Ora03].
They work from the premises that the future access pattern
can be predicted from the past or from a mock-up work-

load. For most application settings this seems the right way
to go. The cracking approach is advocated for the decision
support and scientific database field, where interest in por-
tions of the database is ad hoc, localized in time, and mostly
unpredictable. The database size, both in terms of attributes
and tuples, precludes creation of many indices. Moreover,
the clients typically flock around a portion of the database
for a limited period, e.g. the readings from multiple scien-
tific devices for a star in our galaxy.

7 Summary and future research

To achieve progress in database systems research calls
for challenging established implementation routes, e.g. by
studying new design parameter constellations. The chal-
lenge put on the table here is: Let the query users pay for
maintaining the access structures. Its realization is the no-
tion of database cracking, where a query is first interpreted
as a request to break the database into pieces organized by a
cracker index. After cracking the database the query is eval-
uated using ordinary (distributed) query optimization tech-
niques.

The cracker model leads to a simple, adaptive accelerator
structure with limited storage overhead. The portion of the
database that matters in a multi-query sequence is coarsely
indexed. Only by moving outside this hot-set, investments
are needed.

The cracker approach extends techniques developed in
the context of distributed databases. However, these tech-
niques have not (yet) been used — as far as we are aware —
to its extreme as proposed here for managing the database
in a central setting.

The basic experiments on traditional relational systems
show that the cracking overhead is not neglectable. To be
successful, the technique should be incorporated at the level
where index structures are being maintained. Moreover, a
main-memory catalog structure seems needed to reduce the
large overhead otherwise experienced in maintaining a sys-
tem catalog.

As the database becomes cracked into many pieces, the
query optimizer is in a better position to discard portions of
no interest for evaluation. A laboratory benchmark has been
defined to pursue detailed performance studies. Focused
multi-query sequences, typically generated by datamining
applications [BRK98], in particular benefit from cracking.

Using database cracking as the leading force to improve
performance in query dominant environment calls for many
more in depth studies. The experiments reported indicate
opportunities for novel query optimization strategies, com-
plementary to materialized views currently being the pre-
dominant route to support multi-query sequences. The di-
minishing return on investment as the cracker index be-
comes too large calls for heuristics or learning algorithms to
fuse pieces together. Finally, database cracking may proof
a sound basis to realize self-organizing databases in a P2P
environment.

Acknowledgments

This work was supported by the BRICKS project, a Na-
tional program to advance long term research in computer
science. The authors are thankful for comments on early
drafts and contributions of the MonetDB development team.

References

[ACK+04] Sanjay Agrawal, Surajit Chaudhuri, Lubor
Kollár, Arunprasad P. Marathe, Vivek R.
arasayya, and Manoj Syamala. Database tun-
ing advisor for microsoft sql server. In Proc.
of the Int’l. Conf. on Very Large Data Bases,
Toronto, Canada, August 2004. To appear.

[BMK00] P. Boncz, S. Manegold, and M. Kersten. Op-
timizing Database Architecture for the New
Bottleneck: Memory Access (Extended Paper
Published For Best-Of-VLDB’99). The VLDB
Journal, 9(3):231–246, December 2000.

[BRK98] P. Boncz, T. Rühl, and F. Kwakkel. The Drill
Down Benchmark. In Proc. of the Int’l. Conf.
on Very Large Data Bases, pages 628–632,
New York, NY, USA, June 1998.

[CGFZ03] Mitch Cherniack, Eduardo F. Galvez,
Michael J. Franklin, and Stan Zdonik. Profile-
driven cache management. In International
Conference on Data Engineering (ICDE),
2003.

[Gra93] G. Graefe. Query Evaluation Techniques for
Large Databases. ACM Computing Surveys,
25(2):73–170, June 1993.

[Gra03] G. Graefe. Sorting and indexing with parti-
tioned b-trees. In Proceedings of the CIDR
2003 Conference, Jan, 2003.

[MBK02] S. Manegold, P. Boncz, and M. Kersten. Opti-
mizing Main-Memory Join On Modern Hard-
ware. IEEE Trans. on Knowledge and Data
Eng., 14(4):709–730, 2002.

[Mon] MonetDB. http://www.monetdb.com.

[MyS] MySQL. http://www.mysql.com.

[Ora03] Oracle Corp. Oracle8 SQL Reference,
2003. http:// otn. oracle. com/ documentation/
database10g.html.

[OV91] A. Ozsu and P. Valduriez. Principles of Dis-
tributed Database Systems. Prentice Hall, En-
glewood Cliffs, NJ, USA, 1991.

[Pos] PostgreSQL. http://www.postgresql.com.

[Raf03] Maurizio Rafanelli, editor. Multidimensional
Databases: Problems and Solutions. Idea
Group, 2003.

[SBN+99] Arie Shoshani, Luis M. Bernardo, Henrik
Nordberg, Doron Rotem, and Alex Sim. Mul-
tidimensional indexing and query coordination
for tertiary storage management. pages 214–
225, 1999.

[SS95] Praveen Seshadri and Arun N. Swami. General-
ized partial indexes. In Philip S. Yu and Arbee
L. P. Chen, editors, Proceedings of the Eleventh
International Conference on Data Engineering,
March 6-10, 1995, Taipei, Taiwan, pages 420–
427. IEEE Computer Society, 1995.

[Sto89] Michael Stonebraker. The case for partial in-
dexes. SIGMOD Record, 18(4):4–11, 1989.

[ZLLL01] Daniel Zilio, Sam Lightstone, Kelly Lyons, and
Guy Lohman. Self-managing technology in
ibm db2 universal database. In Proceedings of
the tenth international conference on Informa-
tion and knowledge management, pages 541–
543. ACM Press, 2001.

