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Abstract 

With the advent of 64-bit processors, large main 

memories are set to become very common. This 

in turn translates to larger buffer pool 

configurations in database servers. Query 

optimizers however, currently assume all data is 

disk resident while optimizing queries. This 

assumption will no longer be valid when buffer 

pools become 100’s of gigabytes in size. In this 

paper we examine how data presence in the 

buffer pool can affect the choice of query plans 

in an optimizer. We examine the possible 

benefits of buffer-pool aware query optimization 

and propose a generic architecture for 

implementing such an optimizer. 

1. Introduction 

While the basic approach to query optimization has not 

changed since 1979 [21], the rest of the environment in 

which database systems operate has changed dramatically.  

Processors are 1000 times faster. Memories and disks are 

1000 times bigger. Query execution techniques have also 

improved dramatically with more efficient algorithms, 

techniques such as bit-mapped and covering indices, 

materialized views, and parallel execution. Improvements 

have certainly occurred in optimizers including the use of 

histograms to estimate selection cardinalities [20] and 

rule-based techniques for rewriting complex queries [12]. 

However, the basic paradigm of query optimization has 

gone unchanged:  the optimizer explores a number of 

plans, estimating the cost of each, and picks what it thinks 

is the best plan, which is then executed. While this 

strategy worked very well when the query engines were 

not capable of executing queries with more than a couple 

of trivial join operators in a reasonable amount of time, it 

no longer works very well today with queries involving 

dozens of very large tables.  There are several 

fundamental problems. Foremost is the problem of error 

estimation in join cardinalities [13].  Basically, after 1-2 

join operators, it is impossible for an optimizer to estimate 

join cardinalities accurately. This makes picking the best 

join order or join method for subsequent joins in a 

complex query essentially impossible. The bottom line is 

that our ability to execute increasingly complex queries 

over very large data sets has increased at a much faster 

rate due to improvements in hardware and software than 

our ability to optimize such queries correctly.  Over the 

last couple of years, several attempts have been made to 

improve the state of query optimization.  One approach is 

a technique known as dynamic query optimization in 

which optimization and execution are interleaved [2, 3, 

14, 15]. The idea actually dates back to the INGRES [24] 

project. Leo [22] represents another approach for 

improving query optimization.  Here the idea is to use 

statistics gathered at run-time to improve the optimizer’s 

statistics. 

 

This paper considers another technique for improving the 

effectiveness of query optimization. Currently no 

optimizer that we are aware of considers the contents of 

the buffer pool when optimizing a query. Optimizers 

always assume that all tables at the leaves of the query 

plan are disk resident, and ignore the contents of the 

buffer pool when evaluating alternative execution plans. 

Even though it is generally safe to assume there is not 

enough main memory to hold the entire database, at any 

given point a significant fraction of the active tables may 

be memory resident.  
 

Ignoring the contents of the buffer pool while optimizing 

queries can cause the optimizer to pick sub-optimal plans. 

Consider the following example. Assume a query includes 

a selection predicate on a table and assume that there is an 
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unclustered index available on the attribute on which the 

predicate is defined. Hence, the optimizer can choose to 

either use an unclustered index scan or sequentially scan 

the entire table in order to execute the query. Beyond 

some threshold value in predicate selectivity, the 

optimizer will almost always pick the sequential scan.  

However, if the data pages that are actually accessed 
when evaluating the predicate are already resident in the 

buffer pool, using the index scan will be faster.  Data 

cached in the buffer pool can also affect other choices 

made during query optimization including join ordering 

and the selection of a join algorithm.  
 

The cost per MB of main memory has dropped by a factor 

of 10,000 over the last twenty years [11]. A rule of thumb 

suggested in [10] is that data that is stored on disk today 

will be stored in main memory in ten years. Techniques 

like vertical partitioning [7][4] may further enhance the 

use of large amounts of main memory as a cache for 

frequently referenced columns. In this paper we examine 

how this trend is likely to affect the way query optimizers 

and query engines are architected. The situation we are 

considering is not a main memory database system, which 

typically assumes that the entire database fits into main 

memory. There are several commercial main memory 

database products like TimesTen [26] available today. 

With storage costs’ decreasing rapidly, one possibility is 

that main memory database servers may replace 

traditional database servers. We do not think this scenario 

is likely. Main memory databases are currently used for 

specialized applications where the database size limits can 

be guaranteed or as a high-speed cache for a traditional 

relational DBMS in web applications. As more non-

traditional data like images and historical data are 

incorporated into a database; it will probably not be cost 

effective to store the entire database in main memory. 

Thus, even though main memory databases are likely to 

remain important in certain niche environments, it is 

unlikely that they will be used for more traditional 

database applications like transaction processing and 

decision support. 

 

At the other end of the spectrum, we have traditional 

databases that store data using a disk sub-system. Data 

pages are cached in a buffer pool as they are read from the 

disk sub-system using a suitable replacement policy. 

Thus, decreasing storage costs would imply a larger 

buffer pool that could cache more pages in memory. In 

fact, the “five-minute” rule [11] suggests that data pages 

that are accessed every five minutes should be memory 

resident. Given storage economics, this interval is likely 

to increase. However, just caching more pages in the 

buffer pool does not automatically guarantee improved 

performance.  The goal of this paper is to demonstrate that 

adopting a query optimizer that is “buffer-pool aware” 

can significantly improve the overall performance of 

decision support queries. We are particularly concerned 

with exploratory environments where users issue a set of 

related queries and interactive response times are critical. 

 

The remainder of this paper is organized as follows. 

Section 2 examines how the classical trade-off between 

using an unclustered index and a table scan varies as a 

function of the contents of the buffer pool. Section 3 

extends this analysis to join queries. In Section 4, we 

introduce the concept of index pre-execution and outline a 

generic architecture for query processing that is “buffer-

pool aware”. The paper then presents its conclusions and 

suggests some interesting avenues for future work. 

2.   Single Table Queries 

This section examines how the contents of the buffer 

pool can affect access path selection for a single table. In 

particular, we examine the choice between using a table 

scan and an un-clustered index scan.  

2.1   Introduction 

Query optimizers use cost functions to evaluate alternate 

evaluation plans. In choosing between a sequential scan of 

a table and an unclustered index scan this translates to 

some cut-off in predicate selectivity (say s0).  For 

predicates more selective than s0, the optimizer should 

choose an unclustered index scan.  Otherwise, a 

sequential table scan would be selected. An interesting 

point to note is that this threshold value is independent of 

the contents of the buffer pool. Over the course of 

executing queries, a significant number of pages that are 

required to answer a query might have become cached in 

the buffer pool. The relative performance of the 

alternative query plans can change based how many pages 

are resident in the buffer pool to the point that the 

optimizer can actually pick the wrong plan. In this 

section, we examine this problem in detail. Simple 

analytical formulae are used to analyze when a buffer 

pool aware optimizer is likely to be useful. Experimental 

results are then presented to show how buffer pool 

contents can affect the relative performance of a 

sequential scan vs. an unclustered index lookup. 

2.2   Analytical Model 

Consider a relation R and assume a hypothetical query 

workload that consists of a series of queries with selection 

predicates on R. Assume that an unclustered index exists 

on the attribute on which the selection predicate is 

defined. Thus, two evaluation plans for each query are 

possible; one that uses the index and the other that scans 

the table. A query optimizer would typically use a cost 

function to estimate the cost of each alternate plan and 

would pick the plan with the lowest cost.  Assuming a 

simplistic cost model that considers only the I/O cost, the 

relevant parameters are: 

 



• N, the number of pages in the relation R 

• Nbuf, the size of the buffer pool in pages 

• Tseq, the time to read a page using sequential I/O 

• Trandom, the time to read a page using random I/O 

 

Assume that Nbuf < N, i.e. the relation R will not fit 

completely in the buffer pool. Consider a query Q and 

assume that the predicate selects k records from the table. 

Then, the cost of the two alternate evaluation plans is: 

 

Cost of Table Scan (cost1) = N*Tseq 

Cost of Index Plan  (cost2) = C(k)*Trandom 

 

C(k) represents the Cardenas formula [25] for estimating 

the number of page accesses. If there are M records stored 

in N pages, the number of pages touched while accessing 

k records through an unclustered index is given by: 

 

C(k) = N* (1 –  (1 – 1/N)
k
)  

 

Note that this expression is independent of M (the total 

number of records in the table). Yao mentions in [25] that 

the error involved in using this approximation is 

negligible for cases in which the number of tuples per 

page page (the blocking factor) is not a small number (say 

< 10). This assumption is typically true for pages sizes 

used in today’s database systems (4 Kbytes–32 Kbytes). 

Moreover this formula is easier to manipulate 

mathematically than Yao’s formula.   

 

Traditional optimizers would choose the index plan as 

long as cost2 is less than cost1. The cut-off point (in terms 

of the number of records accessed) after which the 

optimizer would always pick the sequential scan occurs at 

the point at which the two cost functions intersect. This 

corresponds to the following equation. 

 

N*Tseq = Trandom* C(k). 

 

Denote Tseq/Trandom by d. (Note that d is always less 

than 1) 

 

Substituting for C(k) we obtain:  

N*d =  N* (1 –  (1 – 1/N)
k
) 

 

Simplifying, we obtain, k = log (1 –d)/ log (1- 1/N). 

This represents the cut-off value in terms of number of 

records accessed after which the index scan should no 

longer be picked by the optimizer. Denote this value by 

k0. 

 

The cost functions used in the calculation above are 

independent of the contents of the buffer pool. Next we 

consider how the trade-off between the two plans can 

change if the optimizer takes into account the data pages 

cached in the buffer pool. Consider the following 

scenario. Assume that the database system has executed a 

number of queries, some of which access table R. 

Reconsider query Q. Assume that a fraction f of the pages 

holding tuples that satisfy the selection predicate on Q are 

already cached in the buffer pool as a result of executing 

other queries. The cost functions for the two alternate 

plans, given this knowledge would be:  

 

Table Scan (cost1): (N  –  f * C(k)) * Tseq
1
 

Index Plan  (cost2): C(k) * (1 – f) * Trandom 

 

Consider the cut-off point (in terms of number of records 

selected) under these revised cost estimates, after which 

the optimizer would pick the sequential scan. Consider the 

best scenario for the index scan; in this case all the pages 

in the buffer pool could be used to answer the current 

query (this can at most be equal to Nbuf).  Thus, the cut-

off point can be determined using the following equation: 

 

(N – Nbuf )* d =  (C(k) – Nbuf)  or, 

 N*d  + Nbuf (1-d)  = N* (1 –  (1 – 1/N)
k
) 

 

Simplifying, we get  

 k = log ((1-d) * (1 – Nbuf/N)) / log (1-1/N). 

 

Let this value be denoted as k1, which represents the 

selectivity value (in terms of the number of records 

selected) after which the optimizer would pick the scan 

given the knowledge of the contents of the buffer pool.   

Consider the expression (k1 – k0).  

 

k1 – k0  =  log (1-Nbuf/N)/log (1-1/N).  

 

This is a positive number (recall that N > Nbuf). This 

represents the possible selectivity range (in terms of the 

number of records selected) in which a traditional 

optimizer would pick the scan and in which a “buffer-pool 

aware” optimizer would pick the index scan.  This 

equation shows that there exist cases where the optimizer 

could choose the wrong plan unless it has knowledge of 

the contents of the buffer pool. 

 

The previous analysis assumed the best case for the index 

scan (i.e. all the pages that are needed for the query are in 

the buffer pool). Consider the case in which the buffer 

pool just contains a random sample of the pages in 

relation R. In this case, the fraction of pages required to 

answer the current query that can be resident in the buffer 

pool can be at most (Nbuf/N) * C(k). The cut-off point in 

this case would be determined using the following 

equation. 

 

(N – Nbuf ) *  d = C(k) (1 –  Nbuf / N) or, 

N*d  = N (1 –  (1- 1/N)
k
)  

                                                           
1
 For simplicity, we assume that caching does not affect 

the sequential bandwidth.   



Simplifying, k = log (1-d)/ log (1 – 1/N) which is identical 

to k0.  

 

The results from the analytical models ascertain the 

following results that are fairly intuitive.  Cost models 

that reflect the buffer contents are likely to make a 

difference when the workload has some definite locality. 

For workloads that just have a random footprint, a cost 

model that reflects the buffer contents does not provide 

any additional functionality. In this paper, we are looking 

at decision support applications where the workload is 

more likely to have some locality.  

 

These formulae have demonstrated that there is a “grey” 

region in which an optimizer that does not exploit 

knowledge of the buffer pool contents can pick the wrong 

execution plan. However, it may not matter if the relative 

execution time between the plans in this region is 

negligible. In the following section the actual 

performance gains that can be achieved by exploiting 

buffer-aware optimization techniques are quantified 

experimentally.  

2.3   Experimental Results 

All the experiments in this paper were performed using a 

prototype relational query engine implemented on top of 

the SHORE storage manager [5]. The machine used is a 

Pentium 2 GHz processor with 1 GB of main memory 

running Red Hat Linux (9.0). The 1 GB version of the 

TPC-H [27] data suite was used for the experiments. 

Shore was configured to use a 500MB buffer pool and a 

page size of 16KB. The query used is a selection query on 

the Lineitem table. The selection predicate selects tuples 

that have been shipped in a 10 day interval (the predicate 

is on the l_shipdate attribute and the selectivity is around 

0.5%). An unclustered index was built on the l_shipdate 

using a SHORE B-Tree. The unclustered index scan plan 

sorts the RIDs before fetching them. Table 1 illustrates 

how the performance of the index plan varies as a 

function of f, the fraction of the data pages containing 

tuples that satisfy the selection predicate that are already 

in the buffer pool.  

 

                    f    Index Scan Time (s) 

                   0               18.78   

                 0.3               17.64 

                 0.5                  11.92  

                 0.7               10.39 

                 0.8                7.77 

                 0.9                 4.73 

                 1.0                  0.80 

Table 1: Unclustered Index Scan Performance                                                     

800 MB Lineitem table 

The time required to execute this query using a table scan 

is 17.52 seconds. This time is not significantly affected by 

the buffer contents since the predicate selectivity is 

around 0.5% and most of the pages of the scan have to be 

read from disk. The index scan plan (when the buffer 

cache is empty) takes 18.78 seconds. Since this is greater 

than the time taken to scan the table, a traditional 

optimizer would choose to ignore the index plan. As 

shown in Table 1, depending on the value of f, the relative 

performances between the two query plans can be quite 

substantial. In fact, when more than 50% of the required 

pages are in the buffer pool, the optimizer should 

definitely choose an index plan. This illustrates how 

knowledge of the contents of the buffer pool can provide 

a better query plan. Table 1 illustrated the performance of 

an index scan plan for an 800 MB version of the Lineitem 

table, which does not entirely fit in the buffer pool. The 

same experiment was repeated with a 400 MB version of 

the Lineitem table in order to examine the trade-off 

between a sequential scan and an index scan for a table 

that fits in the buffer pool. Figure 1 graphs the ratio of 

sequential scan time to index scan time for two different 

predicate selectivity values (0.5% and 1%). The crossover 

between the index scan plan and sequential scan occurs at 

a selectivity of around 0.1%. As a result, a traditional 

query optimizer would not choose the index scan plan for 

theses cases. As the graph indicates, a buffer pool aware 

query optimizer can provide a significant improvement in 

performance.  

Figure 1:  Index Scan Performance                            

(400 MB Lineitem table) 
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To summarize, through the use of both an analytical 

model and an actual implementation, the results of this 

section demonstrate that there exist cases in which having 

knowledge of the buffer pool contents while optimizing 

queries can effect which plan should be chosen.  We have 

also demonstrated that there are cases where the 

alternative plans can have significantly different response 

times.  In the next section we consider join queries.  Then 

in Section 4 we describe the architecture of our 

experimental optimizer and buffer pool. 



3. Multi-Table Queries 

In this section we examine how the contents of the buffer 

pool can affect access path selection for joins including 

both the order in which joins are performed and the 

choice of join algorithm.  

3.1 Join Ordering 

In order to evaluate a join between two tables, one of the 

decisions that the optimizer must make is to select an 
appropriate join order. Consider a join between two tables 

A and B and assume hash join is used as the join 

algorithm. Typically the smaller relation is used to build a 

hash table in memory and the larger relation is used to 

probe the hash table [9]. Let the number of pages in the 

corresponding relations be Na and Nb and that Nb < Na.  

Assume that the entire table A has been cached in main 

memory but that the optimizer, unaware of this fact, 

selects B, the smaller of the two, as the ‘build’ relation.  

At run time, B would be scanned and a hash table 

constructed on it.  Then A would be scanned, probing the 

hash table of B for matches. The scan of B is likely to 

result in pages of A being ejected from the buffer pool. In 

the worst case the number of pages that would be read 

from the disk for the join would be Na+Nb. However, if 

the optimizer had reversed the join order, it would incur 

no I/Os while scanning the inner (“A”).  Hence, the 

number of pages read from disk would be Nb.  For a cost 

model that uses only I/O costs, the plan with its join order 

reversed would be the better plan. In general there is a 

trade-off between the I/O costs saved (based on the 

fraction of A that is cached) and the additional CPU costs 

incurred in hashing the ‘build’ relation (since it is a larger 

table).  

 

For example, consider a join between a 400 MB version 

of the Lineitem table and the Order tables (around 150 

MB). Using our experimental prototype with a 500MB 

buffer pool, the execution times for the two alternative 

join orderings (using hash join) when the buffer pool is 

empty are shown below. The “ORDERS join 

LINEITEM” join which uses the smaller relation as the 

“build” relation is the better plan. 

 

 LINEITEM join ORDERS         13.77 s 

ORDERS join LINEITEM         12.90 s 

 

The corresponding times when the Lineitem table is 

entirely in memory are given below. 

 
LINEITEM join ORDERS            5.98  s 

ORDERS join LINEITEM          12.47  s  

 

The “ORDERS join LINEITEM” join does not exploit the 

fact that the Lineitem table is cached; as the orders table is 

scanned, the buffer pool starts replacing pages of the 

Lineitem table. As the experiment indicates, data caching 

may have an important effect on join ordering. 

3.2 Choice of Join Algorithm 

Today relational products employ a wide range of join 

algorithms such as nested loops, indexed-nested loops, 

sort merge join, and hash-based techniques [9]. In 

addition, an optimizer can choose to join suitable indexes 

(like covering indexes) instead of joining the source 

tables. Index structures like join indexes [23] also can be 

used to evaluate joins. A join index between two tables A 

and B essentially pre-computes the join between the two 

tables, and stores the mapping between the pair of 

qualifying RIDs as a pair of B-trees. Using a join index it 

is possible to evaluate a join between the two tables by 

probing the index. An interesting point to note is that the 

trade-off between using join indexes and sequential 

algorithms (like hash join) for evaluating joins is, in many 

ways, similar to the trade-off between using an 

unclustered index scan and a table scan for a single table 

query. Join indexes will prove to be better than sequential 

access algorithms until some threshold value in predicate 

selectivity of the “inner” is reached that would limit the 

number of probes on the join index. As in the case of 

unclustered indexes, sorting the RIDs before fetching the 

corresponding tuples is a standard technique for 

improving performance. 

Figure 2: JINDEX plan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Consider a join query between Lineitem and Orders table 

(similar to TPC-H Query 12). The Lineitem table has 

predicates defined on a few columns including the 

l_receiptdate field. Query 12 requires 4 attributes from the 

B-Tree (l_receiptdate) 

     Range Scan 

Probe Join-Index 

   Fetch (Orders) 

    Filter  

     Fetch (Lineitem) 

 Sort RIDs 

 Sort RIDs 

            B-Tree             

     (l_receiptdate) 

       Join Index 



Lineitem table and 2 attributes from the Orders table. 

Assume that the following indexes are available.  

 

• An unclustered index on the l_receiptdate field of the 

Lineitem table. 

• A join index between the Lineitem and Orders table 

on the l_orderkey and o_orderkey attribute. 

• Covering Indexes Cov1, Cov2 that include only the 

attributes that are needed by this query from the 

Lineitem and Orders tables. 

 

With these alternatives there are a number of possible 

plans for evaluating the join. The optimizer could use a 

sequential algorithm (like a hash join) to join the source 

tables or the covering indexes. Alternatively, the 
optimizer could decide to use the join index to evaluate 

the join. As illustrated in Figure 2, the plan in this case 

would begin with an unclustered index scan on the 

l_receiptdate field to obtain an initial list of RIDs. Those 

tuples that satisfy the remaining predicates on the 

Lineitem table are then used to probe the join index to 

obtain the RIDs of the qualifying tuples in the Orders 

table. These tuples are then fetched. The RIDs gathered 

from both indexes are sorted before fetching the 

corresponding tuples.  

 

The different plans were executed using the 1 GB version 

of the TPC-H suite. The Lineitem table is around 800 MB 

and the Orders table is around 150 MB. A 500 MB buffer 

pool size was used. With an empty buffer pool the 

performance of these plans is shown in Table 2.  Hybrid 

hash join was used as the join algorithm. These results 

indicate that, when available, a traditional optimizer 

would likely choose the plan that uses both covering 

indexes. 

 

Table 2: Alternate Query Plans 

 
Table 3 presents the response time of the JINDEX plan as 

a function of f1 and f2, the fraction of the required pages 

from Lineitem and Orders tables, respectively, already 

resident in the buffer pool. As these results indicate the 
trade-off between two alternative choices to the optimizer 

in this example, the JINDEX and the (COV1 join COV2 

plan) could change drastically and the optimizer has the 

potential to miss better plans.   

 

  

Table 3: Performance of JINDEX plan 

A similar trade-off would exist for other combinations of 

algorithms for join evaluation like merge-join and 

indexed-nested loops. These results, along with the  

experimental results presented in Section 2, demonstrate 

that the performance of certain query execution plans 

(especially those involving random accesses) can vary 

dramatically depending on the actual contents of the 

buffer pool; an optimizer that is aware of the contents can 
make more informed decisions 

4. Buffer Pool Aware Query Optimization 

4.1 Introduction 

In the two previous sections we demonstrated how data 

pages cached in the buffer pool can influence many of the 

choices made during query optimization including index 

selection, the choice of a join algorithm, and the selection 

of which table should be the “inner” table for a join. 

Experimental results indicate that an optimizer that 

exploits knowledge of the contents of the buffer pool can 

result in the selection of query plans with significantly 

better performance. In this section, we outline a generic 

architecture for query processing that is “buffer-pool 

aware”. In this paper, we intend to focus on single table 

queries and key-foreign key joins which are an important 

class of join predicates. 

 

A buffer pool caches data pages. Given a PID (page ID) 

or a particular RID (record ID), it is possible to determine 

if the page or record is in the buffer pool. A buffer-pool 

aware query optimizer needs to be able to estimate what 

fraction of the pages required by a selection or join 

operator is resident in the buffer pool.  This “estimate” 

would ideally, be accurate and have low computation 

overheads. 

 

Current optimizers use a “optimize then execute” 

paradigm as first proposed by System-R [21]. In this 

approach, during the query optimization phase, statistical 

estimates of various parameters (derived from pre-

computed structures such as histograms) are used for cost 

estimation. Notice that such traditional schemes will not 

be effective in our approach as query optimization 

Query Evaluation Plan     Execution Time (s) 

 LINEITEM join ORDERS               28.30 

 LINEITEM join COV2              24.68  

  COV1 join ORDERS              20.45 

   COV1 join COV2              16.53  

      JINDEX plan              21.56   

      f1            f2   JINDEX   plan  (s) 

       0            0            21.56 

      0.4            0            18.07 

      0.4           0.4            17.47 

      0.6            0               14.16 

      0.6           0.6            13.87 

      0.8            0            10.62  

      0.8           0.8             8.58 

       1            0             8.34  

       1            1             0.93   



requires information that is only available at runtime. The 

concept of index pre-execution is proposed as a candidate 

solution in the following section. 

   

4.2 Index Pre-execution 

In this section, we describe a new technique termed index 

pre-execution that can provide accurate estimates on the 

effects of caching and then examine if the overheads of 

this technique are within acceptable limits. The proposed 

solution is based on the assumption that probing indexes 

could be an effective technique to gather runtime 

information during query optimization. 

 

Given a selection predicate on a relation, it is necessary to 

estimate what fraction f of the data pages containing 

tuples that satisfy the predicate are already present in the 

buffer pool. If a B-tree index is available on the attribute 

on which the predicate is defined, one way to estimate this 

parameter is as follows. During query optimization, the 

appropriate range of the B-tree (corresponding to the 

predicate restriction) is scanned to produce a list of 

qualifying RIDs (record IDs). Using a RID, it is possible 

to verify (by probing the buffer manager) if the 

corresponding page is cached in memory. Thus, by using 

a list of RIDs that satisfy a selection predicate, it is 

possible to accurately estimate the parameter f. Thus, 

“pre-executing” a predicate on a B-Tree index can lead to 

an improved cost estimate for the select operator during 

query optimization.  

 

Consider a join predicate between two relations (A and 

B). In order to use cost formulae that reflect the contents 

of the buffer pool, it is necessary to estimate what fraction 

of the data pages of B containing tuples that satisfy the 

join predicate are already present in the buffer pool (the 

parameter f2 in section 3). Assume that the optimizer has 

already pre-executed a suitable B-Tree index to estimate a 

list of candidate RIDs that satisfy the selection predicate 

on table A. The optimizer now needs to find the 

corresponding set of RIDs of B that qualify the join 

predicate. This can be obtained using either of the two 

following techniques. 

 

• If a join index were available on the appropriate 

attributes of A and B, it is possible to use this list of 

candidate RIDs to probe the join index to generate a 

list of RIDs of B that would satisfy the join-predicate. 

• If an index were available on the join attribute of  B 

(assume the join predicate is A.a = B.b), we could use 

the RID list of A to retrieve the appropriate A.a 

values  and use these to probe the index on B.b to 

retrieve the corresponding RIDs of B. 

 

As, in the previous example, the list of RIDs obtained for 

table B would result in an accurate estimate of the 

parameter f2. Thus, “pre-executing” a predicate on an 

appropriate index can lead to more accurate cost estimates 

for the join operator during query optimization. Index pre-

execution is a simple technique that can provide the 

optimizer with improved cost estimates (that takes the 

buffer cache into account) for different operator trees. The 

next step is to examine if the “overhead” of the technique 

can be made sufficiently low.  

4.3 Experimental Evaluation 

In this section, we evaluate the performance of index pre-

execution for selection and join predicates on our 

experimental prototype. The buffer pool manager of 

SHORE was extended to provide the following interface 

bool  isCached (RID rid) 

This function would return true if the page corresponding 

to the input RID was currently cached in the buffer pool. 

 

Selection Predicates: For selection predicates on a single 

table, index pre-execution involves the following steps. 

The relevant predicate is evaluated only on the index 

pages of a B-Tree index to return a set of RIDs that satisfy 

the predicate. The RIDs are sorted and “duplicate” (i.e, 

belonging to the same page) RIDs are eliminated. The 

fraction of these pages that are present in the buffer pool 

can now be calculated by using the isCached( ) function. 

 

The following experiment uses an 800 MB Lineitem 

table. An unclustered index was built on the l_shipdate 

column. The following table lists the overhead of index 

pre-execution (both cold and warm numbers) as a 

function of the number of RIDs covered by the selection 

predicate. 

 

    RID count   Cold Time (s)  Warm Time (s) 

       1,000          0.11          0.02 

       5,000           0.38           0.10 

       10,000            0.74            0.21 

       25,000          1.66           0.55 

       50,000           3.13          1.14 

Table 4: Index Pre-execution for selection predicates 

The results indicate that index pre-execution for a 

selection predicate could be effective either when the 

selectivity is low or if the index were memory resident. 

But the overhead can be sizable if this were not the case. 

For instance the time taken to scan the Lineitem table is 

around 17.5 seconds; index pre-execution for 50,000 

RIDs (around 1% predicate selectivity) could hence incur 

an overhead of nearly 18% which would be prohibitive.  

 

Join Predicates:  A buffer-pool aware optimizer must be 

able to calculate what fraction of data pages containing 

tuples that satisfy a join predicate is currently cached in 

the buffer pool. As mentioned in the previous section, 



there are two alternative approaches; one that uses a join 

index and another that uses a key on the join attribute. We 

evaluate the performance of both these techniques. In this 

paper we intend to concentrate on key-foreign key joins. 

The following experiments consider a join between the 

Lineitem table and the Orders table.  The indexes 

involved in this experiment include a B-Tree index on the 

key value of the Orders table and a join index between the 

two tables in addition to the unclustered index on the 

l_shipdate column of the Lineitem table.  

 

Index pre-execution with a join index proceeds as follows. 

A range predicate is evaluated on the unclustered index 

(on the l_shipdate column) to produce a set of candidate 

RIDs of the Lineitem table. These RIDs are, in turn, used 

to probe the join index between the Lineitem and Orders 

table to generate the corresponding RIDs of the Orders 

table. Note that since the join is between a foreign key 

and its associated key, each RID of the Lineitem table 

would find exactly one match in the join index. The 

fraction of pages is computed from the list of RIDs as 

described previously. The following table lists the 

overhead of using a join index as a function of number of 

RIDs. 

 

  RID count   Cold Time (s)  Warm Time (s) 

       100           0.57         0.012 

       250           1.28           0.025  

       500           2.52              0.042   

       1000           4.67         0.087  

Table 5: Pre-execution using join index 

Index pre-execution using an index on the join-attribute 

(in this case the key value of the Orders table) proceeds as 

follows. A range predicate is evaluated on a B-Tree index 

to produce a set of candidate RIDs of the Lineitem table. 

The corresponding records are fetched to extract the 

foreign key value from the tuple, which is, in turn, used to 

probe the index on the key value of the Orders table to 

generate the corresponding RIDs of the Orders table. The 

overhead of this scheme is illustrated in the Table 6. 

 

 

   RID count  Cold  Time (s) Warm Time (s)  

        100           1.4       0.013 

        250           3.05       0.029 

        500           5.4         0.055 

        1000           9.64          0.11 

Table 6: Pre-execution using index on join attribute 

As the results in Tables 5 and 6 indicate, the overhead of 

index pre-execution for join predicates could be 

prohibitive for even a small number of RIDS. This is 

mainly due to effect of random I/Os. For each RID from 

the Lineitem table, the join index technique requires a 

random I/O to probe the JI and the other scheme requires 

two random I/Os, one to fetch the foreign key value and 

another to probe the index on the key value of the Orders 

table. Unless most of these random I/Os are serviced from 

the buffer cache (e.g. when the join index is cached in 

memory), the overheads are likely to be prohibitive. 

4.4 Summary 

To summarize, while index pre-execution is a technique 

that can provide accurate estimates for the effects of the 

buffer pool contents on select and join predicates, its 

relatively high cost does not make it practical, especially 

for join predicates. The experimental results presented in 

Section 2 and 3 indicate that buffer-pool aware 

optimization yields the best results when a large 

percentage of the required data pages are in memory. 

Thus, it is important to make sure that such cases are not 

missed during query optimization. Sampling [6] is a 

simple technique that can be used to obtain the “big-

picture” efficiently.  We next examine how sampling 

techniques can be used to enable buffer pool aware query 

optimization. 

5 Sampling Techniques 

Index pre-execution works by probing relevant indexes to 

generate a list of candidate RIDs for each table referenced 

in the query. These lists are used to infer the effects of the 

contents of buffer-pool on various operator trees. Instead 

of calculating the entire list of RIDs that satisfy a 

predicate, the optimizer can calculate a random sample of 

candidate RIDs. Relatively small sample sizes should 

suffice to predict important trends (e.g. when most of the 

required data pages of a relation are memory resident). 

 

One can consider sampling from indexes if such support 

were built into B-Trees. Olken [19] explains how B-Trees 

can be extended to support sampling by using the notion 

of “random-walks” through the index pages. However 

such functionality is not common (and is not available in 

SHORE). Moreover, the main problem with index pre-

execution was excessive random I/Os. Thus, we intend to 

pre-compute random samples of tables and store them in 

main memory in order to eliminate I/O overheads. The 

key idea is to store a random sample of the tuples (along 

with their RIDs) and to “pre-execute” predicates on the 

samples in order to obtain a random sample of RIDs that 

satisfy the predicate. 

 

Selection Predicates: Consider a query on a table A with 

a selection predicate. Assume that a random sample of 

tuples (Sa) from table A have been computed and stored 

along with their corresponding RIDs. Hence each sample 

in Sa is of the form (tuple, RID). The optimizer can 

evaluate the corresponding predicate on Sa and obtain a 

random sample of RIDs that satisfy the predicate. If a 

sufficient number of samples satisfy the predicate, the 



estimates obtained could be close enough to the actual 

value that could have been obtained by index pre-

execution. 

 

Join Predicates: Consider a foreign key join between two 

tables A and B, let the join predicate be between the 

foreign key value in table A and the key value in table B. 

Assume that a random sample of (A join B) has been 

precomputed, say Sab and stored along with the 

corresponding RIDs of the tuples that participate in the 

join. Thus, each tuple in Sab is of the form (ARID, 

Atuple, Btuple, BRID). 

 

Consider a join query between A and B (join predicate 

involving the foreign key value from table A and the key 

value from table B) that contains an additional selection 

predicate (pred1) on table A.  If an index exists on the key 

value of table B, one of possible join algorithms is an 

index nested loops join that uses the index on table B.  In 

order to estimate what fraction of the “inner” relation is 

cached, a buffer-pool aware optimizer needs to compute a 

random sample of RIDs of table B that would join with 

tuples of A that satisfy the predicate. The optimizer can 

compute this by evaluating the predicate (pred1) on Sab 

and projecting the BRID values (stored as part of the join 

sample). 

 

This, pre-computation schemes can help the optimizer 

compute RID samples that satisfy certain selection and 

join predicates. In the following sections, we describe our 

prototype system and look at some preliminary 

experiments that quantify the accuracy and the overheads 

of pre-executing predicates on random samples. 

5.1   Prototype Description 

In this section, we briefly outline the extensions required 

to support RID sampling in our experimental prototype. 

 

Pre-computing Samples: Samples for base tables were 

computed by scanning the corresponding table and using 

the reservoir sampling algorithm [17].  For foreign key-

key joins (A join B), a sample of the join was obtained by 

evaluating (Sa join B), i.e. by joining a random sample of 

the foreign-keys with their corresponding key values. The 

C random() function was used and was seeded using the 

current clock time. The pre-computed samples were 

loaded into main memory when the system starts up. 

 

Buffer pool Manager: The buffer manager needs to 

support the following two operations in order to facilitate 

buffer pool aware query optimization. 

 

1. Given a RID, is the corresponding page currently 

resident in the buffer pool? This is implemented 

using the isCached( ) function described in Section 

4.3. It is important to ensure that is function is free 

from side-effects,  in particular isCached( ) function 

should not fetch the corresponding page into 

memory; this would bias the random sample and 

render the estimates inaccurate. 

2. What fraction of the pages of a particular relation is 

currently resident in the buffer pool?  This value is 

used to estimate the cost of a table scan.  This can be 

obtained by keeping a simple counter for each table. 

 

Query Optimizer: Opt++[16] was used as the optimizer in 

our prototype. The version of Opt++ used employs a 

dynamic-programming strategy like the System-R 

optimizer. Opt++ provides support for basic relational 

operators like Scan, Select and Join. To facilitate buffer 

pool aware query optimization, a new pre-execute 

operator was added to Opt++. Its primary purpose is to 

execute predicates on the appropriate samples and 

generate RID samples in order to improve cost estimation. 

Consider a simple join query between tables A and B; 

assume there is a predicate defined on table A and that an 

index exists to evaluate it. Before initializing the search of 

the plan space, the optimizer would pre-execute the 

predicate (defined on table A) on the corresponding 

random samples computed for that table in order to obtain 

the fraction of the required data pages that are buffer pool 

resident.  This would, in turn, facilitate using detailed cost 

estimates for the index plan (similar to those outlined in 

Section 2). The search would then be initialized with the 

following nodes 

 

• Scan (Table A) 

• Scan (Table B) 

• Index Scan (Index on A.attr) 

• Pre-execute (A.attr, RID list) 

 

The only difference from the traditional case is the 

introduction of the pre-execute node.  In the next iteration, 

any pre-execute nodes are first expanded. The optimizer 

would search for any pre-computed join samples, which 

can use the sample of RIDs available in the current pre-

execute node to generate a sample of RIDs for any other 

table referenced in the query. In this case, it would 

amount to  probing the join sample using the sample RIDs 

from table A that were generated in the previous iteration 

to generate a sample of the RIDs of table B that satisfy the 

join predicate. Since joins between a foreign key and key 

involve a one-to-one mapping, this operation can be 

implemented very efficiently. This sample can, in turn, be 

used to estimate the effect of the contents of the buffer 

pool on join evaluation. When the remaining nodes (nodes 

1 to 3) are then expanded using traditional join 

enumeration schemes, the improved estimates can be used 

to make more informed decisions. The pre-execute 

operator only serves to propagate RIDs as part of the 

search process in order to enable improved cost estimates 

for other operators (like select, join).  It is not included in 



the final query evaluation plan. Thus, the optimizer search 

strategy can be extended in a simple fashion to enable 

buffer pool aware query optimization.  

5.2 Experimental Evaluation 

In this section, we present some experiments that quantify 

the accuracy and overheads of pre-executing predicates on 

samples. 

 

Selection Predicates: The selection predicate used is a 

range predicate on the l_shipdate column (similar to TPC-

H Query 6). The predicate (“1994-01-01” <= l_shipdate < 

“1994-01-11”) spans ten days. Different buffer pools 

contents can be simulated by pre-fetching specific sub-

ranges of this predicate into memory. For instance if we 

pre-fetch tuples in the range (1994-01-01, 1994-01-06), 

this would have nearly 50% of the tuples cached in 

memory. A particular run of the experiment, uses 10 such 

configurations, by pre-fetching the appropriate range of 

tuples (10% - 100%). For each such configuration, the 

actual fraction of pages that are cached can be calculated 

(say F-Actual). By evaluating the original predicate on the 

set of random samples computed for the Lineitem table, 

one can predict the fraction of pages that are cached (say 

F-Estimated). Table 7 lists the mean of the absolute error 

between F-Actual and F-Estimated for different sample 

sizes. We report two values; MEAN-ALL estimates the 

absolute error for all the configurations while MEAN-

75% estimates the same only for the cases when F-Actual 

is greater than 75%. As seen in Sections 2 and 3, these are 

the important cases in which a buffer pool aware 

optimizer can provide as high as an order of magnitude 

improvement in performance. The results are averaged 

over 50 runs (each using a different random sample of the 

same size). 

 

  Sample Size     MEAN-ALL    MEAN-75% 

        6,000        7.04%         4.60% 

      12,000        5.91%         3.50% 

      30,000         4.13%         2.57% 

      60,000        4.06%         2.39% 

Table 7: Sampling for Selection Predicates 

The numbers indicate that even for a sample size of 30000 

(a 0.5% sample) the error in the difference between F-

Actual and F-Estimated is quite small (within 5% of the 

actual value). In fact for the important cases measured by 

MEAN-75% (when more than 75% of the required pages 

are in memory), even a 0.1% sample (6000 samples) 

could suffice. The overhead of evaluating the predicate on 

the sample (when the number of samples is 60000) is 

around 20 ms which makes it a very efficient technique. 

 

Join Predicates:  The join predicate tested is a join 

between the Lineitem table and the Orders table. There is 

a selection predicate on the Lineitem table which includes 

a selection predicate on the l_receiptdate column along 

with another predicate on the l_shipmode field (similar to 

TPC-H Query 12). A join index was built for this 

predicate in order to help simulate different buffer pool 

configurations. A particular run of the experiment, uses 

10 configurations as in the previous case by issuing a 

suitable pre-fetch query that modifies the predicate on 

l_receiptdate column and uses the join index to fetch the 

corresponding Orders tuples. For each such configuration, 

the fraction of pages of the Orders relation that are 

actually cached can be calculated (F-Actual). F-Estimated 

is calculated by applying the predicates on the samples 

from the Lineitem table to generate a random sample of 

RIDs and using these to probe the join sample and get the 

corresponding tuples of the Orders table (and their RIDs).  

 

   Sample Size     MEAN-ALL     MEAN-75% 

        6,000          11.68%          7.98% 

      12,000           9.29%          5.99% 

      30,000            5.88%          3.43%    

      60,000          4.35%           3.09%  

Table 8: Sampling for Join Predicates 

Table 8 lists the mean absolute error (MEAN-ALL and 

MEAN-75%) between F-Estimated and F-Actual as a 

function of sample size and is averaged over 50 runs. For 

join predicates, the table shows that a sample of 1% can 

provide accurate estimates (within 5%). For the more 

important cases (MEAN-75%), a sample of 0.5% ought to 

suffice. The overhead of using the 1% sample is again 

around 20 ms which makes sampling an attractive 

solution.  

 

Space Overheads: To enable efficient sampling, the 

optimizer needs to keep the following permanently in 

main memory; a random sample of all the base tables and 

join samples for all foreign key-key relationships. As 

mentioned previously we can avoid duplicating the 

foreign key values in the join samples. The space 

overhead in caching a 1% sample for the above 

experiments (that includes a 1% sample on the Lineitem 

table and a 1% sample of the join) is around 10 MB. In 

fact, the space overhead in caching a 1% sample for the 

entire TPC-H database (including 1% samples for all base 

relations and 1% join samples for all foreign key-key 

relationships) would only be around 25 MB, which is 

certainly affordable. The samples can be maintained in the 

presence of updates to the base data using techniques 

similar to those outlined in [1]. 

 

To summarize, in order to use cost functions that 

accurately model the contents of the buffer pool, it is 

necessary to resort to dynamic query optimization. By 

calculating a random sample of RIDs for each table 

referenced in a query during query optimization, it is 

possible to obtain an improved knowledge on the effect of 



the contents of the buffer pool on selection and join 

operators.  This would, in turn, facilitate using better cost 

estimates while evaluating alternate plans. As the results 

indicate, by pre-computing a small random sample that is 

kept memory resident (for base tables and key-foreign key 

joins), the optimizer has the potential to find better plans 

that can provide an order of magnitude improvement in 

performance. For instance, for the join query example 

discussed in Section 3, the speed-up factor can be as high 

as 18. We believe that these initial results are promising; 

some possible extensions to our basic framework are 

discussed in the next section.  

5.3  Extensions 

This paper currently assumes that queries are executed 

immediately after optimization; hence the estimates 

obtained from the samples reflect the runtime conditions 

accurately. However it is possible that the state of the 

buffer pool could change before the query starts 

executing. We intend to study how the optimizer can be 

made robust to the transient nature of the buffer pool. One 

possibility is to use to notion of choose plans [9]. Let P1 

denote the plan the optimizer would have originally 

picked and P2 denote the plan a “buffer-aware” optimizer 

would choose. The execution plan generated by the 

optimizer would be a Choose (P1, P2). The Choose node 

would re-evaluate the predicates on the sample and 

compare with the F-Estimated values obtained during 

query optimization. If these differ considerably then it 

would execute P1 instead of P2. This would guarantee 

that a buffer pool aware optimizer would never be worse 

than a traditional optimizer, which is desirable.  

 

Another possible avenue for future work is to calculate 

confidence intervals [6] for the estimates obtained using 

sampling. If the confidence is not above a threshold (e.g. 

when the number of samples is not enough) the optimizer 

can avoid changing plans. 

 

In this paper, we looked at single table queries and single 

join queries. As part of future work, we intend to consider 

more expressive queries in particular multi-way joins 

consisting of key-foreign key predicates. We intend to 

build on the join synopses [1] work which pre-computes 

samples for such cases. The main difference would be that 

the synopses would also need to include the 

corresponding RIDs.  

6. Related Work 

Storage trends are discussed in [10]. The “five-minute” 

rule is discussed in [11], which suggests that data pages 

accessed every five minutes need to be cached in the 

buffer pool. In certain applications it is possible to assume 

that main memory is sufficient to hold the entire database, 

such applications typically use main memory database 

systems. There are several main memory database 

products available commercially including TimesTen 

[26]. [8] provides an excellent overview of the various 

issues involved in main memory database systems. 

 

A general overview of sampling techniques is available in 

[6]. Olken [19] examines in detail how sampling can be 

incorporated in a database system. While the sampling 

techniques suggested in [19] are used to obtain a random 

sample of the data values from a B-Tree, we are interested 

in obtaining a random sample of RID values that satisfy a 

predicate. Index pre-execution for join predicates can be 

implemented using join indexes which were first defined 

in [23].  

 

In this paper, we present a new case for dynamic query 

optimization [15]. The runtime parameter that needs to be 

estimated in this case is what fraction of pages required 

for a selection or join operator is resident in the buffer 

pool. The importance of buffer effects on query 

processing has been previously highlighted in [18] where 

the authors study how the number of buffers allocated to a 

query can affect its performance. In this paper we study 

how data previously cached in the buffer pool (as a result 

of executing other queries) is likely to affect the choice of 

query plans in an optimizer. As far as we can tell, this 

paper is the first to propose having a query optimizer 

examine the contents of the buffer pool while optimizing 

queries. 

7. Conclusions 

Since the cost of main memory continues to drop rapidly 

there is every reason to expect that an increasingly large 

fraction of a database’s frequently used indices and tables 

will become “permanently” memory resident in the 

future.  Query optimizers, however, typically assume that 

all data is disk resident.  

 

Simple analytical models were first used to demonstrate 

that the optimizer could potentially pick the wrong plan 

for accessing a single table if the contents of the buffer 

pool are ignored. Using the TPC-H data suite, we 

experimentally demonstrated that the performance of 

certain query plans (especially involving random access) 

could vary dramatically based on the actual contents of 

the buffer pool; As a result data cached in the buffer pool 

could affect many of the choices made during query 

optimization including index selection, join ordering, and 

join algorithm selection. An optimizer that reflects on the 

contents of the buffer pool can result in the selection of 

query plans with significantly better performance. This is 

especially important in decision support applications 

where users issue a sequence of queries and interactive 

response times are crucial.   

 

In this paper, we examined the changes required to make 

an optimizer ‘buffer-pool’ aware. The basic idea is to pre-



execute predicates on appropriate samples during query 

optimization. This would result in improved estimates on 

the effects of the contents of the buffer pool on select and 

join operators. Our experimental results indicate that 

significant performance improvements (as high as an 

order of magnitude) is achievable. 
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