
Design Considerations for High Fan-in Systems:
The HiFi Approach

Michael J. Franklin* , Shawn R. Jeffery* , Sailesh Krishnamurthy* , Frederick Reiss* ,
Shariq Rizvi* , Eugene Wu*, Owen Cooper* , Anil Edakkunni* , and Wei Hong+

*EECS Dept., UC Berkeley +Intel Research Berkeley

Abstract

Advances in data acquisition and sensor
technologies are leading towards the
development of “high fan-in” architectures:
widely distributed systems whose edges consist
of numerous receptors such as sensor networks,
RFID readers, or probes, and whose interior
nodes are traditional host computers organized
using the principles of cascading streams and
successive aggregation. Examples include
RFID-enabled supply chain management, large-
scale environmental monitoring, and various
types of network and computing infrastructure
monitoring. In this paper, we identify the key
characteristics and data management challenges
presented by high fan-in systems, and argue for a
uniform, query-based approach towards
addressing them. We then present our initial
design concepts behind HiFi, the system we are
building to embody these ideas, and describe a
proof-of-concept prototype.

1. Introduction
Organizations across a large spectrum of endeavors are
becoming increasingly dependent on the availability of
accurate, targeted, and up-to-the-minute information
about the status of their operations. This information
provides real-time visibility into disparate phenomena,
which can be used to monitor operations, detect problems,
and support both short and long-term planning. Such

visibility is enabled by continuing improvements in
computing (e.g., wireless smart sensors) and
communications (e.g., increasingly ubiquitous network
connectivity).

1.1. Applications

In many cases, the phenomena being monitored exist in
the physical world. For example, environmental
monitoring using sensors is emerging as an area of great
interest, where the phenomena being monitored include
wildlife behavior, air and weather conditions, or seismic
readings. Other physical monitoring applications are
more closely tied to human organizations, such as the
monitoring and control of supply chains, logistics, traffic,
factories, pipelines, or energy usage.

In other cases, the phenomena being measured are
virtual, such as network and computing infrastructure or
application monitoring. Many emerging applications
combine data from both worlds to provide increasingly
detailed real-time models of complex, widely-distributed
organizations and environments.

These applications span many different domains but
they all share a dependence on a sophisticated computing
and communications infrastructure to deliver data that
will provide an accurate and actionable view of their
domain. Such applications also vary widely in
requirements, but in general, they all depend on the
accuracy, timeliness, completeness, and relevance of data
in order to support more effective decision making.

1.2. High Fan-in Systems – The “ Bowtie”

We envision systems in which a large number (many
thousands or more) of receptors exist at the edges of the
network to collect raw data readings. For example, in a
supply chain management deployment, collections of
sensors and RFID readers on individual store shelves (in a
retail scenario) or dock doors (in a
warehouse/manufacturing scenario) continuously collect
readings. These readings include “beeps” from low-
function passive RFID tags indicating the presence of
particular tagged objects (such as cases of goods), as well
as more content-rich information from smart sensors and
higher-function tags such as temperature readings and
shipping histories.

*This work was funded in part by NSF under ITR grants IIS-0086057
and SI-0122599, by the IBM Faculty Partnership Award program, and
by research funds from Intel, Microsoft, and the UC MICRO program.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 2nd CIDR Conference,
Asilomar, California, 2005

These “edge” devices produce data that will be
aggregated locally with data from other nearby devices.
That data will be further aggregated within a larger area,
and so on. This arrangement results in a distinctive
bowtie topology we refer to as a high fan-in system (see
Figure 1). A sophisticated system such as one supporting
a nation-wide supply chain application may consist of
many widely dispersed receptor devices and many levels
of successively wider-scoped aggregation and storage.
Such systems will comprise a disparate collection of
heterogeneous resources, including inexpensive tags,
wired and wireless sensing devices, low-power compute
nodes and PDAs, and computers ranging from laptops to
the largest mainframes and clusters.

This hierarchical bowtie shape arises due to two main

reasons. First, the sheer volume of raw data produced at
the edges of a large system could easily overwhelm a
flatter architecture, in terms of both bandwidth and
processing costs. Data cleaning, filtering, and aggregation
must be done as close to the edges as possible to minimize
data handling requirements of the system as a whole. The
bowtie shape lends itself naturally to an approach where
computation is pushed out to the lowest common ancestor
(LCA) of the edge nodes that are producing data used in
any particular computation. Second, organizational
concerns stemming from the geographic-oriented nature
of many of our target applications and from the structure
of the organizations that deploy these systems lend
themselves naturally to a hierarchical structure.1

In many situations, of course, the topology will be
much more complicated than that implied by Figure 1
above. For example, there will be cases where
computations or data flows skip levels of the system, or
there may be connections at various points in the network
to external systems as would arise when multiple
organizations choose to federate parts of their information

1 See the supply chain scenario described in Section 2 for an
example of this.

infrastructure.2 Nonetheless, our position is that the
general notion of hierarchical structure and the ideas of
successive aggregation and cascading streams (as
presented in Section 3) that go with it are powerful
concepts for organizing these complex systems, and
where appropriate, can provide many advantages in
programmability, ease of deployment, and efficiency.

1.3. Towards a Unified High Fan-in Framework

Today, the state-of-the-art in building high fan-in
information systems is a piecemeal approach — a device-
specific programming environment is used to task the
edge receptors, a separate transport or information bus is
used to route the acquired readings, and a database system
or other data manager is used to collect and process the
them. As a result, high fan-in deployments have tended
to be costly, difficult, and inflexible.

In contrast, our work is based on the notion that
stream query processing and streaming views can serve as
a unified declarative framework for data access across an
entire high fan-in environment. As we discuss in Section
3, stream-oriented queries can be used to accomplish
many of the data manipulation tasks required in a high
fan-in system, including data cleaning, event monitoring,
data stream correlation, outlier detection, and of course,
aggregation.

Our work builds on the growing body of work in the
areas of data stream processing, sensor network databases,
and data integration, but it also addresses a number of
challenges that arise from the unique properties of high
fan-in architectures and the applications they support.
From a data management perspective, the most
challenging new aspect that high fan-in systems bring to
the table is the wide range they span in terms of three key
characteristics: time, space, and resources.

Time – Timescales of interest in a high fan-in system
can range from seconds or less at the edges, to years in the
interior of the system. At the edges of a high fan-in
system are receptor devices that repeatedly measure some
aspect of the world. These devices are typically
concerned with fairly short time scales, perhaps on the
order of seconds or less.

As one moves away from the edges, the timescales of
interest increase. For example, in a retail RFID scenario,
individual readers on shelves may read several times a
second, while the manager of a store may be concerned
with how sales of particular items are going over the
course of a morning, and planners at regional and
corporate centers may be more concerned with longer-
term sales trends over a season or several seasons.

2 Such federation, for example, is envisioned in the standards for
supply chain information sharing being proposed by the
EPCGlobal organization [19].

Figure 1 - The high fan-in bowtie

Space - As with time, the area of geographic interest
grows significantly as one moves from the edges of a high
fan-in system to the interior. Again using the retail RFID
scenario, individual readers are concerned with a space of
a few square meters, aggregation points within the store
would be concerned with entire departments or perhaps
the store as a whole, and regional and national centers are
concerned with those much larger geographical areas.

Resources – Finally, the range of computing resources
available at various levels of a high fan-in system also
vary considerably, from small, cheap sensor motes on the
edges, up to mainframes or clusters in the interior of the
system. Communication resources also can range from
low-power, lossy radios at the edges, to dedicated high-
speed fiber in the interior.

In addition to the fundamental issues that arise from
the issues of scale along these three dimensions, there are
many other technical challenges to be addressed. These
include fundamental questions about how best to optimize
and run queries in the network; how to process queries
using views over streaming data that involve aggregation,
hierarchies, and time windows; how to archive detail data
at various points in the system; and how to build an
infrastructure that is easy to deploy, manage, and adapt.

1.4. Paper Overview

In the remainder of this paper, we present a current snapshot
of our work on high fan-in systems. Specifically, we
describe the design considerations for the HiFi system,
which is currently under development at UC Berkeley. We
present the overall philosophy behind HiFi, detail our initial
system’s architecture and query processing approach, discuss
some of the open issues we are beginning to address, and
give an overview of our initial proof-of-concept prototype
built using the TelegraphCQ adaptive data stream processor
[12] and the TinyDB sensor network database system [28].
First, however, we describe an example high fan-in
environment in more detail.

2. A Motivating Scenar io: Supply Chain
Management

As stated in the introduction, there are numerous
application scenarios that exhibit a high fan-in topology.
In this section, we briefly describe one such application,
Supply Chain Management (SCM). SCM presents a
particularly compelling case for high fan-in systems for
several reasons. First, emerging SCM systems are large-
scale systems that can span national or even global
distribution networks. These systems have natural
aggregation points resulting in the characteristic
hierarchical, high fan-in structure. Second, there is now
widespread recognition in industry of the cost savings and
efficiency gains to be had by exploiting accurate, up-to-
the-minute information throughout the supply chain.
Third, the impending availability of RFID and related

technology along with mandates from large organizations
including Wal-Mart, the DoD, and the FDA are driving
tremendous interest in real-time SCM solutions.

The promise of RFID-enabled supply chains is that
organizations will have complete, accurate, and timely
visibility into all aspects of their supply chain, from
suppliers, manufacturing, distribution, sales, and even
return of goods. Such visibility can enable a wide range
of applications, including “ track and trace” of individual
sales units (e.g., cases or cans of soft drinks, vials of pills,
etc.), accurate replenishment scheduling, and more
efficient shipping and receiving. Accurate information
can also greatly enhance planning and monitoring at all
levels of an organization and across organizations.

At the base of an RFID-enabled supply chain are
passive EPC (Electronic Product Code) tags attached to
pallets, cases, or individual units [19]. These tags are able
to transmit a 96-bit EPC code that identifies the
manufacturer, type of item, and a unique serial number.
More sophisticated tags can provide additional
information such as sensor readings or transportation
history. These tags are remotely sensed by RFID readers.
Readers are placed at numerous locations in the supply
chain, such as manufacturing lines, loading dock doors,
forklifts and trucks, store shelves and store checkouts.

In a typical supply chain, a single tag is likely to be
scanned 10 to 15 times. These readings (called “beeps”)
represent, in aggregate, a potentially huge data stream.
Furthermore, current RFID technology is inherently error-
prone, meaning that these streams may contain a
significant amount of dirty data. The solution to both of
these problems is to process the raw beeps to remove
erroneous data and to reduce the volume through
aggregation and event detection.

For the purposes of this paper, we focus on the “back-
end” of an SCM system, from suppliers to the back rooms
of stores. As an example, consider the following levels
(see the left half of Figure 2):

• RFID Readers – the edges of the system consist

of the readers that interrogate the tags and collect
their values. Future SCM deployments also
envision the use of sensors and sensor networks to
provide additional monitoring capabilities.

• Dock Doors – due to limitations on the range and

orientation at which tags can be read, multiple
readers (or antennae) are arranged around a single
door to reduce the probability of missed tags.

• Warehouse – the information from all the readers

in the warehouse is aggregated in a computer
(possibly a cluster) located in the warehouse.

• Regional Center – a location where logistics can
be collected and managed for an entire
geographical region, for example, the
Southwestern United States.

• Headquar ters – the main location or data center
for the corporation. For example, Wal-Mart does
its corporate data processing in Bentonville, AR.

Such a supply chain is a high fan-in system, where

data collected at the edges is successively cleaned,
refined, and aggregated. As can be seen, this scenario
exhibits the wide range of scales in terms of time,
geography, and resources typical of high fan-in systems.
We use this example throughout the rest of the paper.

3. Cascading Streams in HiFi
The HiFi system provides data management infrastructure
for high fan-in environments. HiFi implements a uniform
declarative framework for specifying data requests and

driving system functionality. A stream-oriented query
language is used to specify data requests and to describe
logical views of the data available in various parts of the
system. The use of successive stream-oriented query
processing at each level of the system results in a flow of
data from the edges inwards. We refer to this data flow as
cascading streams. Note that this uniform approach
stands in contrast to the current state-of-the-art, where
each level of the system presents its own distinct API.
HiFi uses stream-oriented query languages across all
levels, which simplifies programming and enables a wide
range of optimizations.

3.1. Uses of Quer ies

Although stream-based queries may not be suitable for all
data processing tasks in HiFi, we believe that they can
accomplish a wide array of tasks in a high fan-in
environment. We list these tasks roughly in order from
the edges to the interior of the system. At the edges,
transformations are chiefly involved with making sense of

Figure 2 – High fan-in system levels with associated CSAVA processing stages in an SCM Environment

what the receptors produce; they typically become more
complex as data moves towards the interior.

Data Cleaning – Sensors and RFID readers are
notoriously noisy devices, and dealing with the poor
quality of data they produce is one of the main challenges
in a high fan-in (or any receptor-based) system. We use
declarative queries to specify cleaning functionality for
single devices as well as across groups of devices.

Detecting Faulty Receptors – In addition to being noisy,
receptors sometimes just fail. Depending on the actual
failure mode (fail stop or fail dirty) and past history, it
might be possible to detect a faulty sensor.

Conversion and Calibration – In order to produce
meaningful measurements, physical sensors typically
require calibration. Such calibration can be quite
sophisticated and may need to be done on a continuous
basis. Furthermore, the raw data produced by physical
sensors must often be converted into units that are
meaningful to a given application. Queries may be used to
do simple conversion and calibration.

Outlier Detection – In many monitoring systems,
expected events are of less immediate interest than
anomalies. Queries can be used to detect and propagate
various types of outliers in a streaming environment.

Data Aggregation – While the raw data from a single
receptor may not be a high volume stream, processing raw
data from thousands of receptors is unsustainable. Queries
that have a wider scope of interest must necessarily
summarize raw data in the form of coarse-grained
aggregate histories.

Stream Correlation – Queries are also useful for
comparing and correlating data from multiple streams.
Such streams may be homogeneous, as in the case of
temperature readings from a group of identical sensors, or
heterogeneous, as in the case of combining temperature
readings with RFID “beeps” .

Complex Event Monitor ing – One of the main functions
of HiFi is to continuously monitor the environment for
interesting events. Such events are not limited to simple
events at the edge. Rather, they also include composite
events described in terms of widely varying timescales
and geographic areas. A streaming query language,
suitably extended with event processing constructs, can be
used to describe these events.

3.2. Multi-level Query Processing

In this section, we illustrate the power of successive
processing of cascading streams through an example that

we term “CSAVA” (pronounced “Cassava”). CSAVA
consists of five core stages of processing (clean, smooth,
arbitrate, validate, and analyze) designed to translate raw
receptor readings into useful data for driving business
processes. Figure 2 depicts CSAVA for our SCM
example. At the bottom of the figure, RFID readers feed
into processing nodes on warehouse doors which, in turn,
feed into the main node at the warehouse. These local
nodes aggregate and send their data to regional centers
and so on. At each level, the nodes export views that
perform successively more sophisticated functionality.

Receptor level: Cleaning

Each receptor itself performs the first step in data
processing and cleans the stream by filtering anomalous
readings that do not have a signal strength higher than
some threshold st r engt h_T:

CREATE VI EW cl eaned_r f i d_st r eam AS
(SELECT r ecept or _i d, t ag_i d
 FROM r f i d_st r eam r s
 WHERE r ead_st r engt h >= st r engt h_T)

Dock door level: Smoothing

Smoothing is the process of interpolating to compensate
for lost readings and discarding anomalous readings by
running a windowed aggregate (in this case, a count)
over the cleaned stream. In this example, readings that
have been seen at least count_T times in a window3 are
considered legitimate; others are dropped:

CREATE VI EW smoot hed_r f i d_st r eam AS
(SELECT r ecept or _i d, t ag_i d
 FROM cl eaned_r f i d_st r eam
 [r ange by ‘ t 1’ , s l i de by ‘ t 2’]
 GROUP BY r ecept or _i d, t ag_i d
 HAVI NG count (*) >= count _T)

Warehouse level: Arbitration

The tags reported after smoothing are those that a reader
is reasonably sure to have seen. Multiple nearby readers,
however, may have seen the same tag. To avoid over-
counting or other inaccuracies, data from multiple readers
must be arbitrated to determine where the product
corresponding to the tag actually is located. In this
example, the system also aggregates what each node has
seen before passing the stream to the higher levels:

3 Note that we use “ range by” to specify the width of the
window and “slide by” to specify its movement.

CREATE VI EW pr oduct _count s AS
(SELECT r ecept or _i d,
 count (di st i nct t ag_i d)
 FROM smoot hed_r f i d_st r eam r s
 [r ange by ‘ t 3’ , s l i de by ‘ t 4’]
 GROUP BY r ecept or _i d, t ag_i d
 HAVI NG count (*) >= ALL
 (SELECT count (*)
 FROM smoot hed_r f i d_st r eam
 [r ange by ‘ t 3’ , s l i de by ‘ t 4’]
 WHERE t ag_i d = r s. t ag_i d
 GROUP BY r ecept or _i d))

Regional center level: Validation

At this point in the hierarchy, the pr oduct _count s
stream contains an aggregated view of products seen at
each warehouse or store. With this data, the regional
center can use known business rules such as “ I know that
the warehouse in Springfield should have 10,000 widgets”
to validate that the supply chain is behaving as expected.

Headquar ters level: Analysis
Once the high-level business behavior is determined,
headquarters can analyze this data through data mining-
type query operations to understand how the supply chain
is behaving. Note that this is done in real time to drive
organizational decision-making.

3.3. CSAVA Discussion

CSAVA processing can be generalized to handle data
from other types of receptors in other applications. In
general, clean involves operations over a single data item,
smooth occurs over a window of data items from a single
receptor, and arbitration occurs over streams from
multiple receptors. For example, cleaning for a sensor
network application involves filtering individual readings
that do not make sense (i.e., a negative sound reading) or
are not interesting to the application, while arbitration
entails comparing values from multiple sensors in the
same area for calibration and outlier detection.

In addition to the steps outlined above, there are a
variety of auxiliary tasks that may occur throughout the
CSAVA process4. Data values retrieved from RFID
readers may need to be converted from their raw RFID
code to some organizationally meaningful handle such as
product ID. Additionally, there may be organizational
information, such as tracking history, which can augment
the bare product ID. Finally, aggregation, both in time
and space, occurs throughout this process, whenever the
raw data is not needed or bandwidth is scarce.

4 Note that these additional steps all begin with a “C” or
“A” , thus preserving our CSAVA acronym.

In this example, each task in CSAVA was placed at a
reasonable location in the hierarchy; in practice, however,
the placement of each stage in CSAVA is flexible,
provided that the appropriate data is available. For
example, validation may occur lower in the hierarchy if
the validating data is also pushed down (e.g., the system
could push a static relation containing expected RFID tags
to the edge of the hierarchy). We address the issue of
operator placement in more depth in Section 4.3.

4. HiFi Design Concepts
In the previous sections we laid out the motivation,
applications, and the cascading stream processing model
for high fan-in environments. Given this background, we
now describe the key aspects of our emerging design for
the HiFi system.

4.1. Hierarchical Windowed Views

One consequence of our decision to use stream-oriented
queries as the common API throughout HiFi is that the
nodes at various levels of the system can expose the data
they provide using views. Using views to structure
distributed systems has long been studied in the data
integration and federated database literature [18][25][32],
and many of the techniques developed there can be used
in HiFi. There are, however, several aspects of high fan-
in architectures that push the envelope of this technology.

First, the views in HiFi are typically over streaming
data and the queries are continuous. In such systems,
windows play a crucial role in both query processing and
semantics. Window specifications divide unbounded
streams into finite collections of data items over which
queries can be executed. Windows are specified by
range and slide parameters (typically expressed in time or
tuples). The first parameter specifies the width of the
window; the second specifies how the window moves as
time progresses or as new tuples arrive.

The definition and use of streaming views with
windows is still an open problem. When the slide/range
of a query does not precisely match that of a view it is not
immediately obvious how or even if the view can be
exploited. For instance, exploitation is generally possible
if the range of the query matches (or in some cases, is
subsumed by) that of the view and the slide of the query is
a multiple of that of the view, or possibly if the slides are
relatively prime. This has the flavor of periodic data
processing [6].

Second, because aggregation is such a fundamental
concept in HiFi, the views at each level of the system will
often contain aggregates. When a query’s range exceeds
its slide, the windows are overlapping. Evaluating
aggregate queries over overlapping windows is
challenging because input tuples must participate in
multiple separate aggregate computations. We are

working on techniques to efficiently share the execution
of periodic overlapping windowed aggregates.

Third, the hierarchical nature of the applications to be
supported by HiFi emphasizes the issues of granularity
and scope. As stated above, we expect that in general,
the granularity of requests will become coarser and the
scope larger as one moves from the edges towards the
interior of a high fan-in topology. Aggregation and union
operators can be used to achieve this; however, cases that
do not follow this anticipated pattern are more difficult to
handle. For example, privacy and security constraints
may restrict the detail and scope of information allowed to
be passed to some other node in the system.

4.2. Topological Fluidity

Another important issue in the design of HiFi is the
rigidity of the connections between nodes in the system.
In some levels of a high fan-in system, a hardwired
topology may be natural. For instance, it makes sense for
a node keeping track of items on a shelf to be hardwired
to talk to the store's node, which in turn, is likely to talk to
the regional node, and so forth. In such an arrangement,
each node has a static parent (or small set of parents) and
a relatively small static set of children with which it
communicates. With static connections at all levels,
nodes require only a small amount of state to keep track
of the other nodes with which they communicate.
Furthermore, both query and data flow are greatly
simplified in a static system, as there are only a small
number of paths through the system.

It is desirable in many cases to have more fluid
connections between interior nodes. In such a topology,
nodes would still be grouped into levels, but connections
to parents (for data flow) and children (for query flow)
would occur on an ad-hoc basis. Thus, the system can
respond to runtime conditions by adding, removing, or
changing links. Through fluid interior links, the system
can route around overloaded or failed nodes and links,
thus providing load balancing and fault tolerance.

 Furthermore, some components in a high fan-in
system, such as mobile nodes, do not fit into a static
topology or may be disconnected for periods. For
instance, a node mounted on a supply truck driving
between distribution centers must have the ability to
dynamically switch parents en route as well as be able to
support disconnected operation. Finally, fluidity enables
more fine-grained privacy and security provisioning. An
organization can specify exactly which queries and data
flows can go where on a flow-by-flow basis.

Of course, dynamism presents many challenges,
including metadata management and query planning. For
HiFi, we are developing a hybrid approach, where there
are preferred wirings between nodes, but where alternate
routes through the system can be used in response to
runtime conditions.

4.3. Query Planning and Data Placement

Once a query is submitted to HiFi, it must be planned and
disseminated before it can be run. Query planning in a
high fan-in system involves a wide range of tasks. First
of all, the system must identify the relevant data streams
and determine the responsible receptors. If data is not
already flowing from these receptors, the system must
initiate data collection with appropriate settings (sample
period, for instance). The system must determine the
general flow of the data from the leaves and decide upon
the operators needed to process, split, merge, and
transform streams. Finally, the system must employ
participating nodes to run these operators as data flow up
the tree.

A key efficiency consideration in HiFi is the
placement of queries and data across the nodes of the
system. Given a query with a set of operators, the query
planner must determine where in the hierarchy to place
each operator. This decision attempts to reduce overall
system bandwidth usage by pushing operators down the
hierarchy. Some data streams (or static relations) may not
be visible at lower levels of the hierarchy. Thus, the
query planner should tend to push operators to the lowest
level at which the streams and relations it operates over
are visible.

Furthermore, the query planner must consider existing
queries and data flows in order to exploit shared
processing. For instance, if multiple operators from
different queries process the same underlying data stream,
then it may be advantageous to pull the operators up.
Alternatively, it may be possible to improve the visibility
of some queries by pushing streams or static relations
down the hierarchy. This incurs initial bandwidth costs
and complexity due to replication, but may improve
parallelism and utilization of resources, and could provide
overall bandwidth savings. Caching can also improve
performance, but query and data placement in a cache-
based system are inherently inter-dependent [24].

In a high fan-in system, the manner in which this
query planning takes place may be done in a variety of
ways, ranging from completely centralized to fully
distributed. The simplest approach is to fully centralize
the planning decisions. A new query would be sent to a
single query planning node that has global knowledge and
is able to fully plan and then disseminate the query. This
approach is suitable for fully trusting organizations with
relatively static data, query, and network characteristics.

Alternatively, a recursive approach, where the
planning and dissemination phases are combined, may be
more applicable. In this case, a query is introduced at
some location, which becomes the root of the hierarchy
for that query. The query then propagates from this point
to the data sources one level at a time. At each step of the
process, the current node plans its portion of the query
using only knowledge of its immediate children. As we

discuss in Section 5.4, we are implementing a flexible
planning and optimization approach that follows this
recursive query planning paradigm.

4.4. Event Processing

An important use case for HiFi involves the real-time
monitoring and management of large distributed
organizations such as supply chains. For such
applications, it is necessary that the system enable the
delivery of important status information and events in a
timely fashion.

An event is defined as any significant occurrence in
the system. A user may be interested in a variety of
simple events over streaming data:

• A taken-out-of-store event may be defined
simply as seeing a tuple on a particular data
stream originating from an RFID receptor
located at the exit of a store.

• A fire-in-room event may be defined as a simple
“ filter event” which is detected when a tuple with
a temperature value more than 100°C is seen on
a data stream.

Complex events may also be of interest to a user.
Unlike simple events, these require the joining and
aggregation of multiple streams under intricate notions of
time, ordering, and negation. Examples include:

• A shoplifting event may be triggered when the
taken-out-of-store event is seen for an item
WITHOUT the occurrence of the purchased-at-
counter event for that item.

• A person-in-danger event may be triggered when
the simple fire-in-room and person-in-room
events are seen for the same room within a 10
second window.

In addition to real-time scenarios, event specifications
may span large scales of time and space (e.g., a CEO who
wants an alert when the nation-wide sales of a product in
the previous week goes below a threshold).

In a system like HiFi, event and (SQL-based) data
processing need to be done in a unified manner. However,
SQL does not provide natural ways of expressing queries
over ordered data (like time-ordered data streams)
[26][36]. Hence, specification of complex events over
streams needs to be done in a language that provides user-
friendly ways of expressing ordering and negation, in
addition to other constructs. Unified support for data and
event processing is achieved in HiFi by extending the
query language available to the user in a manner suitable
to express complex event queries on data streams.

HiFi handles event processing using state machine-
based operators in the core data stream processing engine
along with traditional relational operators. These new
operators maintain and update state for event queries as
they see tuples on different data streams (possibly coming

from other operators). They trigger an event when a
transition to an accepting state is made. The output of
these operators can be further processed by other data
operators, giving a unified framework for event and data
processing.

4.5. Archiving and Pr ior itization

In many situations, in addition to real-time information,
there is also a need (or at least a desire) to have access to
the underlying detail information, perhaps in a delayed or
archival fashion. Examples include data mining and long-
term planning applications as well as regulation-driven
requirements, such as those arising from Sarbanes-Oxley
compliance [39].

We are designing HiFi to support a spectrum of
delivery requirements, spanning the range from real-time
delivery of status and event notifications to background
delivery and archiving of detail information. The basic
approach is: “send summaries, anomalies, and alerts first;
the details can follow later” .

HiFi meets these varied delivery requirements through
a dynamic prioritization architecture. The first priority of
HiFi's scheduling subsystem is ensuring that archival data
is not permanently lost [13]. Each node must ensure that
its archival data is eventually delivered to a node with
permanent storage. Nodes without local storage keep a
buffer of recent data and send the contents of this buffer
to remote nodes as needed.

Once HiFi has ensured the integrity of archival data, it
devotes time to the other types of data. For these data,
HiFi employs Data Triage [37] to provide the highest
quality of timely results possible given the resources
remaining. If there is time to process all data relevant to a
monitoring query, HiFi will do so; otherwise, the system
will shed load by summarizing data that it does not have
time to process and sending these synopses in place of the
original data. The system reconstructs complete query
results by combining computations on complete data with
computations on synopses.

4.6. Real Wor ld Data

Perhaps the most unique challenge presented by high fan-
in environments is the need to seamlessly integrate the
physical world with the digital world. However, the
characteristics of each realm differ greatly. Real world
data can be seen as an infinite collection of unbounded
continuous streams with loose semantics, whereas the
digital world is inherently discrete (for our purposes, it is
tuple-oriented) with strict semantics and guarantees.
Furthermore, data collection techniques are imperfect at
best and provide only a flawed glimpse of the real world.
Physical receptor devices can introduce significant
complexity due to their wide variance in terms of
interface, behavior, and reliability. Thus, a challenge
facing any receptor-based system is to bridge these

disparate worlds in a manner that enables users of the
system to both trust and make sense of the data the system
provides.

Towards this end, HiFi uses virtual devices to interact
with the physical world. A virtual device interfaces with
multiple raw receptors that are in close proximity,
processing and fusing their streams to produce more
useful, higher-quality data. It does this by incorporating
CSAVA-like processing, conversion and calibration,
virtualization, lineage tracking, and quality assessment.
Thus, a virtual device may combine declarative query
processing with non-declarative processing, such as with
soft sensors [34].

One of the more important services a virtual device
provides is the support for the notions of answer quality
and lineage. To provide for the first component, the
virtual device augments receptor-based data with error
estimates and confidence intervals. For example, a virtual
device for a sensor network can use known techniques
[20] for determining answer quality based on probability
distributions. Similar methods apply to other receptors,
provided that the error characteristics are known. Lineage
is also tracked for each data item (or set of items) as it is
processed within the virtual device.

A virtual device provides a rich interface to HiFi for
interacting with the receptor (or set of receptors). It
exposes an interface that consists of a suite of virtual
streams, including multiple levels of processed data
streams (ranging from raw to fully cleaned data), quality
streams, and lineage streams. HiFi interacts with a virtual
device by querying and correlating these streams to
produce useful information. For instance, to determine
the quality of a certain data value, HiFi would correlate a
data stream with the corresponding quality stream. Thus,
the virtual device exports an interface that is richer and
more useful than a cleaning view over the raw data.

A virtual device provides other services as well, such
as archiving, prioritization, actuation, and receptor
management. All of these services are exposed via this
same stream-based interface. For instance, a query over
the archive “stream” allows access to past data.

We are currently exploring the extent of a virtual
device’s functionality and defining its behavior in various
environments.

4.7. Pr ivacy and Access Control

Privacy of data is a prime concern in environments where
the flow of information crosses organizational boundaries.
This is another case where the use of views to express
exported data plays a role. Each HiFi node exports a
particular set of views to the higher level nodes based on
the access control policies specified by the node’s
organization. The query planner ensures that only those
queries that can be written on top of these views are
executed on that node. This restriction ensures that no

information available at the node is leaked to the higher
levels in an unauthorized manner.

The use of SQL views for specifying authorization
policies and enforcing access control by query rewriting
using views has been discussed for the centralized case in
[38]. For HiFi, we can extend the approach to a
distributed scenario in which authorization views are
exported by distributed data sources.

4.8. System Management

Finally, a major requirement and challenge for the
deployment of a large, integrated, distributed system such
as HiFi is the ability to continuously monitor the state of
the system itself and adaptively adjust its behavior.
Furthermore, the system must be easy to modify in terms
of the addition and removal of new components and types
of components. While we are only beginning our
investigation into the system management issue, we
intend to exploit the fact that HiFi is itself a hierarchical
system for monitoring and managing phenomena in
hierarchical environments. Thus, we expect to use the
HiFi infrastructure itself to accomplish much of the
system management task.

5. Initial Architecture and Service Design
Having outlined the major design issues for HiFi, we now
present a description of the initial system. We detail the
functionality and services provided by HiFi by outlining
its major components: the Metadata Repository (MDR),
the Data Stream Processor (DSP), and the HiFi Glue.

5.1. Metadata Repository

The Metadata Repository (MDR) serves as a globally
accessible catalog for system-wide information. This
metadata is of three types: schema, views, and system
information.

The schema contained in the MDR is the mediated
schema of the system over which all application queries
and views are written. It is assumed that this changes very
infrequently. For instance in our SCM example, the
mediated schema consists of sensor and RFID data.

The views stored in the MDR are those exported by
each node in the system. The MDR also maintains a
mapping of the views exported by a node and its physical
location, which is vital for supporting a fluid, loosely-
coupled topology.

The system information contained in the MDR
includes node capabilities, authorization and privacy
controls, and information relating to organizational
boundaries and administrative domains. Additionally,
the MDR maintains runtime information, such as the
current set of queries running on each node, current
network usage, and unavailable/unreachable nodes to help
guide and optimize system behavior.

The MDR can be implemented in a variety of ways,
from fully centralized to fully decentralized, and this is a
topic we are currently investigating.

5.2. Data Stream Processor

The Data Stream Processor (DSP) lives entirely within
a HiFi node and is responsible for all single site data
stream processing. Only the following simple
functionality is expected of a DSP:

1. The ability to process continuous queries
2. The ability to add continuous queries on-the-fly
3. The ability to add sources on-the-fly
4. The ability to cancel queries

Additionally, when present, a HiFi node can profitably
exploit:

1. The ability to modify a currently running query
2. The ability to suspend a currently running query
3. The archiving of streams
4. The querying of archived data

The DSP is oblivious of HiFi and could (in principle) be
any stream processor such as TelegraphCQ [12], Aurora
[1] or STREAM [30]5.

5.3. HiFi Glue

The HiFi Glue, which runs on each HiFi node, is the
fabric that seamlessly binds together the system. It
coordinates its local DSP, communicates with other HiFi
nodes, and manages incoming and outgoing streams. The
HiFi Glue itself consists of local and global sets of
services. The glue and its relationship to the MDR and
DSP are shown in Figure 3.

5.3.1. Local Services

The local HiFi Glue services perform actions that involve
local decisions only.

5 Our current implementation uses a combination of two
versions of TelegraphCQ and the TinyDB system, as these have
been previously developed by our group. The ease of
incorporating other stream processors remains to be seen.

Figure 3 - Internal architecture of a HiFi node

Logical Query Planner : The Logical Query Planner
converts queries into a local query plan (the DSP Plan)
and a set of queries to be run on child nodes (the Remote
Query Set or RQS). We describe this process in more
detail in Section 5.4.

DSP Manager : This module is responsible for
starting, stopping, suspending, and modifying locally
running DSP queries and streams based on input from the
Query Planner. It also handles syntax translation from
HiFi’s internal query representation to the local DSP’s
query language, if necessary.

Resource Manager : This module’s job is to adapt a
node’s behavior to unpredictable run-time conditions and
perform functions such as prioritization and load-
shedding.

Local View Manager : The Local View Manager
provides a way to describe and manage the views that
represent the data exposed by the node. It interacts with
the MDR to export and revoke the current set of views
active on this node. Additionally, it allows authorization,
privacy, and other constraints to be specified for each
view.

Archive Manager : This component manages the
archiving of streams for the purposes of historical
querying. Note that some DSPs support this functionality
internally [13]. Furthermore, the Archive Manager may
interact with other nodes to place data (both relations and
streams) for efficient query processing.

Cache Manager : The Cache Manager snoops
incoming data streams and determines what data to cache
based on current workload. Additionally, it interacts with
the Query Planner to enable query processing using
cached data (i.e., materialized views).

Query L istener : The Query Listener listens for
remote connections, parses incoming requests, and passes
them on to the Query Planner.

Query Dispatcher : This component dispatches
queries of the Remote Query Set to remote HiFi nodes.

Data L istener /Disseminator : These components
handle incoming and outgoing data streams. Incoming
streams from multiple sources may be merged into the
same stream en route to the DSP. Outgoing streams may
be split among multiple destinations. Additionally, these
components handle pre- or post-processing of streams,
such as encryption/decryption or format translation.

5.3.2. Global Services

Global HiFi services require non-local knowledge and
interaction with other nodes in the system. In some cases,
this portion of the glue need not physically reside on each
node. Instead it can be viewed as a set of globally
available services that perform actions on behalf of the
requesting node.

Query Placement Service: This component
determines the best node to start executing a query when

received from a user. It does this by determining the scope
and granularity of the query and consulting the MDR to
determine the lowest common ancestor that can serve as
the query root.

Physical Query Planner : Once the Logical Query
Planner produces a set of plans involving child views, this
module consults the MDR to determine the physical node
location of these views. This is what enables fluid
topologies in HiFi.

Control Manager : The Control Manager interacts
with other HiFi nodes to perform overall system
management. This includes system health monitoring and
global and local startup/shutdown.

5.4. A Day in the L ife of a Query

In this section, we illustrate the functionality of many of
the architectural components by walking through the
processing of a query.

The primary query planning mechanism on each node
is called the shared view infrastructure (SVI), which is
part of the Logical Query Planner. Each HiFi node is
aware of a set of views (V1, V2,…, Vn) that describe all
the data available to it (i.e., the views exported by all of
its children). The SVI converts each view V i to a succinct
form composed of a set of sources and operators. The SVI
then merges this view into its shared view representation
in a manner identical to the way in which new queries are
merged into a common shared plan in TelegraphCQ [12].
Thus, the SVI contains an agglomerated form of the
individual views.

When a query Q enters the HiFi system, the Query
Placement Service is consulted to dispatch the query to its
root. Once a query arrives at its root, the following steps,
coordinated by the Query Planner on each node, take
place recursively to both plan and disseminate the query.

1. SVI conversion: Q is transformed into the same

representation used for views in the SVI.
2. Logical planning: This plan is folded into the SVI in

same manner in which views are added to produce
the following:
• Remote Query Set (RQS): A set of queries

(QV1, QV2,…, QVi), created by the Logical Query
Planner, that represent the current query
rewritten using the views of children. For each
child node’s view V i that must provide data to
this query, a corresponding query QVi is created
to be run on the corresponding child. Note that a
query QVi can be different from the view V i as
more operations can generally be pushed down
into the provider of V i.

• DSP Plan: A local DSP query Qlocal that operates
over the input streams produced by the RQS.

3. DSP setup: The DSP Manager creates a new stream
definition corresponding to each QVi in the RQS and
then adds Qlocal on-the-fly to the DSP.

4. Physical planning: For each QVi to be run on a child
node, the Physical Query Planner produces the
following:
• Where: L i - a location to run the query. If

multiple child nodes export the same view, then
the physical query planner chooses one of the
nodes based on runtime conditions.

• What: Q'Vi - the actual query that has to be run.
Note that Q'Vi is a textual representation of QVi
in the syntax expected by the HiFi node L i.

5. Query dissemination: Each Q'Vi is sent to its
appropriate location L i where this same process takes
place recursively.

6. Data sourcing: As results from the query Q'Vi are
received by the Data Listener, they are streamed into
the DSP.

7. Returning results: As the local DSP produces
results, the Data Disseminator directs them to the
appropriate parent(s).

6. Prototype System
We have built an initial version of HiFi using the
TelegraphCQ (TCQ) stream query processor and the
TinyDB sensor database system. The goal of this
prototype is to examine the feasibility of the uniform
declarative framework and to derive a better
understanding of the core components required for
building high fan-in systems. Figure 4 depicts this initial
deployment. It consists of a three-level hierarchy:
receptors, initial processing, and core processing.

6.1. Receptors

The receptor level consists of sensor networks and RFID
readers monitoring the physical world. For our sensornet
system, we use TinyDB [28], which supports a SQL-
esque interface for query processing. Our current
prototype uses RFID readers to make up the other branch
of the receptor level. Although the RFID reader does not
export a SQL interface, we have built a simple adapter to
interact with the device. Both of these systems are
capable of some form of processing, ranging from
aggressive in-network aggregation in TinyDB to simple
buffering (i.e., windowing) in the RFID reader. HiFi
exploits this functionality to clean the data as it samples it.

6.2. Initial Processing

The receptors feed their streams of partially cleaned data
to the second level in our prototype hierarchy for initial

processing. This level serves as the aggregation point for
the receptors and consists of small computing devices
capable of field deployment. For our system, we use Intel
Stargates [16], small, single-board Linux-based compute
devices built with Intel XScale processors. As shown in
Figure 4, MoteServer and RFIDServer processes interact
with the receptors and inject their streams into HiFi. For
data processing, the Stargates run a scaled-down version
of TelegraphCQ, capable of running simple continuous
queries. Here the system performs additional cleaning
and performs basic aggregation and correlation using
queries similar to those shown in Section 3.2 before
passing on the data. A Stargate along with an associated
sensor network and RFID reader represent our field
deployable unit (FDU) which monitors one area.

6.3. Core Processing

The Stargates feed their processed and aggregated streams
to the root of our hierarchy, a full-fledged server running
TelegraphCQ. This node runs queries that correlate
streams across all devices, for example, “ find the
maximum (sound/number_of_tags) quotient across all
areas.”

6.4. Exper iences

We have deployed this prototype as described with
several FDUs and a streaming visualization interface for
demonstration at the 2004 VLDB conference [15]. In
many ways this experience influenced the design
presented above. We briefly discuss some of these
experiences and the lessons we learned from them.

There were many basic problems arising from the
inherent complexity of a high fan-in system. Each new
device incorporated into the system brought with it its
own implementation challenges. We discovered many
small bugs in different parts of the system as we moved to
each new platform. These challenges provide a strong
argument for a general-purpose data management
platform such as HiFi to remove this source of complexity
when deploying high fan-in systems.

Although our deployment had only three levels in its
hierarchy, we discovered that there was severe data lag,
from the time when a receptor read a data value to the
time when that value was reflected in the output. This
stemmed from the fact that hierarchical, window-based
query processing, naively implemented, has inherent
delays. If a query’s windowing specifications (i.e., its
range and slide parameters) are disseminated unchanged
through the hierarchy, a lag on the order of the slide
parameter is introduced for each level. Thus, the system
must be careful in handling the window clause as a query
is propagated down the hierarchy. We are currently
developing techniques to address this issue.

Our implementation of CSAVA provided many
interesting lessons. As development and testing
progressed, we discovered that the RFID data produced
by the readers were highly unreliable. By applying
CSAVA processing, we were able to clean up this data to
a certain extent. Additionally, this effort validated our
uniform declarative framework, as CSAVA deployment
took relatively little development time.

Finally, deploying this system reinforced our belief
that system management is very important. Our
deployment was relatively small in scope, yet it had five
different platforms running four different data processing
systems across more than 20 devices. Without
management tools for start up, shutdown, and status, the
system would have been largely unusable. Additionally,
we discovered that compartmentalized design of each
node provides a benefit in that faults were isolated to the
component that failed. We were able to dramatically
increase the uptime of the system through strict
compartmentalization of each component in the system.

7. Related Work
As has been discussed in the previous sections, HiFi
builds on a large body of related work. In addition to
work already discussed about the individual components
of HiFi (e.g., view-based query rewrite), there is previous
work relating to both the architecture of high fan-in
systems in general and to the design of HiFi in particular.

7.1. Hierarchical and Receptor -based Systems

There are a variety of projects aimed at managing and
querying the data produced by receptors, both physical
and virtual. These projects have assumed topologies
similar to the high fan-in approach described here,
although there are significant differences.

IrisNet[17] uses a two level hierarchy consisting of
receptors feeding into a core composed of a set of nodes
running a distributed database. Queries are posed in
XQuery over a hierarchical schema which represents both

Figure 4 – The initial HiFi prototype [15]

the node organization and data organization. Thus,
queries contain full information to enable the query to be
routed to the lowest common ancestor necessary to
answer that query. The focus is on ease of service
deployment and scalability. Although IrisNet is organized
in a hierarchy, it does not address hierarchical aggregation
or successive processing of queries.

Astrolabe [43] is designed for distributed system
monitoring and data mining for system management. It
organizes its nodes in a hierarchical manner (termed
zones) with a primary focus on aggregation to enable
system scalability. While not explicitly dealing with
streams, it does handle rapid updates to the underlying
data and re-computes aggregates on-the-fly. It does not
address windowing semantics. Astrolabe is designed to
run on a relatively homogenous system and doesn’ t take
into account differing system capabilities.

The MIT Auto-ID center defines a set of specifications
on how to interact with RFID data, including Savant [31].
They address a similar hierarchical framework with
multiple Savants talking to each other. The also define
some of the same types of data processing stages we
discuss in our CSAVA example. However, each stage in
their processing involves a different data model and
different protocol for interacting with the data.

The Hourglass project [40] from Harvard is
developing a data collection network (DCN) for accessing
sensor-based data. Their infrastructure consists of an
overlay network of wired nodes collecting data from
various sensor networks. They generalize system
components into producers, consumers, and services and
focus on how best to establish and maintain circuits in the
overlay network.

The D-Stampede project [3][35] at Georgia Tech
provides a programming system for managing what they
term an “Octopus” hardware configuration, with a wide
range of receptors feeding into a cluster for further
processing. Their goal is to provide an API to support
high performance application development for a
heterogeneous (both hardware and software) environment.
They focus on providing an application development
environment and not on data management.

7.2. Data Stream Processing

As we have discussed previously, HiFi draws heavily
from the large body of recent work on single site data
stream processing. Projects in this area include
TelegraphCQ [12], STREAM[30], Aurora [1][10], and
NiagaraCQ [11]. To date, there has been less work on
distributed stream processing.
 The Aurora Project has branched into two separate
efforts to extend stream processing to a distributed
environment. Aurora* [14] is designed for a single
administrative domain and addresses QoS and dynamic

operator repartitioning and movement to achieve load-
balancing and fault-tolerance. The Medusa System [14]
arranges single site Aurora data stream processors in a
loosely federated network mediated by agoric principles
to enable spanning of organizational boundaries and load
balancing. This work differs from HiFi that it has focused
on distributing stream processing for load balancing and
high availability. In contrast, HiFi is focused on
identifying and addressing the problems that arise in
systems that naturally assume a high fan-in topology.

More recently, Ahmad and Cetintemel have reported
on an in-depth study of operator placement in a
distributed stream processing system [5]. This work
analyzes multiple algorithms and exposes the trade-off
between bandwidth usage and answer latency.

7.3. Distr ibuted Data Management Systems

More traditional database research has focused on
distributed data management in the form of both tightly
and loosely coupled distributed databases as well as
federated databases. Relevant efforts in this area include
Mariposa[42], Information Manifold [25], and
Tukwila[23].

8. Conclusions
In this paper, we have introduced the notion of high fan-in
systems, an emerging information systems architecture
that leverages advances in data acquisition and sensor
technologies to enable disparate, widely distributed
organizations to continuously monitor, manage, and
optimize their operations. The technology required to
support high fan-in systems builds on previous work in
federated data management, data stream processing,
sensor network query processing, and distributed data
management; however, the unique architectural,
application, and environmental considerations that arise in
such systems raises a wealth of new and interesting
research questions.

We described our initial design ideas and outlined
currently open issues in the development of HiFi, a high
fan-in infrastructure currently being implemented at UC
Berkeley. We have built an initial prototype of HiFi using
the TelegraphCQ and TinyDB code bases, and have
successfully demonstrated the usefulness of stream-
oriented query processing for correlating, aggregating,
and visualizing readings from sensor motes and RFID
readers. This paper represents a current snapshot of our
development and identifies areas of future research. Of
course, as the project develops, we anticipate that both our
design and our research agenda will evolve as new issues
and opportunities arise.

References
[1] Abadi, D. et al., Aurora: A New Model and Architecture

for Data Stream Management. In VLDB Journal,
(August 2003).

[2] Abadi, D., Lindner, W., Madden, S., Schuler, J., An
Integration Framework for Sensor Networks and Data
Stream Management Systems. VLDB 2004.

[3] Adhikari, S., Paul, A., and Ramachandran, U., D-
Stampede: distributed programming system for
ubiquitous computing. ICDCS 2002.

[4] Afrati, F. and Chirkova, R., Selecting and Using Views
to Compute Aggregate Queries, (unpublished
manuscript, 12/08/2003).

[5] Ahmad, Y. and Cetintemel, U. Network-Aware Query
Processing for Stream-based Applications. In VLDB
(2004).

[6] Acharya, S., Alonso, R., Franklin, M., and Zdonik, S.,
Broadcast Disks: Data Management for Asymmetric
Communications Environments. In SIGMOD (1995).

[7] Balazinska, M., Balakrishnan, H., and Stonebraker, M.,
Load Management and High Availability in the Medusa
Distributed Stream Processing System. In SIGMOD
(2004).

[8] Bonnet, P., Gehrke, J., and Seshadri, P., Towards Sensor
Databases. In MDM (2001).

[9] Bonnet, P., and Seshadri, P., Device Database Systems. In
ICDE (2000).

[10] Carney, D. et al., Monitoring Streams - A New Class of
Data Management Applications. In VLDB (2002).

[11] Chen, J., DeWitt, D., Tian, F., and Wang, Y., NiagaraCQ:
A Scalable Continuous Query System for Internet
Databases. In SIGMOD (2000).

[12] Chandrasekaran, S. et al., TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. In CIDR
(2003).

[13] Chandrasekaran, S., and Franklin, M., Remembrance of
Streams Past: Overload-Sensitive Management of Archived
Streams, In VLDB(2004).

[14] Cherniack, M. et al., Scalable Distributed Stream
Processing, In CIDR (2003).

[15] Cooper, O. et al., HiFi, A Unified Architecture for High
Fan-In Systems (System Demonstration), In VLDB 2004.

[16] Crossbow. The Stargate single board computer.
http://www.xbow.com/Products/XScale.htm.

[17] Deshpande, A., Nath, S., Gibbons, P. B., Seshan, S. IrisNet:
Internet-scale resource-intensive sensor services. ACM
SIGMOD 2003.

[18] Duschka, O. M., and Genesereth, M. R., Answering
Recursive Queries Using Views. In PODS (1997).

[19] EPCGlobal, EPCGlobal Homepage,
http://www.epcglobalinc.org.

[20] Faradjian, A., Gehrke, J. E., Bonnet, P. GADT: A
probability space ADT for representing and querying the
physical world. In Proceedings of ICDE 2002 (2002).

[21] Hellerstein, J. et al., Adaptive Query Processing:
Technology in Evolution, IEEE Data Engineering Bulletin,
June 2000.

[22] Harren, M. et al., “Complex Queries in DHT-Based Peer-
to-Peer Networks” . In IPTPS (2002).

[23] Ives, Z. G., Florescu, D., Friedman, M., Levy, A., Weld, D.
S., An Adaptive Query Execution System for Data
Integration. In SIGMOD (1999).

[24] Kossmann, D., Franklin, M., and Drash, G., Cache
Investment: Integrating Query Optimzation and Distributed
Data Placement, ACM TODS Vol. 25, No. 4, Dec. 2000.

[25] Kirk, T., Levy, A., Sagiv, J., Srivastava D. The information
manifold. Technical report, AT&T Bell Laboratories, 1995.

[26] Lerner, A. et al., AQuery: Query Language for Ordered
Data, Optimization Techniques, and Experiments, In
VLDB 2003.

[27] Levy, A., Rajaraman, A., and Ordille, J. J., Querying
Heterogenous information sources using source
descriptions. In VLDB (1996).

[28] Madden, S., Franklin, M., Hellerstein, J., Hong, W., A Tiny
Aggregation Service for ad hoc Sensor Networks, In OSDI
(2002).

[29] Madden, S., and Franklin, M., Fjording the Stream: An
Architecture for Queries Over Streaming Sensor Data, In
ICDE (2002).

[30] Motwani, R. et al., Query Processing, Resource
Management and Approximation in a Data Stream
Management System, In CIDR (2003).

[31] Oat Systems and MIT Auto-ID Center. The Savant.
Technical Report MIT-AUTOID-TM-003, MIT Auto-ID
Center, May 2002.

[32] Pottinger, R., and Levy, A., A Scalable Algorithm for
Answering Queries Using Views, In VLDB (2000).

[33] Qian., X., Query Folding. In ICDE (1996).
[34] Qin, S. J., "Neural networks for intelligent sensors and

control --- Practical issues and some solutions," In: O.
Omidvar and D.L. Elliott (Ed.), Neural Systems for
Control, Academic Press, chapter 8 (1997).

[35] Ramachandran, U. et al., Stampede: A Cluster
Programming Middleware for Interactive Stream-
oriented Applications. IEEE Trans. on Parallel and
Distributed Systems, Nov. (2003).

[36] Ramakrishnan, R. et al., SRQL: Sorted Relational Query
Language, In Statistical and Scientific Database
Management 1998.

[37] Reiss, F., and Hellerstein, J. , Data Triage: An Adaptive
Architecture for Load Shedding in TelegraphCQ, ITB-TR-
04-004, Intel Research, February (2004).

[38] Rizvi, S., Mendelzon, A., Sudarshan, S., and Roy, P.,
Extending Query Rewriting Techniques for Fine-Grained
Access Control, SIGMOD (2004).

[39] Sarbanes-Oxley Act. http://www.sarbanes-oxley.com
[40] Shneidman, J. et al., Hourglass: An Infrastructure for

Connecting Sensor Networks and Applications. Harvard
Technical Report TR-21-04

[41] Srivastava, D., Dar, S., Jagadish, H. V., Levy, A. Y.,
Answering Queries with Aggregation Using Views. VLDB
1996.

[42] Stonebraker, M., Aoki, P. A., Litwin, W., Pfeffer, A.,
Sah, A., Sidell, J., Staelin, C., and Andrew Yu.
Mariposa: A Wide-Area Distributed Database System.
VLDB Journal, 1996.

[43] van Renesse, R., Birman, K. P., and Vogels, W.,
Astrolabe: A robust and scalable technology for distributed
system monitoring, management, and data mining. ACM
TOCS, 2003.

