
Trio: A System for Integrated Management of
Data, Accuracy, and Lineage

Jennifer Widom

Stanford University
widom@stanford.edu

Abstract

Trio is a new database system that manages not
only data, but also theaccuracyandlineageof the
data. Inexact (uncertain, probabilistic, fuzzy, ap-
proximate, incomplete, and imprecise!) databases
have been proposed in the past, and the lineage
problem also has been studied. The goals of
the Trio project are to combine and distill pre-
vious work into a simple and usable model, de-
sign a query language as an understandable exten-
sion to SQL, and most importantly build a work-
ing system—a system that augments conventional
data management with both accuracy and lineage
as an integral part of the data. This paper pro-
vides numerous motivating applications for Trio
and lays out preliminary plans for the data model,
query language, and prototype system.

1 Introduction

In traditional database management systems (DBMSs), ev-
ery data item is either in the database or it isn’t, the exact
value of every data item is known, and how a data item
came into existence is an auxiliary fact if recorded at all.
Many database applications inherently require more flexi-
bility and accountability in their data (see Section 2 for nu-
merous examples): A data item may belong in the database
with some amount of confidence, or its value may be ap-
proximate. Furthermore, how a data item came to exist—
particularly if it was derived using other (possibly inexact)
data at some point in time—can be an important fact, some-
times as important as the data item itself. Currently, ap-
plications with inexact data, or that rely on data derivation
information (hereafter referred to aslineage), typically sup-
port these features outside the processing of a conventional
DBMS.

In the newTrio project at Stanford we are developing
a prototype database management system whose objective

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 2005 CIDR Conference

is to address the shortcomings of conventional DBMSs
outlined above. Specifically, Trio provides management
and querying of three interrelated components—data, ac-
curacy, andlineage—in a simple, efficient, and fully inte-
grated fashion. Salient features of Trio are:

1. Data values may be inexact—they may be approxi-
mate, uncertain, or incomplete. For example, an at-
tribute value might be specified as a range known to
contain the exact value (or some other type of approxi-
mation), or a record may include some confidence that
it actually belongs in the database, or a relation may
be estimated to miss some fraction of its records.

2. Queries operate over inexact data by returning an-
swers that themselves may be inexact.

3. Lineage is an integral part of the data model: If a
record r was derived by queryQ over versionV
of dataD at time T , this fact is associated withr.
Lineage also captures updates, program-based deriva-
tions, bulk data loads, and import of data from outside
sources.

4. Accuracy may be queried. For example, “find all
values whose approximation is within 1%,” or “ find
all records with≥ 98% chance of belonging in the
database.”

5. Lineage may be queried. For example, “find all
records whose derivation includes data from relation
R,” or “ determine whether a particular recordr was
derived from any data imported on 4/1/04.”

6. Lineage and accuracy may be combined in queries.
For example, “find all records derived solely from
high-confidence data.”

7. Lineage can be used to enhance data modifications.
For example, changes to a recordr may invalidate
other data derived usingr, or may propagate in the
style of materialized views. Of special interest is
changes in the accuracy of existing data: when data
D becomes more (or less) accurate, the effect on data
derived fromD may be computed and propagated au-
tomatically.



Providing all of these features for fully integrated manage-
ment of data, accuracy, and lineage requires reconsidering
many aspects of a DBMS. In the Trio project we plan to
address at least the following areas:

• Theoretical foundations and data model

• Query language, including semantics, optimization,
and execution strategies

• New access methods as needed for efficiency

• User and application interfaces that incorporate accu-
racy and lineage

• System architecture and implementation

In this paper we present a preliminary version of theTrio
Data Model(TDM) that captures data, accuracy, and lin-
eage (Section 4). We also discussTriQL (pronounced “trea-
cle”), a query language that extends SQL to incorporate
the capabilities related to accuracy and lineage discussed
above (Section 5). We cover implementation issues briefly
(Section 6), but in this paper we do not delve into query
optimization or execution, access methods, or interfaces.

Before turning to the data model, query language, and
system, in the remainder of this section we discuss the
scope of Trio and its objectives in the context of previous
work. Section 2 presents a significant number of motivat-
ing applications, and Section 3 introduces a specific run-
ning example used thereafter in the paper.

1.1 What Trio is Not

Trio offers a platform for data management that extends
a traditional DBMS in several ways, as discussed above.
Possibilities are numerous for making data more flexible
and accountable, so it is equally important to understand
what capabilities are not an objective for Trio:

• Trio is not a comprehensive temporal DBMS. Time is
an important component of data lineage: applications
often need to keep track of when data items were de-
rived, not just how. Furthermore, lineage capabilities
may work together with versioning features in the Trio
system (see Section 4.3). Nevertheless we do not plan
to include rich fine-grained temporal data modeling or
query constructs as part of Trio. Full temporal sup-
port could certainly be useful for some of our motivat-
ing applications (Section 2), but we prefer to separate
that issue and focus initially on adding accuracy and
lineage to conventional nontemporal data.

• Trio is not a DBMS for semistructured data. As with
temporal data, semistructured data is clearly important
in some of our motivating applications. However, we
prefer to keep our base data model simple (i.e., rela-
tional) so we can focus on issues arising from the need
to manage and query accuracy and lineage, not from
lack of structure in the data itself.

• Trio is not the last word in managing inexact data. A
tremendous amount of work has already been done in
this area, as discussed in Section 1.2 below. Our goals
are to distill from previous work a data model and
query language incorporating accuracy that is simple
enough to be adopted easily, yet expressive enough to
capture a variety of applications; to integrate accuracy
with data lineage; and to make the entire ensemble
work in a running prototype.

• Trio is not the last word in managing data lineage.
Similar to accuracy, data lineage has seen consider-
able previous work, discussed in Section 1.2. Here too
our primary goals are usability, full integration with
other aspects of the system, and a complete working
prototype.

• Trio is not a federated or distributed system. Data val-
ues in Trio may be identifiers for external files or other
outside sources of data, as in, e.g., [HN00]. How-
ever, we are not planning to build special treatment
of these values into the first-version Trio query pro-
cessor, even though it might be useful for some of
our target applications. Trio still provides some useful
features for outside data: When data is imported from
possibly unreliable outside sources (e.g., in the scien-
tific data application domain described Section 2.1),
accuracy for that data can be set accordingly, and can
be adjusted later via lineage. Furthermore, Trio data
values that identify outside data sources could encode
expected reliability or quality of the sources as an ac-
curacy measure.

1.2 Contribution over Previous Work

There has been a significant amount of work in areas var-
iously known asuncertain, probabilistic, fuzzy, approxi-
mate, incomplete, and imprecisedata management. Ex-
amples of this work can be found in [BGMP92, BP82,
BP93, CKP03, DS04, Fag02, Fuh90, IL84, KOR96, Lee92,
LLRS97, LM04, LS90, Mot94, OO93, OW00, Sad91,
SM01, YLW+95, Zim97], and even this list is woefully in-
complete. One of our initial objectives is simply to sort out
and understand the fundamental differences among these
closely related lines of research. We will identify which
ideas can and should be incorporated into Trio, bearing in
mind our motivating applications (Section 2), and our goals
of usability and rapid prototype deployment.

There has been a much smaller but nonetheless steady
stream of recent work in data lineage (sometimes re-
ferred to asprovenance), e.g., [BB99, BCTV04, BKT01,
BKTT04, CW03, CWW00, FB01, FVWZ02, WM90,
WS97]. In this area too we will incorporate previous ideas
into our work, identifying the techniques that are useful for
our motivating applications, feasible from a systems per-
spective, and consistent with our overall approach.

Considering previous work in accuracy and lineage, the
main objectives of Trio are to:



1. Distill a simple and usable data model incorporating
both accuracy and lineage

2. Introduce a query language that extends SQL to han-
dle data, accuracy, and lineage in an integrated fash-
ion, including queries and modifications

3. Deploy a working system that is sufficiently easy to
adopt and efficient enough that it actually gets used

Two areas of recent work,superimposed informa-
tion [DMB+01, MD99] and annotation management
[BCTV04], propose models less specific than ours, but with
the same overall goal of enhancing data with additional in-
formation that may be as important as the data itself.

Superimposed information targets any application that
benefits from a second level of information layered over
the base data. Superimposed information is added to exist-
ing information sources to “help organize, access, connect,
and reuse information elements in those sources” [MD99].
Certainly lineage can be considered a type of superimposed
information, and accuracy could fall into that category too.
However, work on superimposed information considers a
completely separate layer, rather than integrating the addi-
tional information as in our approach.

Unlike superimposed information, annotations couple
additional information directly with the base data. The
annotation management system described in [BCTV04]
considers the problem of propagating annotations through
query operators in a subset of SQL, addressing in particular
the issue that equivalent query formulations may not pro-
duce equivalent result annotations. Lineage (called prove-
nance in [BCTV04]) plays a role in how annotations are
propagated. Although not featured in [BCTV04], accuracy
could be treated as a type of annotation, so the approach
in [BCTV04] may be useful as we formulate our query se-
mantics (Section 5.1).

2 Motivating Applications
This section motivates Trio with a wide variety of applica-
tion domains. All of these applications can exploit some of
Trio’s unique features to best manage their data, and some
applications can exploit all of the features. This suite of
suitable application domains is certainly not exhaustive, but
it is more than sufficient to motivate the need for a new sys-
tem such as Trio that manages data, accuracy, and lineage
in an integrated fashion.

Of course with such a plethora of motivating application
domains it will be important to narrow down and prototype
one or two specific applications in detail initially, in order
to focus and validate our work. One candidate is presented
in Section 3 and used for examples later in the paper.

2.1 Scientific Data Management

Consider an experimental scientist, e.g., a biologist,
chemist, astronomer, earth scientist, etc. Scientists typi-
cally conduct many experiments that produce raw data—
sometimes vast amounts of data—that must be saved and

analyzed. Data-generating experiments may be performed
in a laboratory, in the field, with pencil-and-paper analy-
sis, via computer simulation, or some combination of these
methods. Regardless of the method, in many cases the data
values to be stored may be inexact, or may have a confi-
dence value associated with them [KOR96].

From raw data values, aggregate or other combined or
higher-level values may be derived and also stored in the
database [FB01]. Subsequent experiments may generate
new raw values which, in addition to creating new derived
data, may alter the confidence or approximation of previ-
ous values, both raw and derived [GST+02]. In addition,
scientists frequently incorporate or link data from outside
sources into their own databases, both as raw values and
to create new derived data. The accuracy and reliability of
data obtained from these outside sources must be captured
along with the data, and can also change over time.

This application domain can exploit all of Trio’s fea-
tures. Furthermore it motivates one of our main goals,
which is keeping the system simple, efficient, and usable.
Although scientists are clamoring for more suitable data
management tools, they will not consider adopting a new
software system if it is overly complex, slow, or has a high
barrier to entry.

2.2 Sensor Data Management

Consider numerous sensors collecting data at regular inter-
vals and transmitting their readings to a centralized system
for processing. (Of course there are other, more distributed,
approaches to sensor data management [Kum03], but cen-
tralized collection is a viable approach for a class of appli-
cations.) Often sensors may be unreliable: readings may be
missed at some intervals, or transmitted values may be er-
roneous or imprecise. A platform for managing and query-
ing inaccurate or incomplete data relieves the sensor pro-
cessing system from implementing this functionality itself,
outside of its data management system [Kum03].

Lineage also plays an important role in this setting. Typ-
ically, raw sensor readings are heavily aggregated and sum-
marized, but it is useful to keep track of the original sources
of the derived higher-level data—to facilitate detailed anal-
ysis but also to manage inaccuracy: For example, if a sen-
sor is discovered to be particularly faulty, accuracy of its
recent readings can be downgraded, with the effects propa-
gated automatically to the accuracy of summary data com-
puted using these readings. This capability is one of Trio’s
important features.

2.3 Data Deduplication

Deduplication is one common component of thedata
cleaningprocess, e.g., [CGG+03, GFS+01, HS98, Mon97,
RH01, Sar00]. Some approaches to data cleaning exploit
lineage, e.g., [GFS+01], and deduplication is especially
important when integrating data from multiple sources,
e.g, [SB02]. Deduplication algorithms identify and merge
multiple data items that are likely to represent the same
real-world entity. (In the closely related area ofrecord



linkage, e.g., [EEV02, JLM03], matching data items are
identified but not merged.) In deduplication applications,
some data items may include uncertainty (especially when
merging data from multiple sources of varying quality), and
the decision to merge two items may yield an uncertain
composite item. Furthermore, maintaining the history of
merges that create a composite item is necessary, both for
propagating potential changes in confidence, as well as for
unmerging merged items if warranted by additional infor-
mation.

Like the scientific (Section 2.1) and sensor (Section 2.2)
domains, deduplication is an application that can exploit all
of Trio’s novel features.

2.4 Profile Assembly

Profile assemblyis closely related to deduplication. It
consists of collecting, correlating, and combining possibly
small pieces of information about individuals, with the goal
of developing a comprehensive profile. Assembled profiles
can be used for targeted advertising, assessing credit risk,
intelligence-related purposes, and other applications in this
genre. Very much like deduplication (Section 2.3), devel-
oping a profile over time may require querying, matching,
merging, and possibly unmerging data items of varying
accuracy and reliability—capabilities that clearly benefit
from integrated management of accuracy and lineage.

2.5 Privacy Preservation

In the converse to profile assembly (Section 2.4), one class
of techniques to preserve privacy of individual records in
a database, while still enabling certain types of queries, is
to perturb values, change exact values to approximate val-
ues, or generate and store statistics from a set of values,
e.g., [AKSX02, SS98]. Once specific individual values are
anonymized in this fashion, queries produce approximate
results without revealing individual data items. Storage
management and query processing over approximate or sta-
tistical values is a requirement in this setting (except when
atomic values are simply transformed to other atomic val-
ues).

Lineage also is useful in this domain, because ap-
plications may need the capability to identify the origi-
nal exact values from which a specific approximate value
was derived—for users with special privileges, or to
“unanonymize” certain data. For example, an application
may wish to restore original (or less approximate) values
when anonymity requirements are relaxed, or when addi-
tional data dilutes the database and relaxes anonymity re-
quirements for certain individual items.

2.6 Approximate Query Processing

Sometimes query processing efficiency is of more impor-
tance than absolute result precision. That is, an application
may choose to sacrifice accuracy to obtain faster answers
or use fewer resources, particularly if the degree of approx-
imation can be controlled. One prevalent approach to this

tradeoff is to store exact values in the database, then pro-
cess queries using sampling or other statistical techniques
to produce approximate answers, e.g., [AGPR99, BDF+97,
GG01]. Another approach—the one we are interested in—
is for the database itself to store approximate values, which
can reduce communication and/or update costs depending
on the exact application, e.g., [LM04, OW00].

A system like Trio that can manage simple approximate
values and execute queries over them efficiently is more
appropriate than a conventional DBMS in this setting. Fur-
thermore, Trio’s lineage capabilities can be used to asso-
ciate approximate values with exact values when data ap-
proximation is used to reduce communication costs in a dis-
tributed system, e.g., [OLW01], facilitating the propagation
of updates and exact values when resources are available.

2.7 Hypothetical Reasoning

A hypothetical reasoning system allows users to explore
the effects of hypothetical situations, such as hypothetical
changes or derivations in a database, e.g., [GH97, WS83].
Hypotheses are likely to have some uncertainty associated
with them, and hypotheses may build on other hypotheses,
which build on yet other hypotheses, and so on. Trio can be
used to manage the creation and revocation of hypothetical
database changes, to associate confidence with hypotheti-
cal data and derivations, and to query hypothetical data.

Recalling what Trio is not (Section 1.1), certainly Trio
is not designed to be the ultimate system for performing
complex hypothetical analyses, or for managing numerous
alternative databases. However, for applications requiring
relatively contained “what-if” capabilities that may include
confidence, Trio provides convenient features not offered in
a conventional DBMS.

2.8 Online Query Processing

Online query processingis a technique for providing ap-
proximate answers to users while more refined answers are
still being computed [HH01]. Furthermore, users may pro-
vide feedback during the refinement phase to influence pro-
cessing. For simple queries, the accuracy features of Trio
may be of some use during online query processing, how-
ever the true benefit is obtained in complex Online Analyt-
ical Processing (OLAP) applications. OLAP queries typi-
cally rely on many layers of subqueries, views, and/or sum-
marization. During online query processing in this setting,
higher-level approximate answers are derived from lower-
level approximations, so as lower-level values are refined
the effects must propagate upwards. Exploiting derivation
information to propagate accuracy modifications automati-
cally is one of Trio’s important features.

3 Running Example: Christmas Bird Count

We introduce a specific real application as a running ex-
ample for the remainder of the paper: data management
for theChristmas Bird Count(CBC). During the bird count
“tens of thousands of observers count millions of birds in



thousands of locations,” followed by “in-depth post-count
analysis” [CBC]. In this paper we considerably simplify,
abstract, and hypothesize some of the CBC data and func-
tionality, to keep the examples short and compelling, but
we do plan to ultimately model (if not implement) the ap-
plication in full.

During the bird count, which has occurred annually for
over 100 years, volunteers and professionals worldwide ob-
serve birds for a fixed period of time, recording their ob-
servations. The data is used to understand trends in bird
populations (both numbers and locations), and to correlate
bird-life with short-term and long-term environmental con-
ditions. The following features make this application an
excellent candidate for Trio:

• Individual bird sightings are not always precise in
terms of species, location, or time.

• Some participants (e.g., professional ornithologists)
may provide higher-confidence, higher-quality data
than others (e.g., bird hobbyists).

• Many different views of the data are required, with
many levels of transformation and aggregation. Nev-
ertheless all raw data is maintained, and “drilling
down” from aggregate to raw data is common.

• Outside data sources are incorporated, e.g., environ-
mental and geologic data, land-use data, population
figures, and so forth. Furthermore packaged transfor-
mations are used (e.g., mapping latitude-longitude to
known regions; temporal clustering of sightings).

• Data is added continuously, and data may occasionally
be corrected retroactively.

Specific examples using this application domain are sprin-
kled throughout the remainder of the paper.

4 The Trio Data Model

The Trio Data Model (TDM) formalizes and integrates
the three building blocks of our system: data, accuracy,
and lineage. Our goal is to identify a relatively simple
core model motivated largely by the application domains
described in Section 2. We may increase the complexity of
the model over time if specific additional expressiveness
is demanded by a large number of applications. However,
since the Trio system is likely to support user-defined
data types and functions (see Section 6), capabilities not
provided within TDM can be “plugged in” as needed by
specific applications. One of our main challenges is to
identify how much to build into TDM’s core data model,
at the expense of complexity, and how much is left to
individual applications, at the expense of inconvenience
and possibly lower performance.

We emphasize that the model presented here is prelim-
inary and subject to change as the Trio project unfolds.

4.1 TDM – Data

The basic data in TDM follows the standard relational
model: A databaseis a set of uniquely-namedrelations.
The schemaof each relation is a set of typedattributes,
uniquely named within the relation. Aninstanceof a re-
lation is a set oftuples, each containing a value (orNULL)
for each of the attributes. An instance of a database con-
sists of an instance for each relation in the database. TDM
places no restrictions on the types from which attribute val-
ues are drawn: they may be typical atomic types (integer,
float, string, date, enumeration, etc.), or they may be large
binary objects, programs, file identifiers, URLs, and so on.
Of course some data types are more amenable to approxi-
mate values than others.

4.2 TDM – Accuracy

Inaccuracy of the data in a Trio database instance may oc-
cur at the attribute level, tuple level, and/or relation level.
In our initial model we take a fairly limited approach to
each of these components, although already we encounter
some subtle interactions among them, as discussed under
“Approximation versus Confidence” below.

We had some difficulty selecting terms to use for the
different components of accuracy in TDM, not to mention
the term “accuracy” itself. Previous work in this general
area has used varied and inconsistent terminology; see Sec-
tion 1.2. In addition to the lack of past consensus, another
challenge was to avoid terms that connote specific seman-
tic interpretations, since TDM’s accuracy model is flexible
enough for different applications to use its components in
different ways.

TDM’s accuracy model is comprised of the follow-
ing three basic components (and corresponding names for
them), elaborated in the next three subsections.

1. Atomic values: An attribute value may be anapprox-
imation of some (unknown) exact value.

2. Tuples: A tuple may have an associatedconfidence,
typically indicating the likelihood the tuple is actually
in the relation.

3. Missing Data: A relation may have an associatedcov-
erage, typically indicating how much of the correct
relation is likely to actually be present.

Approximation

Individual attribute values in TDM may be approximations.
Broadly, a Trio approximate value is comprised of a (pos-
sibly infinite) set ofpossible values, along with aproba-
bility distribution over that set. Initially we limit the sets
and distributions in TDM to the ones enumerated below.
As discussed earlier, we may choose to extend the model
as demanded by applications, and we expect the Trio sys-
tem will support user-defined types for more complex or
application-specific approximations.

Each attribute value in TDM is in exactly one of the fol-
lowing four categories:



(A1) An exact value.

(A2) A set of possible values, each with an associatedprob-
ability in the range[0, 1] such that the probabilities
sum to 1. (See additional discussion below.)

(A3) Endpoints for a range of possible values, when val-
ues are drawn from an ordered and possibly contin-
uous domain (e.g., integer, float, date). The basic
Trio model assumes a uniform probability distribution
across values in aminimum/maximumrange.

(A4) A Gaussian distribution over a range of possible val-
ues (again assuming an ordered domain), denoted by
a mean/standard-deviationpair [FGB02].

For approximation type A2—a set of possible values—we
do permit probabilities whose sump < 1, by stipulating
an additional special value⊥ (“unknown”) in the set with
probability1− p. Explicit probabilities may be omitted, in
which case⊥ may or may not be specified as a member of
the set, and a uniform probability distribution over the set
members is assumed.

We realize there are numerous other options for approx-
imate data, as discussed in Section 1.2. In keeping with
our goal of deploying a simple and usable first-version pro-
totype system, our tentative plan is to limit TDM to these
types of approximation. A further simplification is that we
assume independence of approximate attribute values in the
same tuple. For example, in a bird sighting the exact value
of an approximatecolor is probably correlated with the
exact value of an approximatespecies , but TDM treats
the approximations as independent.

By default, attribute values are expected to be exact (cat-
egory A1). Note that some special cases of approximate
values also can be treated as exact:

• A category-A2 singleton set whose one element has
probability= 1

• A category-A3 range containing a single value

• A category-A4 Gaussian withstandard-deviation= 0

Also note that a category-A2 singleton set{⊥}may be con-
sidered equivalent toNULL , unless the application intends
to interpretNULL as something different from “unknown.”

Confidence

Tuple-level accuracy in the Trio Data Model is encoded in
confidence values. Each tuple is accompanied by acon-
fidencein the range[0, 1], denoting the likelihood that the
tuple correctly belongs in its relation. By default each tuple
hasconfidence= 1. As a shortcut we also permit relation-
level confidence: A relation withconfidence= c is equiva-
lent to a relation whose tuples all haveconfidence= c.1

1We may find that relation-level confidence is far more common than
tuple-level confidence. If so, we may decide to eliminate tuple-level con-
fidence from TDM in the interest, as always, of keeping the model simple.

Coverage

The third and final type of inaccuracy captured in TDM
is missing records. Each Trio relation has an associated
coveragevalue in the range[0, 1], denoting the estimated
portion of the intended complete relation that is actually
present. (Missed sensor readings as described in Sec-
tion 2.2 are an example forcoverage< 1, and a CBC
example is given below.) By default, all relations have
coverage= 1.

Accuracy in the CBC Application

Consider the Christmas Bird Count application introduced
in Section 3. Suppose each participantP records their raw
observations in their own private relationObsP . All of the
observation relations use the same schema (simplified con-
siderably from the actual CBC schema for illustration):

Obs(time, latitude, longitude, species)

All four categories of approximation can occur in attribute
values. Values for attributetime may be exact (category
A1), or may specify a range (category A3) or Gaussian
(category A4); similarly forlatitude andlongitude .
Attributespecies is particularly interesting: An observer
may identify a single species with complete confidence
(category A1: an exact value), with less than full confi-
dence (category A2: one value withprobability < 1), or
may be certain the observed bird was one of a set of possi-
ble species (category A2: multiple values).

Both confidence and coverage may be relevant as well.
Relation-level confidence offers a convenient mechanism
for encoding the expected overall accuracy of the obser-
vations in a givenObsP , perhaps based on the experience
level of participantP ,2 or the conditions under whichP
was working. Furthermore, ideally relationObsP records
all birds visiting the observed area during the observation
time period. Coverage can be used to encode the estimated
fraction of those visits actually recorded inObsP .

Approximation versus Confidence

There are some subtle differences between approximation
and confidence in TDM. For example, consider the follow-
ing two database instances for a Trio relationR(A):

1. R contains a single tuple whoseA value is a category-
A2 set{a, b, c, d}. With the default uniform distribu-
tion, each value hasprobability= 0.25.

2. R contains four tuples,(a), (b), (c), and(d), each with
confidence= 0.25.

In the first case, one value belongs in the database: either
a, b, c, or d, with equal probability. In the second case,

2Recall that participants in the bird count range from seasoned or-
nithologists to novice bird-watchers, so confidence may vary consider-
ably.



between 0 and 4 values belong in the database, where each
value has an independent25% chance of belonging.

Consider a second pair of instances for the same relation
R(A):

1. R contains a single tuple whoseA value is a category-
A2 singleton set{〈c, 0.5〉}. (As an aside, notice this
set-approximation is equivalent to{c, ⊥}.)

2. R contains a single tuple(c) with confidence= 0.5.

In the first case, one value belongs in the database, with a
50% chance of it being the valuec, and 50% an unknown
other value. In the second case, either 0 or 1 values belong
in the database with equal probability, and if there is a value
then it isc.

Of course we may combine approximation and confi-
dence. For example, supposeR contains a single tuple
whoseA value is category-A2 set{〈c, 0.6〉}, and the tuple
itself hasconfidence= 0.8. Then we have an80% chance
of a tuple belonging inR, and if it does, with60% chance
the value ofA in that tuple is ‘c’.

These examples highlight that even with a fairly simple
model of accuracy, subtleties arise quickly, and important
modeling decisions must be made when encoding an ap-
plication’s data in TDM. Clearly a more expressive model
would lead to even more decisions, and more complexity
and confusion when processing the data—for humans, ap-
plications, and for the Trio system itself.

4.3 TDM – Lineage

Formalizing the lineage component of the Trio Data Model
is even more open-ended than formalizing accuracy. In
general, thelineageof data describes how the data came
into existence and how it has evolved over time [FB01,
FVWZ02, WS97]. In our initial model we focus on lin-
eage at the tuple level, although we may later expand to
include attribute-level and/or relation-level lineage.

Before discussing lineage, let us digress for a moment
and consider how modifications and deletions are handled
in Trio. Our current inclination is that Trio data is never
updated in place, and never deleted. Rather, when updates
occur, new data values are inserted in the database while
old values are “expired” but remain accessible in the sys-
tem. Similarly, deleted data is expired but not actually ex-
punged. This overall approach is similar tono-overwrite
storageas introduced by Postgres [Sto87]. It also connotes
full temporal databases[SA86], but as discussed in Sec-
tion 1.1 we do not plan to include expressive temporal op-
erators or query constructs as part of Trio.

We obtain at least three advantages by using a no-
overwrite approach in Trio:

1. Historical lineage: If a data itemI is derived from
dataD at timeT , andD is subsequently updated, we
can still obtainI ’s original lineage data from the ex-
pired portion of the database.

2. Phantom lineage: As part of lineage we may be in-
terested in explaining why certain data isnot in the
database. With the no-overwrite approach we can sup-
port this capability in a limited form (for deleted data),
although the general problem of phantom lineage re-
mains an interesting challenge for the future.

3. Versioning: The no-overwrite approach enables Trio
to support at least some level ofversioning, which
may be demanded by several of the applications we
are targeting (most notably scientific data manage-
ment [GST+02], but also sensor data management,
deduplication, and others). It is our hope that sim-
ple versioning features in Trio will go hand-in-hand
with lineage: that basic lineage capabilities will help
support versioning, and vice-versa.

Let us begin with a general description of the lineage in-
formation we wish to capture, then specify more precisely
the lineage component of TDM. Given a tuplet, there are
three main aspects tot’s lineage:3

• When t was derived

• How t was derived

• What data was used to derivet

We keep thewhen component fairly simple: Tuplet was
either derivednowbecauset is the result of a function de-
fined over other data in the database (e.g.,t is part of a
view), or t was derived at a given time in the past, which
we refer to as asnapshotderivation.

For thehow component, we separate the following five
categories based on type of derivation.

• Query-based: t was derived by a TriQL (or SQL)
query. The query may define a view, or it may be
a query that was executed in the past and the results
were added to the database.

• Program-based: t was derived as the result of
running a program, which may have accessed the
database, and whose results were added to the
database. We assume programs are “black boxes” in
the sense that we cannot analyze their specific behav-
ior. However, if we know which relations a program
accesses, that information is part oft’s lineage. For
programs we consider only snapshot derivations, i.e.,
we do not cover up-to-date (“now” derivation) views
defined by black-box programs.

• Update-based: t was derived as the result of modi-
fying a previous database tuplet′. The modification
may have been precipitated by a TriQL (or SQL) up-
date statement, or by a program in which case we have
the same considerations as program-based derivations
for inserted data.

3A possible fourth aspect iswho causedt to be derived, which we
could add to our model easily if needed.



• Load-based:t was inserted as part of a bulk data load.

• Import-based: t was added to the database as part
of an import process from one or more outside data
sources. Data import may incorporate packaged trans-
formations with known properties, as inExtract-
Transform-Load(ETL) scenarios [CW03, FVWZ02],
but for now we treat the import process as a black-
box program for which we know only the sources that
are accessed. As with program-based derivations, we
assume snapshot only.

Note two important cases that fall into this categoriza-
tion but were not mentioned explicitly: (1) If a SQL
insert-values statement is used to insert a tuplet,
thent has a very simple snapshot query-based lineage. (2)
Suppose a database trigger is invoked, and its action inserts
new data. Since SQL trigger actions are either queries or
programs, we can treat these actions as separate operations
for the purposes of lineage. Unfortunately, we lose the re-
lationship between the trigger and the inserted data (not to
mention what caused the trigger to be invoked in the first
place), a simplification we may wish to revisit in the future.

The third lineage component,what data was used to de-
rive t, is potentially the trickiest. Previous work applies
in certain cases: For query-based “now” derivations, there
are known algorithms for identifying the “exact” data pro-
ducingt based on the structure of the query.4 This lineage
data can be explicit, as in [BCTV04], or it can be implicit
through alineage queryapplied to the current database,
as in [CWW00]. These techniques also can be applied to
snapshot query-based derivations: We can record the iden-
tified lineage data at derivation time, or apply a lineage
query to the state of the database at the time of derivation
by possibly accessing “expired” data as suggested at the
beginning of this section.

Two important notes regarding lineage data and queries
as discussed in the previous paragraph:

1. Some of the existing algorithms explicitly capture
recursively-defined lineage, e.g., for views layered on
other views [BCTV04, CWW00]. We assume one
level of lineage in our model, however we propose
traversing lineage relationships recursively as part of
the TriQL query language; see Section 5.1.

2. Occasionally the lineage of a tuplet may be based
on the absence rather than presence of certain data,
e.g., if t is based on a relationalminus operation.
This issue is not specific to Trio—it pervades work in
relational data lineage (see, e.g., [CWW00]), and Trio
may adopt any of the proposed solutions.

Now consider the remaining four types of derivations,
and what data we wish to capture in the lineage for each
type. Often we have two choices:schema-basedlineage,

4In [BCTV04, BKT01], an interesting distinction is drawn between
where lineageandwhy lineagein the definition for the “exact lineage” of
a view tuplet. In Trio it is possible we will need to support both types.

which tends to be compact and coarse-grained, orinstance-
basedlineage, which without a derivation query to guide us
may amount to the entire database state at a given point in
time, or the entire contents of a load file. (Note this dis-
tinction is not new: both schema-based and instance-based
lineage have been considered in previous work.) Given the
trends in low-cost massive storage devices, we do not rule
out instance-based lineage even when the data may be very
large. Thus we offer the following options:

• For program-based derivations, the lineage data may
be unknown, it may be a list of relations accessed by
the program (possibly zero-length), it may be the con-
tents of those relations at the time of derivation, or it
may be the entire database at the time of derivation if
which relations were accessed is not known.

• For update-based derivations, the lineage obviously
includes the previous value of the updated tuple. In
addition, if the update was precipitated by a TriQL up-
date statement or a program, the lineage may include
that of a query-based or program-based derivation.

• For load-based derivations, the lineage data may be
unknown, or it may be the contents of one or more
load files at the time of derivation. (Note that if a tuple
t was derived from specific loaded data, that case is
better captured as a query-based derivation.)

• For import-based derivations, the lineage data may be
unknown, or it may be the entire set of imported data,
as in load-based derivations.

Lineage in TDM

Now we formalize lineage in the Trio Data Model. Log-
ically (and possibly physically), every Trio database in-
stance contains a speciallineage relation. We assume
database tuples have unique identifiers—a realistic as-
sumption in most DBMSs—and that tuple IDs are not
reused over time (less realistic, but still plausible). The
lineage relation has the following schema:

Lineage(tupleID, derivation-type, time
how-derived, lineage-data)

Assume for now that all attribute values in the lineage rela-
tion areexactwith respect to TDM’s accuracy model from
Section 4.2; we discuss the possibility of inexact lineage
below. Note that with the no-overwrite strategy discussed
at the beginning of this section,tupleID is a key for the
Lineage relation.

The content of aLineage tuple tL corresponding to
a database tuplet is defined based ont’s derivation type.
In all cases, attributetime is either a timestamp or the
special symbolNOW. The contents of the remaining two
attributes,how-derived and lineage-data , are de-
scribed in Table 1. Obviously many of these attribute val-
ues can have very complex types, and possibly extremely



Derivation type Attributehow-derived Attribute lineage-data

exact lineage data,
Query-based query text or lineage query

over current or expired data
pointer to program, or program code; UNKNOWN,

Program-based parameter values used; or list of relations,
program version info (if any) or contents of relations,

or entire database
update statement text, ID of previous tuplet′;

Update-based or program invocation info see query-based
(see program-based) or program-based

Load-based name of load file(s) UNKNOWN,
or load file contents

source descriptor(s); UNKNOWN,
Import-based program invocation info or entire imported data set

(see program-based)

Table 1: Contents of attributeshow-derived andlineage-data in special relationLineage .

large values—perhaps even identifying a substantial frac-
tion of some database state. Here we are concerned pri-
marily with the data model itself. A number of encoding
strategies for these attribute values are possible, depending
on Trio’s data storage mechanisms as well as overall sys-
tem architecture, discussed briefly in Section 6.

TDM Lineage Considerations

Here are some additional considerations for our proposed
formalization of lineage in the Trio Data Model.

• An obvious alternative model would be to associate
lineage information with tuples directly, instead of
defining lineage as a separate relation, especially
given the one-to-one mapping between data tuples and
lineage tuples. We believe that separating lineage in-
formation into its own relation has some advantages,
both conceptually and from an implementation per-
spective. For example, as discussed in the third point,
we can model inexact lineage using TDM’s accuracy
model, and we can selectively record lineage for some
data tuples but not others.

• Derivations or lineage information may sometimes be
coarse enough that an entire relation has the same lin-
eage. With import-based or load-based derivations,
for example, the entire contents of a relationR may be
generated by a bulk load, or by an import from an out-
side source. We can model this scenario as identical
Lineage tuples for all tuplest ∈ R, but obviously it
makes more sense to encode the entire relation’s lin-
eage in one lineage tuple, replacingtupleID with an
identifier forR.

• Since our lineage information is modeled as a relation,
we could make it a Trio relation and incorporate inac-
curacy. One obvious candidate is attributetime : Trio
may not be able to identify the exact derivation time
for some data, in which caseprobability < 1 could

be associated with the specified time (approximation
category A2 from Section 4.2), or more likely time
could be specified as a range known to contain the cor-
rect derivation time (category A3) or a Gaussian dis-
tribution (category A4). Attributeshow-derived
and lineage-data are less obviously amenable
to approximation, although set-valued approximations
(category A2) could be appropriate depending on the
circumstances. Currently we don’t see a clear use for
< 1 confidences or< 1 coverage (see Section 4.2)
in the Lineage relation for this application, but we
don’t rule out the possibility.

• Although storage is not necessarily a significant con-
straint in modern database systems, the capture and
management of lineage may be a complex and poten-
tially expensive task. Thus, by default data in TDM
does not include lineage—more formally, by default
the lineage tupletL for a given database tuplet is not
present in relationLineage . Instead, applications
are expected to activate lineage capabilities explicitly
as needed. For now we assume lineage is activated at
relation-definition time, and activation applies to en-
tire relations and not individual tuples.

Lineage in the CBC Application

Our running example application from Section 3 has nu-
merous requirements that can exploit lineage capabilities.
We give but a few examples here, since the main contribu-
tion of Trio is not to introduce or justify lineage manage-
ment on its own, which has been done before, but rather
to integrate lineage with accuracy, and support both in a
usable working prototype.

In the CBC application, snapshot query-based deriva-
tions (recall Section 4.3) may be the most prevalent. Each
January the participants’ raw bird observation data for that
year is merged into a global data set suitable for queries
and further processing. In addition, annual data is com-



bined with data from previous years to compute new statis-
tics and trends.

The CBC application also includes a significant num-
ber of import-based derivations, since a major goal of the
bird count is to correlate bird data with environmental,
geologic, and population data, and this data must be im-
ported from outside sources.5 Update-based derivations are
needed when data is corrected. Finally, query-based “now”
derivations are needed for the many levels of views used
by different scientists, while load-based derivations apply
at least to the uploaded raw participant data.

5 TriQL: The Trio Query Language

The Trio Query Language,TriQL (pronounced “treacle”),
is designed for querying and modifying data in the Trio
Data Model. We do not propose a specific syntax for
TriQL in this paper; rather, we present informally our ini-
tial ideas for core functionality in the language. Like TDM,
our intention is to keep TriQL relatively simple initially, so
we can build incrementally and introduce functionality and
complexity only when we are certain we need it. Here too,
a primary challenge is to understand which extended func-
tionality is fundamental enough that it should be built into
Trio, and which should be left to application-specific user-
defined functions.

5.1 Queries in TriQL

TriQL extends the SQL query language: it extends the se-
mantics of SQL queries so they can be issued against data
that includes accuracy and lineage, and it adds new fea-
tures to SQL for queries involving accuracy and lineage
explicitly. We base TriQL on SQL largely because SQL
is most familiar to our potential users, and it includes a
number of constructs necessary for our motivating applica-
tions: grouping and aggregation,like predicates, expres-
sion evaluation, and so on.

In developing TriQL we plan to first define an underly-
ing formal algebra—most likely an extension of relational
algebra that incorporates accuracy and lineage. Regardless
of the formal model, one absolute premise of TriQL isclo-
sure: the result of a TriQL query (or subquery) over a Trio
database is itself in TDM, i.e., TriQL query results incorpo-
rate the same model of accuracy and lineage as Trio stored
data.

Syntactically Unextended SQL

The first step in designing TriQL is to specify the seman-
tics of “regular” SQL queries applied to Trio data. When
we execute a TriQL query, lineage for tuples in the query
result can be computed largely following previous work on
lineage in SQL, e.g., [BCTV04, CWW00]. Thus we focus
here on the accuracy components of TDM, as specified in

5Alternatively these data sources may be accessed during query pro-
cessing, in a federated style that for now is not given special treatment in
Trio; recall Section 1.1.

Section 4.2. First note that we do not build in result rank-
ing based on accuracy. While ranked results certainly have
motivation and merit, and there has been some interesting
work in this area, e.g., [ACDG03, DS04, Fuh90], we main-
tain the unordered relational model in both data and query
results. Satisfactory result ranking may often be achievable
simply by ordering result tuples on theirconfidencevalues,
which TriQL will support.

Even within the scope of TDM and unordered results,
developing a complete semantic specification is no simple
task—it requires considering every operator in SQL and
specifying how the operator behaves over data that may in-
clude approximate attribute values, tuples with< 1 con-
fidence, and relations with< 1 coverage. Here are a few
illustrations of the semantic decisions that must be made:

• When we join two tuples each withconfidence< 1,
what is the confidence of the result tuple?

• When we combine two relations withcoverage< 1,
what is the coverage of the result relation for the dif-
ferent combination operators (e.g., join, union, inter-
section)?

• When we aggregate values in tuples with
confidence< 1, what is the form of our result?
Drawing from our CBC application (Section 3),
suppose a participantP reports five sightings of
a bird speciesB, and P ’s observations all have
confidence= 0.9. How many sightings do we report
for B? It probably makes the most sense to return an
approximate count value using our accuracy model,
in a tuple withconfidence= 1 (since we are confident
some count does exist).

• How do we aggregate values from multiple approxi-
mation categories? In our CBC example, suppose in
addition to the fiveB sightings with confidence0.9,
two other participants report seeing either speciesB
(probability= 0.35) or speciesC (probability= 0.65)
with full confidence. Now how many sightings do we
report forB? And what if our sightings relation has
coverage< 1?

The large body of previous work in this general area (recall
Section 1.2) should guide us in identifying and choosing
among the alternatives when working out the detailed se-
mantic specification, and we hope to benefit from our deci-
sion to keep the TDM accuracy model relatively contained.

Additions to SQL

Now let us consider additions to SQL that go beyond a new
semantic interpretation for “regular” queries.

Accuracy Predicates.TriQL should build in a set of com-
mon predicates for filtering based on accuracy. For exam-
ple, using the CBC application:



• Return only sightings whosespecies attribute is ex-
act.

• Return only sightings whosetime range approxima-
tion is within 10 minutes.

• Return only sightings with≥ 98% chance of belong-
ing in the database.

We expect an appropriate set of predicates should be rela-
tively easy to identify and define based on our suite of mo-
tivating applications (Section 2) and previous work. Note
that these predicates should be applicable to subquery re-
sults as well as to stored data. Fortunately the semantics
for this case falls out directly: Subqueries return results
in TDM based on the new semantics for general queries
discussed in the previous subsection. Then accuracy predi-
cates are applied to the subquery results just as they would
be applied to tuples in a Trio stored relation.

Lineage Queries. TriQL should permit queries over lin-
eage, as well as queries that traverse lineage relationships
recursively. We could simply permit theLineage relation
to be referenced in queries, and that alone does enable some
useful capabilities. However, we believe special-purpose
constructs are needed, particularly when exploiting infor-
mation buried inside the attribute values modeled in the
Lineage relation (recall Table 1). Here are some exam-
ples, both simple and more complex, using the CBC appli-
cation:

• Identify the program and its parameters used to
derive theregion attribute in a summary-by-
region table.

• Retrieve all temperature data imported from climate
databaseC on 4/1/04.

• Retrieve all tuples whose derivation includes data
from relationObsP for a specific participantP .

• Retrieve all tuples whose derivation could have in-
cluded a specific sighting tuplet.

• Given a sighting tuplet (or a relationObsP ), find all
data derived from it directly or indirectly.

Integrating Accuracy and Lineage.TriQL queries should
be able to integrate accuracy and lineage. It is possible
that sufficient integration capabilities will fall out naturally
by combining accuracy predicates and lineage query con-
structs, and this is the ideal situation in terms of orthogonal-
ity and implementation. The following examples illustrate
the types of queries that should be expressible:

• Retrieve only data derived entirely from sightings
in observation relations with confidence≥ 98%.
(Note the retrieved data may or may not haveconfi-
dence≥ 0.98, depending how it was derived.)

• Identify relations with coverage≤ 0.95 derived from
climate databaseC more than one week ago.

• Perhaps even:Retrieve all summary data whose
derivation query filters out approximate times with
a greater than 10-minute approximation.(Note the
retrieved data may or may not have times within a
10-minute approximation, depending how it was de-
rived.)

5.2 Data Modifications in TriQL

The data modification component of TriQL is particularly
important because modifying accuracy may take on special
meaning.6 Modifying the accuracy of a tuplet (or relation
R) should have the option of propagating automatically
based on lineage to possibly modify the accuracy of data
derived usingt (or R), which may then propagate to accu-
racy of other data, and so on. Here accuracy can include
attribute-value approximations, tuple-level confidence, and
relation coverage (Section 4.2). This accuracy update-
propagation feature is most applicable for query-based and
program-based derivations (Section 4.3); note that in some
scenarios a large recomputation may be needed. A related
interesting case mentioned earlier is when we modify the
perceived accuracy of an outside source: We may wish to
modify the accuracy of all data imported from that source,
which may propagate to other data derived from it, and so
on.

The CBC application has many uses for accuracy update
propagation; here are two simple examples:

• If we upgrade the confidence of an observation rela-
tion ObsP based on new information about participant
P , data derived usingObsP should have its accuracy
updated automatically.

• We may discover that a large misclassification of
species occurred, requiring updates to accuracy in
some summary data. These accuracy updates should
propagate automatically to other data derived using
the summaries.

We may wish to exploit lineage for non-accuracy-related
modifications as well. If we update a tuplet,7 and dataD
was derived usingt at some point in the past, under some
circumstances we may wish to invalidate, delete, or recom-
puteD (which may itself propagate to data derived from
D, and so on).

A further capability we are considering is “reverse”
propagation of updates to data or accuracy, in which the
system attempts to propagate changes made directly to de-
rived data (or its accuracy) back to the original data from
which it was derived. This capability entails solving a gen-
eralization of theview update problem[BS81], so there are

6Currently, we assume lineage is derived by the system and is not up-
datable, although we may revisit this assumption later.

7Recall from Section 4.3 that we do not plan to literally updatet, but
rather insert the new value and “expire” the old.



many algorithmic and ambiguity issues to address. The lin-
eage information maintained by Trio provides one building
block for attacking these problems.

Note that some applications may be cautious—they may
not want data or accuracy updates to be propagated by the
system automatically. Even for these applications, Trio’s
features are useful: when data or accuracy is updated, the
application can issue TriQL lineage queries to determine
the potential effects and act accordingly.

6 System Implementation
We plan to begin system implementation as soon as initial
versions of TDM and TriQL are concrete. We have several
conflicting goals in the development of the Trio system:

1. Rapid deployment. We want to distribute a first-
version prototype to pilot users as quickly as possible.

2. Resilience. We want the implementation to be re-
silient to changes and extensions to the data model and
query language—some changes are inevitable once
our first suite of Trio applications is prototyped.

3. Efficiency. We want even the first-version system to
be efficient enough that users do not retreat to a con-
ventional DBMS because of performance issues.

4. Extensibility We want the system to serve as a plat-
form for experimenting easily with different methods
of data management and query processing when we
integrate data, accuracy, and lineage.

The first and primary decision is to choose one of the fol-
lowing three approaches:

1. Implement TDM and TriQL on top of a conventional
relational DBMS.In this approach, every schema is
extended to store accuracy and lineage in conven-
tional relations, along with the base data. Data is
mapped from TDM to conventional relations based on
the schema extensions; TriQL queries are translated to
conventional SQL queries over the extended schemas;
query results are mapped from the data encoding back
to TDM.

2. Build a new data manager and query processor from
scratch,exploiting an existing back-end for low-level
store.

3. Implement TDM and TriQL in an extensible object-
relational DBMS.In this approach, TDM data is en-
coded as complex types managed by the underly-
ing object-relational DBMS, and TriQL extensions to
SQL are implemented as methods or stored proce-
dures, or by extending the query processing engine.

Approach (1) certainly addresses our goal of rapid deploy-
ment, and our goal of resilience to changes since modifica-
tions to the model or query language manifest themselves

as modifications to our data mapping algorithms and query
rewrite engine. The primary potential drawbacks are in ef-
ficiency and extensibility.

Approach (2) naturally offers the converse benefits and
drawbacks: Deployment would be delayed, and changes
to the model or language would require significant recod-
ing. On the other hand, we can fine-tune performance
and experiment with alternate ideas in data management
and query processing at all levels of the system. If we do
consider this approach, we must carefully consider which
aspects of a conventional DBMS are unaffected by incor-
porating accuracy and lineage. (Transaction management,
concurrency control, and recovery are obvious examples.)
If we cannot find a back-end store that captures a significant
fraction of those capabilities, then approach (2) is far less
attractive, since we are certainly not amenable to reimple-
menting significant well-understood portions of a DBMS.

Approach (3) offers an interesting middle ground be-
tween the other two approaches. In an open-source exten-
sible object-relational DBMS such asPostgreSQL[Pos] or
Predator [SP97], we can define new complex tuple types
that store accuracy alongside attribute values, and that en-
code the potentially large and complex attribute values in
our Lineage relation. Special query processing over
these types can be implemented as methods or stored pro-
cedures (potentially inhibiting optimization), or can be in-
corporated into the operators of the query processing en-
gine. Although this approach involves coding “inside” the
database system unlike approach (1), it largely frees us
from dealing with aspects of conventional DBMS process-
ing that are unaffected by our extensions, one of the poten-
tial drawbacks of approach (2).

7 Conclusion

We are launching a new project,Trio, that extends con-
ventional data management by incorporatingaccuracyand
lineageas integral components of both data and queries.
Individually, accuracy and lineage have received consider-
able attention in the past, but frequently from a theoretical
perspective, and certainly not as part of a comprehensive
system that incorporates both features as a fully integrated
part of data management and query processing.

This paper makes a case for the Trio system by describ-
ing numerous application domains that could benefit from
its capabilities, as well as a concrete running example. It
presents our initial ideas for the Trio Data Model and TriQL
query language, and discusses approaches for system im-
plementation.

Acknowledgments

In reverse chronological order:

• Thanks to Omar Benjelloun, Ashok Chandra, An-
ish Das Sarma, Alon Halevy, Utkarsh Srivastava, and
Evan Fanfan Zeng for joining up and turning Trio into
a real project.



• Thanks to Jim Gray and Wei Hong for useful discus-
sions on Trio applications.

• Thanks to David DeWitt, Jim Gray, and Dave Maier
for insightful feedback and suggestions on earlier
drafts of this paper.

• Thanks to Hector Garcia-Molina, Chris Olston, Jeff
Ullman, and many Stanford Database Group students
for helpful discussions in the formative stages.

References
[ACDG03] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis.

Automated ranking of database query results. InProc. of the
First Biennial Conference on Innovative Data Systems Re-
search (CIDR ’03), Pacific Grove, California, January 2003.

[AGPR99] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ra-
maswamy. The Aqua approximate query answering system.
In Proc. of the 2001 ACM SIGMOD Intl. Conference on
Management of Data, pages 574–576, Philadelphia, Penn-
sylvania, June 1999.

[AKSX02] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hip-
pocratic databases. InProc. of the 28th Intl. Conference on
Very Large Databases, pages 143–154, Hong Kong, China,
August 2002.

[BB99] P.A. Bernstein and T. Bergstraesser. Meta-data support
for data transformations using Microsoft Repository.IEEE
Data Engineering Bulletin, 22(1):9–14, March 1999.

[BCTV04] D. Bhagwat, L. Chiticariu, W.C. Tan, and G. Vijay-
vargiya. An annotation management system for relational
databases. InProc. of the 30th Intl. Conference on Very
Large Databases, Toronto, Canada, August 2004.

[BDF+97] D. Barbará, W. DuMouchel, C. Faloutsos, P.J. Haas,
J.M. Hellerstein, Y.E. Ioannidis, H.V. Jagadish, T. Johnson,
R.T. Ng, V. Poosala, K.A. Ross, and K.C. Sevcik. The New
Jersey data reduction report.IEEE Data Engineering Bul-
letin, 20(4):3–45, December 1997.

[BGMP92] D. Barbar´a, H. Garcia-Molina, and D. Porter. The
management of probabilistic data.IEEE Trans. on Knowl-
edge and Data Engineering, 4(5):487–502, October 1992.

[BKT01] P. Buneman, S. Khanna, and W.C. Tan. Why and
where: A characterization of data provenance. InProc. of
the 8th Intl. Conference on Database Theory, pages 316–
330, London, England, January 2001.

[BKTT04] P. Buneman, S. Khanna, K. Tajima, and W.C. Tan.
Archiving scientific data.ACM Transactions on Database
Systems, 29(2):2–42, June 2004.

[BP82] B. Buckles and F. Petry. A fuzzy model for relational
databases.International Journal of Fuzzy Sets and Systems,
7:213–226, 1982.

[BP93] R.S. Barga and C. Pu. Accessing imprecise data: An ap-
proach based on intervals.IEEE Data Engineering Bulletin,
16(2):12–15, June 1993.

[BS81] F. Bancilhon and N. Spyratos. Update semantics of re-
lational views. ACM Transactions on Database Systems,
6(4):557–575, December 1981.

[CBC] Christmas Bird Count Home Page.
http://www.audubon.org/bird/cbc/.

[CGG+03] S. Chaudhuri, K. Ganjam, V. Ganti, , and R. Mot-
wani. Robust and efficient fuzzy match for online data
cleaning. InProc. of the 2003 ACM SIGMOD Intl. Confer-
ence on Management of Data, pages 313–324, San Diego,
California, June 2003.

[CKP03] R. Cheng, D.V. Kalashnikov, and S. Prabhakar. Evalu-
ating probabilistic queries over imprecise data. InProc. of
the 2003 ACM SIGMOD Intl. Conference on Management
of Data, pages 551–562, San Diego, California, June 2003.

[CW03] Y. Cui and J. Widom. Lineage tracing for general data
warehouse transformations.VLDB Journal, 12(1):41–58,
May 2003.

[CWW00] Y. Cui, J. Widom, and J. Wiener. Tracing the lineage
of view data in a warehousing environment.ACM Transac-
tions on Database Systems, 25(2):179–227, June 2000.

[DMB+01] L.M.L. Delcambre, D. Maier, S. Bowers, M. Weaver,
L. Deng, P. Gorman, J. Ash, M. Lavelle, and J. Lyman. Bun-
dles in captivity: An application of superimposed informa-
tion. In Proc. of the 17th Intl. Conference on Data Engi-
neering, pages 111–120, Heidelberg, Germany, April 2001.

[DS04] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. InProc. of the 30th Intl. Conference
on Very Large Databases, Toronto, Canada, August 2004.

[EEV02] M.G. Elfeky, A.K. Elmagarmid, and V.S. Verykios.
Tailor: A record linkage tool box. InProc. of the 18th Intl.
Conference on Data Engineering, pages 17–28, San Jose,
California, February 2002.

[Fag02] R. Fagin. Combining fuzzy information: An overview.
ACM SIGMOD Record, 31(2):109–118, June 2002.

[FB01] J. Frew and R. Bose. Earth System Science Workbench:
A data management infrastructure for earth science prod-
ucts. InProc. of the 13th Intl. Conference on Scientific and
Statistical Database Management, pages 180–189, Fairfax,
Virginia, July 2001.

[FGB02] A. Faradjian, J. Gehrke, and P. Bonnet. GADT: A prob-
ability space ADT for representing and querying the phys-
ical world. In Proc. of the 18th Intl. Conference on Data
Engineering, pages 201–211, San Jose, California, Febru-
ary 2002.

[Fuh90] N. Fuhr. A probabilistic framework for vague queries
and imprecise information in databases. InProc. of the 16th
Intl. Conference on Very Large Databases, pages 696–707,
Brisbane, Australia, August 1990.

[FVWZ02] I.T. Foster, J.-S. V¨ockler, M. Wilde, and Y. Zhao.
Chimera: A virtual data system for representing, querying,
and automating data derivation. InProc. of the 14th Intl.
Conference on Scientific and Statistical Database Manage-
ment, pages 37–46, Edinburgh, Scotland, July 2002.

[GFS+01] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and
C.-A. Saita. Declarative data cleaning: Language, model,
and algorithms. InProc. of the 27th Intl. Conference on Very
Large Data Bases, pages 371–380, Rome, Italy, September
2001.



[GG01] M.N. Garofalakis and P.B. Gibbons. Approximate query
processing: Taming the terabytes. InProc. of the 27th Intl.
Conference on Very Large Data Bases, Rome, Italy, Septem-
ber 2001.

[GH97] T. Griffin and R. Hull. A framework for implementing
hypothetical queries. InProc. of the 1997 ACM SIGMOD
Intl. Conference on Management of Data, pages 231–242,
Tucson, Arizona, May 1997.

[GST+02] J. Gray, A.S. Szalay, A.R. Thakar, C. Stoughton, and
J. vandenBerg. Online scientific data curation, publication,
and archiving. Technical Report MSR-TR-2002-74, Mi-
crosoft Research, July 2002.

[HH01] P.J. Haas and J.M. Hellerstein. Online query process-
ing. In Proc. of the 2001 ACM SIGMOD Intl. Conference
on Management of Data, Santa Barbara, California, May
2001.

[HN00] H.-I. Hsiao and I. Narang. DLFM: A transactional re-
source manager. InProc. of the 2000 ACM SIGMOD Intl.
Conference on Management of Data, pages 518–528, Dal-
las, Texas, May 2000.

[HS98] M.A. Hernández and S.J. Stolfo. Real-world data is dirty:
Data cleansing and the merge/purge problem.Data Mining
and Knowledge Discovery, 2(1):9–37, January 1998.

[IL84] T. Imielinski and W. Lipski. Incomplete information in
relational databases.Journal of the ACM, 31(4):761–791,
October 1984.

[JLM03] L. Jin, C. Li, and S. Mehrotra. Efficient record link-
age in large data sets. InProc. of the 8th Intl. Conference
on Database Systems for Advanced Applications (DASFAA
’03), pages 137–148, Kyoto, Japan, March 2003.

[KOR96] S.K. Kwan, F. Olken, and D. Rotem. Uncertain, in-
complete, and inconsistent data in scientific and statistical
databases. In A. Motro and P. Smets, editors,Uncertainty
Management in Information Systems: From Needs to Solu-
tion. Kluwer Academic Publishers, Boston, 1996.

[Kum03] V. Kumar, editor. Special Issue on Sensor Network
Technology and Sensor Data Management,ACM SIGMOD
Record 32(4), December 2003.

[Lee92] S.K. Lee. An extended relational database model for
uncertain and imprecise information. InProc. of the 18th
Intl. Conference on Very Large Databases, pages 211–220,
Vancouver, Canada, August 1992.

[LLRS97] L.V.S. Lakshmanan, N. Leone, R. Ross, and V.S. Sub-
rahmanian. ProbView: A flexible probabilistic database sys-
tem. ACM Transactions on Database Systems, 22(3):419–
469, September 1997.

[LM04] I. Lazaridis and S. Mehrotra. Approximate selection
queries over imprecise data. InProc. of the 20th Intl. Con-
ference on Data Engineering, pages 140–152, Boston, Mas-
sachusetts, March 2004.

[LS90] K.-C. Liu and R. Sunderraman. Indefinite and maybe
information in relational databases.ACM Transactions on
Database Systems, 15(1):1–39, March 1990.

[MD99] D. Maier and L. Delcambre. Superimposed information
for the internet. InProc. of the 1999 ACM Workshop on the

Web and Databases (WebDB ’99), Philadelphia, Pennsylva-
nia, June 1999.

[Mon97] A.E. Monge. An efficient domain-independent al-
gorithm for detecting approximately duplicate database
records. InWorkshop on Research Issues on Data Mining
and Knowledge Discovery (DMKD’97), Tucson, Arizona,
May 1997.

[Mot94] A. Motro. Management of uncertainty in database sys-
tems. In W. Kim, editor,Modern Database Systems: The
Object Model, Interoperability, and Beyond, pages 457–476.
ACM Press, New York, 1994.

[OLW01] C. Olston, B.T. Loo, and J. Widom. Adaptive precision
setting for cached approximate values. InProc. of the 2001
ACM SIGMOD Intl. Conference on Management of Data,
pages 355–366, Santa Barbara, California, May 2001.

[OO93] A. Ola and G.Özsoyoglu. Incomplete relational
database models based on intervals.IEEE Trans. on Knowl-
edge and Data Engineering, 5(2):293–308, April 1993.

[OW00] C. Olston and J. Widom. Offering a precision-
performance tradeoff for aggregation queries over replicated
data. InProc. of the 26th Intl. Conference on Very Large
Data Bases, pages 144–155, Cairo, Egypt, September 2000.

[Pos] PostgreSQL Home Page. http://www.postgresql.org/.

[RH01] V. Raman and J.M. Hellerstein. Potter’s wheel: An inter-
active data cleaning system. InProc. of the 27th Intl. Con-
ference on Very Large Data Bases, pages 381–390, Rome,
Italy, September 2001.

[SA86] R. Snodgrass and I. Ahn. Temporal databases.IEEE
Computer, 19(9):35–42, September 1986.

[Sad91] F. Sadri. Modeling uncertainty in databases. InProc. of
the 7th Intl. Conference on Data Engineering, pages 122–
131, Kobe, Japan, April 1991.

[Sar00] S. Sarawagi, editor.Special Issue on Data Cleaning,
IEEE Data Engineering Bulletin 23(4), December 2000.

[SB02] S. Sarawagi and A. Bhamidipaty. Interactive deduplica-
tion using active learning. InProc. of the 8th ACM SIGKDD
Intl. Conference on Knowledge Discovery and Data Mining,
pages 269–278, Edmonton, Canada, July 2002.

[SM01] M. Shapcott S. McClean, B. Scotney. Aggregation of
imprecise and uncertain information in databases.IEEE
Trans. on Knowledge and Data Engineering, 13(6):902–
912, November 2001.

[SP97] P. Seshadri and M. Paskin. PREDATOR: An OR-DBMS
with enhanced data types. InProc. of the 1997 ACM SIG-
MOD Intl. Conference on Management of Data, pages 568–
571, Tucson, Arizona, May 1997.

[SS98] P. Samarati and L. Sweeney. Generalizing data to provide
anonymity when disclosing information. InProc. of the 17th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, page 188, Seattle Washington, June
1998.

[Sto87] M. Stonebraker. The design of the POSTGRES storage
system. InProc. of the 13th Intl. Conference on Very Large
Databases, pages 289–300, Brighton, England, September
1987.



[WM90] Y.R. Wang and S.E. Madnick. A polygen model for
heterogeneous database systems: The source tagging per-
spective. InProc. of the 16th Intl. Conference on Very
Large Databases, pages 519–538, Brisbane, Australia, Au-
gust 1990.

[WS83] J. Woodfill and M. Stonebraker. An implementation of
hypothetical relations. InProc. of the 9th Intl. Conference
on Very Large Databases, pages 157–166, Florence, Italy,
October 1983.

[WS97] A. Woodruff and M. Stonebraker. Supporting fine-
grained data lineage in a database visualization environ-
ment. InProc. of the 13th Intl. Conference on Data Engi-
neering, pages 91–102, Birmingham, England, April 1997.

[YLW +95] Q. Yang, C. Liu, J. Wu, C. Yu, S. Dao, H. Naka-
jima, and N. Rishe. Efficient processing of nested fuzzy
SQL queries in fuzzy databases. InProc. of the 11th Intl.
Conference on Data Engineering, pages 131–138, Taipei,
Taiwan, March 1995.

[Zim97] E. Zimányi. Query evaluation in probabilistic relational
databases.Theoretical Computer Science, 171(1):179–219,
January 1997.


