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Abstract 

Pervasive computing applications monitor 
physical-world phenomena and integrate data 
acquisition, communication and actions across 
small, heterogeneous devices (e.g., smart 
sensors, network cameras and handheld devices).  
To ease the development of these applications, 
we propose to perform their tasks by executing 
action-embedded queries, which are continuous 
queries with operations towards devices.  We 
extend SQL to allow applications to specify 
actions and action-embedded queries.  We treat 
actions as first-class citizens (operators) in query 
execution plans, and investigate adaptive, cost-
based optimization techniques for a single query 
as well as for multiple queries.  We evaluate our 
prototype query processor, Aorta, using a 
pervasive lab monitoring application.  The initial 
experimental results show that Aorta ensures 
correct application semantics, improves query 
response time and balances device workload. 

1. Introduction 

In pervasive (or ubiquitous) computing [26], various 
kinds of networked computing devices are embedded or 
mobile in the physical world and interact with the world 
seamlessly.  For instance, a pervasive video surveillance 
application automatically operates a number of remotely 
controllable cameras for security monitoring in a building.  
Involving data acquisition, communication, as well as 
operations on physical devices (actions), pervasive 

computing applications are usually difficult to develop 
and optimize.  In this paper, we study how to utilize 
database-style query processing to facilitate the 
development and optimization of pervasive computing 
applications.   

First, we propose to use SQL to develop pervasive 
computing applications, since the declarative nature of 
SQL queries eases application development and allows 
for performance optimization.  Recent work including 
Cougar [3][4][27] and TinyDB [17] has pioneered this 
approach by treating devices and sensor nodes as virtual 
tables and data from these devices as relational tuples.  
Furthermore, user-defined functions and stored 
procedures are prevalent in pervasive computing 
applications because actions on devices often have to be 
programmed in a language other than SQL.  Therefore, 
we extend SQL to specify continuous queries embedded 
with device actions, which we call action-embedded 
queries.  Correspondingly, we call our action-oriented 
query processor Aorta. 

Next, we explore opportunities for optimization of 
action-embedded queries in Aorta.  This optimization is 
necessary because action-embedded queries are concerned 
with physical-world events (e.g., object movement), 
which may be transient.  Therefore, the response time of 
an action-embedded query determines if an event is 
caught in time.  Furthermore, there may be many devices 
available for executing a single action and the 
performance can be optimized by selecting a suitable 
device.  This device selection is appropriate for the 
application semantics in pervasive computing, where it is 
sufficient for one or a few available devices (as opposed 
to all devices) of the same type to respond to one event.  
For instance, it is sufficient for one camera or a few 
cameras in a lab to take a photo of a location of interest 
upon an event; it is unnecessary to have all available 
cameras take photos of the location at one point in time. 

To select devices for actions, we adapt the traditional 
cost-based query optimization [22] for actions.  
Apparently, suitable cost metrics may vary from 
application to application in pervasive computing, such as 
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response time, power consumption, and quality of action 
effect.  As a first step, we define the cost metric to be the 
response time, a relatively general one.  To estimate the 
cost of an action, we define a set of atomic operations 
with estimated costs and abstract the composition of 
actions in terms of atomic operations.   

There are two unique, intertwined challenges for cost-
based optimization of actions.  First, the current physical 
status of a device may affect the cost of an action on the 
device.  For instance, some actions (e.g., pan, tilt and 
zoom) on a PTZ (pan/tilt/zoom) network camera involve 
the movement of the camera head.  As a result, the 
starting head position of a camera affects the cost of 
moving the head of the camera to a target location.  
Moreover, the execution of an action takes more time on a 
busy camera than on a less busy one.  In some cases, an 
extremely busy camera may malfunction and fail to finish 
the execution of an assigned action.  Second, an action 
may have side effects that change the physical status of a 
device.  Take the PTZ cameras as an example again.  
After an action is executed on a camera, the head position 
of the camera may change, which in turn changes the cost 
of the subsequent action execution on this device. 

Given these two challenges, adaptive query processing 
[15] is essential for action-embedded queries in pervasive 
computing, where the environment is dynamic and delays 
and failures of devices are common.  Consequently, we 
interleave the optimization and the execution of an action-
embedded query in an adaptive, cost-based manner: 
Whenever an execution of a query is triggered, our query 
processor examines the current physical status of the 
candidate devices, estimates the cost, and selects the best 
device to execute the action.  This adaptation occurs in 
every execution of an action-embedded query so that the 
cost estimation of the action is up-to-date and the cost of 
the actual execution is optimized. 

Optimization becomes more complex when multiple 
action-embedded queries that have the same embedded 
action are running concurrently in the system.  In this 
case, we can perform group optimization, in which 
multiple action requests from different queries are 
grouped and assigned to available candidate devices in a 
batch.  We define an action request as the request from a 
query for the execution of an action with instantiated 
input parameter values for the action.  Furthermore, cost 
estimation must be done dynamically in the process of 
group optimization due to the side effects of actions.  We 
have developed two simple but effective algorithms for 
group optimization of action-embedded queries in Aorta. 

There are many interesting systems issues in building 
an action-oriented query processor for pervasive 
computing, most prominently, data communication and 
device synchronization.  In this paper, however, we focus 
on query processing in Aorta because this is the core 
technology of a database approach to the development 
and optimization of pervasive computing applications.   

We have developed an action-enabled monitoring 
application with our Aorta prototype system for the 
pervasive lab in our department.  The pervasive lab was 
established for accommodating cross-area research 
activities as well as undergraduate final year projects on 
pervasive computing.  It has rack-mounted PC servers, 
desktops with removable hard disks, and various devices 
such as sensors, cameras, phones, and PDAs.  Faculty, 
students and other personnel with access permission can 
enter the lab anytime using their university ID cards 
(smartcards).  Due to the diversity and dynamic nature of 
the lab, the action-enabled monitoring application is 
highly desirable for safety, security and management 
purposes.  We use this application as an illustrative 
example throughout the paper.  

The remainder of this paper is organized as follows.  
We describe the overall Aorta system architecture in 
Section 2.  We briefly introduce our SQL extension for 
actions and action-embedded queries in Section 3.  In 
Section 4, we present our optimization and execution 
techniques for action-embedded queries in detail.  In 
Section 5, we evaluate these techniques using the 
pervasive lab monitoring application.  We discuss related 
work in Section 6 and conclude our paper in Section 7. 

2. System Architecture 

The Aorta system consists of three major layers, as 
illustrated in Figure 1. 
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Figure 1: Three-layer illustration of Aorta 

(1) A declarative interface that allows pervasive 
computing application programmers to specify actions 
towards heterogeneous devices through simple, 
declarative action-embedded queries.  This interface 
alleviates the problem of programmers having to handle 
various programming APIs for specific types or models of 
devices.  We extend the SQL language to capture action 
semantics and provide a library of system built-in 
methods (actions) for accessing and operating devices.    

(2) A uniform data communication layer across 
heterogeneous devices.  This layer ensures that the Aorta 
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system, not the individual applications, is responsible for 
monitoring and tuning the current network infrastructure 
and the physical settings of the devices.  Similar to the 
Ingress and Caching modules in TelegraphCQ [7], this 
layer handles heterogeneous networking protocols and 
provides a dynamic, logical view of the networked 
devices for applications.  This abstract view shields the 
lower-level implementation issues, such as data 
transmission loss, action failure and resource consumption 
on devices to enables the applications to focus on the real-
world semantics of their tasks.   

(3) An action-oriented query processing engine for 
queries involving actions.  This engine is the core of our 
framework.  Given the specifications of action-embedded 
queries received by the declarative interface and the 
facilities provided by the communication layer, the engine 
is responsible for generating, optimizing and executing 
action-embedded query execution plans.  It interacts with 
the communication layer to adapt to device capacities and 
network loads.  It also provides mechanisms to reduce 
device contention and to avoid malfunctioning devices.   

In the remainder of this paper, we mainly present the 
top two layers in Figure 1.   

3. The Declarative Interface 

In this section, we describe the syntax and semantics of 
the query language provided by the Aorta declarative 
interface.  We extend SQL to handle device actions and 
call our query language AortaSQL.  The three main 
commands of AortaSQL are CREATE, DROP, and 
ALTER.  They can be used for either actions (ACTION) 
or action-embedded queries (AQ). 

Actions in Aorta are system-provided or user-defined 
methods/functions that operate devices.  For a user-
defined action, the user must pre-compile the code of the 
action into a dynamically linked library, and use the 
command CREATE ACTION to register the action along 
with an action profile to Aorta.  An action profile is an 
XML text file that describes the high-level semantics of 
the action (more details will be discussed in Section 4).  
The following is an example of registering a user-defined 
action, which directs a programmable cell phone to ring.  

CREATE  ACTION  ring(String phone_no) 
AS  “admin/lib/ring.dll” 
PROFILE  “admin/profiles/ring.xml” 

An application can use the DROP command to drop an 
action that it has registered before: 

DROP ACTION action_name 
Both the executable and profile of the action will be 
removed. 

The semantics of actions in pervasive computing are 
widely diversified.  As the first step in investigating 
action-oriented query processing for pervasive computing, 
we currently consider only single-device actions (actions 
that involve a single device of some type).  For multi-
device actions (actions that involve multiple devices of 

various types), the coordination among the multiple 
devices involved in an action may be sophisticated, which 
makes the optimization of such actions more difficult.  
The extension of Aorta for handling multi-device actions 
is one direction of our ongoing work.   

After an action is registered to the system, applications 
can then specify and register queries with the action 
embedded.  Figure 2 shows the syntax of the CREATE 
AQ command, which defines an action-embedded query 
and registers the query to the system. 

Figure 2: The CREATE AQ command in AortaSQL 

The specification of an action-embedded query in 
AortaSQL appears to be an ordinary continuous query 
with a name and the optional START, STOP, LIFETIME 
and INVOCATION clauses.  Considering that pervasive 
computing applications are often time-related, we 
designed a number of timer clauses.  The START and 
STOP clauses specify when a query should start or stop.  
The LIFETIME clause describes how long the query will 
be kept in the system.   

Aorta provides a set of system built-in variables and 
Boolean timer functions.  Examples of system built-in 
variables include $now, $never, $forever, and $once. 
Examples of system-provided Boolean timer functions 
include every(interval_length, time_unit), inTimeInterval 
(start_time, end_time), and atTime(hour, minute, second).  
These variables and timer functions can be used in the 
WHERE clause as well as in the START and STOP 
clauses.  The default conditions of the START, STOP and 
LIFETIME clauses are $now, $never and $forever. 

The main difference between an action-embedded 
query and an ordinary continuous query is in the 
select_list, where an action may appear.  Whenever the 
query condition is satisfied, the action is executed and the 
number of times of the execution is determined by the 
optional INVOCATION clause.  This clause specifies 
how many times the embedded action is invoked 
whenever the query condition is satisfied.  The default 
value in the clause is one.  Applications can set the value 
in this clause to be an arbitrary number N or a system-
provided variable $all, which means that the action will 
be invoked up to N times or on all candidate devices 
whenever the query condition is satisfied.  Since the 
execution of an action is neither restricted to a specific 
device nor required on all candidate devices, this 

CREATE  AQ  aq_name  AS 
SELECT select_list 
FROM  device_table_list 
[WHERE where_condition] 
[GROUP BY groupby_list] 
[HAVING having_condition] 
[START  start_condition] 
[STOP  stop_condition] 
[LIFETIME lifetime]  
[INVOCATION num_invocations] 



 4 

application semantics increases the reliability of action 
execution, saves system resources and creates 
opportunities for query optimization. 

Putting these language constructs together, Figure 3 
shows an example query, night_surveillance, for the 
pervasive lab monitoring application in AortaSQL. 

Figure 3: The night_surveillance example in AortaSQL 

In this example, the action photo(camera_ip, location, 
directory_name) operates the network camera with an IP 
address camera_ip to move its head to the direction 
pointing to location and take a medium-size photo; and 
then stores the photo to the directory directory_name.  
The file name will be dynamically assigned by the camera 
using the current system date and time.  The action 
sendphoto (phone_no, file_name) first converts an image 
file named file_name into the format for phone display 
and then sends the converted image to the phone with a 
phone number phone_no.  As illustrated in this example, 
action nesting is supported in Aorta to enable complex 
interactions between devices.  The constraint s.accel_x > 
500 in the query condition monitors the physical-world 
events of interest (e.g., someone pushes the door).  The 
candidate cameras and phones are specified by the 
constraints coverage(c.id, s.loc) and p.owner = “admin”. 

Action-embedded queries are “backward-compatible” 
with ordinary continuous queries and snapshot queries.  
This compatibility is intuitive, since data acquisition is 
essentially a trivial type of action.  For instance, if there is 
no action in the select_list, a CREATE AQ command 
creates a traditional continuous query.  Furthermore, if the 
LIFETIME of an AQ is specified to be $once, this AQ is a 
snapshot query that executes only once during its lifetime. 

Finally, we give examples of the ALTER AQ and 
DROP AQ commands, which modify and remove pre-
defined action-embedded queries, respectively.  The 
following command stops a query immediately: 

ALTER AQ aq_name SET STOP $now 
If the application that defined a query does not need the 
query any more, it can use the following command to 
remove it from the system: 

DROP AQ aq_name 

4. Action-Oriented Query Optimization 
and Execution 

Based on the application semantics for action-embedded 
queries, in this section we present our action-oriented 
query processing techniques using a simple example (see 
Figure 4).  This snapshot query is a simplification of the 
night_surveillance example in Figure 3.  In spite of its 
simplicity, this query is sufficient for illustrating the main 
design approach of our query optimizer and the related 
issues.  This example is also used for performance 
evaluation in our experiments. 

Figure 4: The snapshot query 

4.1 Query Plan Generation and Execution 

We have implemented a preliminary query operator 
framework in Aorta.  Most of the query operators are 
relational, e.g., selection, projection and join operators, 
since data in Aorta are all in the form of relational tuples 
even though the attributes can be of less traditional data 
types, such as images.  

Different from a traditional query optimizer, Aorta 
makes actions operators in query execution plans.  An 
action operator contains the name, the input parameters, 
and the code block of the method to be executed.  Figure 
5 illustrates the query plan of the snapshot query in Figure 
4.  For simplicity, projections are omitted. 

sensor camera

σσσσs.accel_x > 500

coverage(c.id, s.loc)

photo(c.ip, s.loc, “photos/admin”) 

 

Figure 5: Query plan of the snapshot query 

The execution flow of this query plan is as follows: 
First, the sensor virtual table is scanned and filtered to see 
if there are sensors that detect an x-axis acceleration rate 
larger than 500.  When a sensor tuple is pushed from the 
sensor scan operator, it is used to join (probe) the camera 
virtual table to find cameras whose view ranges cover the 
sensor’s location.  Finally, the IP addresses of these 
cameras and the location of the sensor are passed to the 
action operator, which selects one suitable camera to take 
the photo. 

Similar to the sensor and the camera scan operators in 
this query plan, for each type of device involved in Aorta, 
a scan operator is provided by the uniform 

CREATE  AQ  night_surveillance  AS  
SELECT  sendphoto(p.no,  photo(c.ip, s.loc,           
                                              “photos/admin”)) 

 FROM   sensor  s, camera  c, phone  p 
 WHERE   s.accel_x > 500  
 AND   coverage(c.id, s.loc) 
 AND   p.owner = “admin” 
 START   atTime (0, 0, 0) 
 STOP   atTime (6, 0, 0) 

CREATE  AQ  snapshot  AS  
SELECT  photo(c.ip, s.loc, “photos/admin”) 
FROM     sensor  s, camera  c 
WHERE   s.accel_x > 500  
AND        coverage(c.id, s.loc) 
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communication layer for the query processor to access the 
corresponding virtual device table.  The function 
coverage() is provided by the Aorta system.  It shields 
applications from the change of the specific geographical 
location system adopted by Aorta. 

In this query plan, the smart sensors are the triggering 
devices, which keep on sampling real-time values of the 
accel_x attribute with a system-tuned sampling period.  
Due to the asynchronous nature of event occurrence, a 
push queue is required to connect the sensor scan operator 
to its upstream operator.  In comparison, the triggered 
devices on which the action is executed, i.e., the cameras 
in this query plan, need a traditional pull queue for the 
camera scan operator.  We have implemented both types 
of queues in our query processing framework. 

From this simple example we observe that, due to the 
event-driven nature, the execution flow of a single action-
embedded query plan in Aorta is usually quite fixed.  
Consequently, there is little space for traditional plan 
enumeration [22], since the positions of operators in a 
query plan cannot be switched.  Furthermore, different 
from traditional user-defined functions, it is generally 
unintuitive or impossible to push down an action operator 
in a query plan, because the action must know the values 
of all its input parameters before it can execute. 

Even though the reordering of operators in an action-
embedded query plan is unlikely, we can optimize 
individual actions for their efficient execution.  More 
specifically, upon an event we can select the best device 
for an action operator, since there are usually multiple 
candidate devices for executing the action and the default 
application semantics is to execute the action only once.  
This optimization of action operators is similar to 
selection/projection/join method selection in traditional 
query optimization.  The major difference is that in 
pervasive computing we need to consider the physical 
status of devices when optimizing actions. 

In the following, we present the action-oriented query 
optimization and execution techniques we have designed 
and implemented in our Aorta query processor.  For 
simplicity, we say “a type of device” in short for “a type 
or model of device”. 

4.2 Cost Estimation Model for Actions 

As we take a cost-based approach for the optimization of 
actions, an immediate problem is how to estimate the cost 
of an action to be executed on a specific device.  We 
believe that the optimizer should be able to seek 
optimization opportunities for an action in a general way 
without knowing the implementation details of the action, 
no matter whether the action is system-provided or user-
defined.  Therefore, we propose a generic cost model for 
actions.   

The cost model for an action includes the following 
components: (1) a set of atomic operations on the type of 
device that this action involves, (2) the estimated costs of 

the atomic operations, (3) a grammar for specifying the 
composition of the action, (4) the profile of the action, 
and (5) the formulas for estimating the cost of the action.  
All components are system-provided except for (4), which 
is provided by the application that registers the action.  
We describe these five components in order. 

Atomic Operations.  For each type of device 
involved in Aorta, we define a set of atomic operations 
that the devices can execute.  Examples of such atomic 
operations include: “take a photo of a specific size (small, 
medium or large)”, “turn the head by one degree in a 
specific direction (up, down, left or right)”, and “zoom in 
(or out) one level” for cameras; “receive a photo (or a text 
message) of a specific size” for phones; “beep once” and 
“blink once” for sensors; and “establish a connection” for 
all types of devices.  As the name suggests, the atomic 
operations are the basic, non-dividable units of actions.  

Estimated Costs of Atomic Operations.  We use a 
number of homegrown testing programs to measure the 
estimated cost of each atomic operation for each type of 
device by executing the operation repeatedly.  Each 
estimated cost is the average of one hundred independent 
runs.  These estimated costs of atomic operations are 
stored as part of the device profiles and managed by the 
uniform communication layer.  Our tests show that an 
atomic operation has almost the same estimated cost on 
devices of the same type.   

We currently measure the cost of an atomic operation 
in terms of response time: the time required to execute the 
operation.  The cost of an action execution on a device is 
defined in the same way.  Other cost metrics may be more 
meaningful for some atomic operations, such as power 
consumption for sensor beeps and price for phone calls.  
We choose response time because it is a general cost 
metric and is suitable for a large number of atomic 
operations on various types of devices.  In addition, no 
matter what cost metric is chosen in our model, the 
methodology for cost estimation is similar.  It is very easy 
to extend our cost model to adopt different cost metrics 
for different actions, or to use a weighted combination of 
multiple cost metrics for an action. 

As an example, for the AXIS 2130(R) PTZ network 
cameras [2] we used, we have defined atomic operations 
and estimated their costs as listed in Table 1.   

Table 1: Estimated costs of atomic operations for AXIS 
2130(R) PTZ network cameras 

Atomic 
Operation 

Estimated Cost  
(milliseconds) 

Pan (per degree) 13 

Tilt (per degree) 14 

Zoom (per level) 0.36 

Connection 110 

Take a Small-Size Photo 30 

Take a Medium-Size Photo 40 

Take a Large-Size Photo 50 
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Action Composition.  Based on the atomic operations 
on devices, we define the composition of an action using 
the following grammar: 
action := operationSequence 
operationSequence := operationUnit(& operationUnit)* 
operationUnit := operationSequence | operationSet |                     
                            operation 
operationSet := operationUnit (|| operationUnit)* 
operation :=  atomicOperation (& atomicOperation)* 

In the grammar, the symbol "&" stands for sequential 
execution and "||" for parallel execution.  An action in 
Aorta is an operationSequence and an operationSequence 
is a number of operationUnits executed sequentially.  An 
operationUnit in turn can be an operationSequence, an 
operationSet, or an operation.  An operationSet consists 
of a number of operationUnits that are executed in 
parallel.   

Finally, an operation is defined as the sequential 
execution of a number of identical atomic operations.  In 
other words, an operation is to execute the same atomic 
operation multiple times sequentially. Our consideration 
for the identical-atomic-operation constraint is to make 
the composition of an operation as simple as possible and 
to leave more complex relationships among operations to 
the nesting of operationSequence and operationSet.   

Action Profiles.  Instead of inquiring about the low-
level implementation details, Aorta requires applications 
to provide the high-level semantics of an action via an 
action profile.  An action profile is an XML file that 
contains the following information about an action: (1) 
the name, input parameters, and involved device of the 
action and (2) the composition of the action.  The DTD 
(Document Type Definition) of an action profile is similar 
to that specified in the grammar for the composition of an 
action.   

As an example, Figure 6 shows a fragment of the 
action profile of the system-provided action photo().  The 
composition of the action is illustrated in Figure 7.  For 
simplicity, operationUnit is omitted in Figures 6 and 7. 

This action profile specifies the following information 
to the Aorta query optimizer: 

(1) The action name is photo and it is towards the 
AXIS 2130(R) PTZ network cameras. 

(2) The action has three input parameters, denoted as 
$camera_ip, $location, and $directory_name, in order. 

(3) The action consists of a sequence of operations and 
operationSets, which in turn consist of connect, 
takeMediumSizePhoto, and a set of pan, tilt , zoom atomic 
operations. 

(4) The pan, tilt, zoom operations are executed in 
parallel.  The system-provided functions deltaPan(), 
deltaTilt() and deltaZoom() (the latter two are not shown 
in Figure 6) are used to compute the numbers of pan, tilt, 
zoom atomic operations needed on a candidate camera 
based on the current head position of the camera, the 
value of the $location input parameter of the action, and 
the geographical location system that Aorta adopts. 

Figure 6: Action profile of the photo() action 

operation operationSet

operationoperation operationconnect

pan tilt zoom

operation

takeMediumPhoto

operation

connect
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& &&

&

||
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Figure 7: Composition of the photo() action 

Cost Estimation Formulas for Actions.  With the 
four pieces of information (the set of atomic operations, 
their estimated costs, the grammar for specifying action 
composition, and the action profile), the query optimizer 
is ready to estimate the cost of an action execution on a 
candidate device using the following cost estimation 
formulas ((1)-(4)): 

equenceoperationSaction C      C = (1) 

_i

N

1i
nitoperationUequenceoperationS C      C ∑=

=                                     (2) 

)C(MAX      C nit_ioperationU

N

1i
etoperationS

=
=

         (3) 
number*    C      C ationatomicOperoperation =                               (4) 

The calculation of these formulas is straightforward.  
The estimated cost of an action Caction is equal to the 
estimated cost of the top level operation sequence 
(Formula (1)).  The estimated cost of an operation 
sequence CoperationSequence is equal to the sum of the 
estimated costs of its operation units (Formula (2)).  Since 
we use response time as the cost metric, the estimated cost 
of an operation set CoperationSet is the maximum estimated 
cost of individual operation units in the set (Formula (3)).  

<actionProfile> 
     <name>photo </> 
     <params> 
          <1>$camera_ip</> 
          <2>$location</> 
          <3>$directory_name</> 
     </params> 
     <device>AXIS 2130(R) PTZ Network Camera</> 
     <operationSequence> 
         <operation>  
             <atomicOperation>connect</> 
             <number>1</> 
         </operation>  
         <operationSet> 
             <operation> 
                 <atomicOperation>pan</> 
                 <number>deltaPan($location)</> 
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Finally, the estimated cost of an operation Coperation is 
equal to the total cost of the number of atomic operations 
it contains (Formula (4)).  In Formula (4), CatomicOperation 
represents the estimated cost of an atomic operation on a 
type of device. 

4.3 Cost-Based Optimization of a Single Query 

Given the cost model for actions, we now describe how 
our optimizer works for the optimization of single action-
embedded queries.   

We continue to use the snapshot query in Figure 4 as 
the example.  Suppose for an execution of this query, 
there are totally N candidate cameras for the action, and 
the optimizer is about to select one from them.  The 
optimizer first connects to the candidate cameras in 
parallel and examines the current physical status of the 
devices, e.g., the current head position (the pan, tilt and 
zoom values) for the cameras.  A TIMEOUT value is set 
to break connections to unresponsive devices.  In our 
current implementation, the TIMEOUT value is set to be 
twice the estimated connection time for the type of 
device.  We will see in Section 5 that this value worked 
well in practice.  When the optimizer has received the 
responses from all of the cameras or the TIMEOUT limit 
is reached, this connection process ends. 

From the composition of the photo() action (more 
specifically, the involved atomic operations) specified in 
its profile, the optimizer knows that the cost of a photo() 
action on a camera is mainly affected by the current head 
position and the network connection delay of the device.  
Note that for actions on different types of devices, the 
action cost may depend on different types of device 
physical status.  As other examples, the current location of 
a robot affects the cost of moving it to a target location; 
and the depth of a sensor node in a multi-hop wireless 
network affects the cost of connecting the node. 

We design the optimizer to poll the candidate devices 
for their current physical status due to the dynamic and 
unreliable nature of the device networks – physical 
devices in pervasive computing may join, move around or 
leave the network in a way unpredictable by the system.  
Cell phones, for example, may be turned on/off anytime 
and may become temporarily unavailable when moving 
into an area where no signals are received.  Furthermore, 
it is possible that some devices also run applications that 
are not built on top of Aorta, which makes it difficult for 
our system to accurately keep track of and predict the 
current workload of the devices.    

After getting sufficient information about the current 
physical status of the candidates, the optimizer begins to 
select one of them to execute the action.  If all candidates 
seem to be unavailable (i.e., all connections are timed 
out), the optimizer will sleep for a while and then repeat 
the connection process to seek more candidate devices to 
execute the action.  The optimizer gives up after repeating 

the connection process three times and an error message is 
returned to the application.  

If things go well and M out of the N cameras are 
available to execute the action (i.e., their responses to the 
connection requests are received within the TIMEOUT 
limit), then for each camera i of these M cameras, the 
optimizer computes its estimated cost Ci to execute the 
action using the following formula: 

Ci   =   MAX (| Pti – Pni |∗ Cpan ,  | Tti – Tni |∗ Ctilt , 
                 | Zti – Zni |∗ Czoom)  +  2 ∗ Cconnection_i 
                   +  CtakeMediumSizePhoto                 (1 ≤ i ≤ M) 
Here Pni, Tni, Zni are the current pan, tilt and zoom 

values of candidate camera i.  Pti, Tti, Zti are the target pan, 
tilt and zoom values specific to camera i corresponding to 
the sensor’s location, which are computed in the 
deltaPan(), deltaTilt() and deltaZoom() functions, 
correspondingly.  Cpan, Ctilt and Czoom are the estimated 
costs of the pan, tilt, zoom atomic operations for this type 
of camera.  The numbers of these atomic operations 
needed on camera i are | Pti – Pci |, | Tti – Tci | and | Zti – 
Zci | respectively, which are the output of the delta 
functions.  Cconnection_i is the connection cost of camera i 
recorded by the optimizer in the initial connection 
process.  CtakeMediumSizePhoto is the estimated cost of taking a 
medium-size photo.  The optimizer will select the camera 
with the least Ci value to execute the action.   

In the formula, the reason we use Cconnection_i instead of 
the estimated cost Cconnection of the connection atomic 
operation for this type of camera is that cameras with a 
light workload are able to respond within the TIMEOUT 
limit but their connection time will be longer than those 
that are currently free.  This is the way the optimizer 
estimates the current workload on candidate devices: a 
heavily-loaded device is very likely to require more time 
to respond to a connection request.  As simple as it looks, 
this method is effective in practice. 

The case that the query requires N executions of an 
action instead of only one can be optimized in a similar 
way.  The optimizer sorts the candidate devices in the 
increasing order of the estimated cost for executing the 
action and picks the top N ones of them. 

4.4 Grouping Multiple Action-Embedded Queries 

Having considered selection of devices for an execution 
of a single query, we proceed to consider group 
optimization of multiple action-embedded queries.  Group 
optimization in Aorta mainly focuses on balancing action 
workload on devices to improve system performance and 
to prevent device overloading.    

In Aorta, we make queries that have the same 
embedded action (the functions are the same, but the input 
parameter values may be different) share a single action 
operator across their query execution plans.  Each query is 
connected to the shared action operator by its own push-
based output queue.  We add the query ID to the output 
tuples of the query before they are passed to the shared 
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action operator so that the operator knows which tuples 
are from which query.  Sharing an action operator among 
multiple queries saves system resources and gives the 
optimizer a global view of the current system workload of 
an action.  Instead of being optimized separately without 
any synchronization among them, multiple queries that 
have the same action are now grouped and optimized as a 
whole in the optimizer. 

Figure 8: The algorithm for action workload assignment 

Figure 9: The algorithm for prioritizing and servicing 
multiple action requests on a single device 

It is expected that Aorta, as a pervasive query 
processor, will always have a large number of queries 
running concurrently.  In this scenario, multiple action 
requests from different queries may appear in a shared 
action operator at the same time or within a short time 
interval.  In order to improve device utilization and query 
response time, we design and implement two algorithms 
to distribute multiple simultaneous action requests to 
available devices and to service these requests in an 
optimized order.  These two algorithms are presented in 
Figure 8 and Figure 9.  

The goal of the two algorithms is to minimize the 
maximum completion time of the set R of action requests 
(the interval between the time these requests appear in the 
shared action operator and the time all of them have been 
serviced) on the group of available devices D.  This 
problem is similar to the classic makespan minimization 
problem [5] in scheduling theory that deals with unrelated 
parallel machines with sequence-dependent job setup time 
and machine eligibility restrictions. As the original 
problem is known to be NP-hard in general, we design 
and implement our own greedy algorithms. 

Algorithm 1 assigns the action requests to the 
available devices with a goal of balancing workload 
among the devices.  Note this algorithm is for request 
assignment only; a request that is assigned to a device is 
queued and is not serviced immediately.  The heuristic for 
assignment is the number of candidate devices of each 
action request.  More specifically, the algorithm starts 
with the request that has the least number of candidate 
devices, and assigns the request to the candidate device 
that will have the minimum estimated total workload if 
this request is serviced on the device.  It then goes on to 
assign the request with the next least number of candidate 
devices until it finishes the assignment of all requests to 
devices.  If two requests have the same number of 
candidate devices, the algorithm assigns the two requests 
in a random order.   

After Algorithm 1 assigns a group of requests to a set 
of devices, for each device, Algorithm 2 prioritizes and 
services the requests that have been assigned to the 
device.  The heuristic in Algorithm 2 is to service the 
request that has the least estimated cost in the current 
physical status of the device.  As the execution of an 
action may change the physical status of a device, the 
physical status of the device is updated after selecting 
each request for the device to service.   

The performance of these two algorithms is related to 
the system-defined grouping time interval T.  The 
optimizer groups requests that fall into one grouping time 
interval.  If T is large, it is likely that many action 
requests can be grouped, but the processing delay for 
individual requests may be large.  In contrast, if T is too 
small, there may be very few action requests in each 
interval and the two algorithms are of little use.  In our 
current implementation, we set T = 100 ms, which is 
about the average processing delay in one execution of the 
snapshot query in Figure 4 from the event being detected 
to the corresponding tuple(s) arriving at the input queue of 
the action operator.   

In addition to enabling efficient group optimization for 
actions, sharing an action operator also gives the 
optimizer the opportunity of sharing the result of a single 
action execution among multiple requests from different 
queries.  Such action result sharing is very important for 
load shedding when the system is heavily loaded with a 
large number of queries and their action requests.  As a 
typical example, our optimizer can easily identify 

Algorithm 1:  Action Workload Assignment 
Input:  A set of n action requests R = (r1, r2, …,  rn) and  a 

set of m devices D  = (d1, d2, …, dm).  Each request 
r i ∈ R has a set of candidate devices Di ⊆ D.    (1 ≤ 
i ≤ n)  

Output:  An assignment of R to D (each r i ∈ R is assigned 
to a device d ∈ Di )  with the workload on D is balanced. 
1.  For each device di in D   (1 ≤ i ≤ m) 
2.     Initialize its assigned workload Wi = 0;    
3.  j = 1; 
4.  While there are unassigned requests { 
5.       For each request r that j devices can service { 
6.            For each of the j candidate devices for r 
7.                Estimate the cost Crk to service r on  
                   device dk, compute  Ek  = Wk  + Crk;  
8.           Select device dl among the j candidate devices  
              that has the least E value and assign r to dl;    
9.           Let Crl be the estimated cost to service r on dl,  
              Wl += Crl  ;                                   
          } 
10.     j++;          
     }     

Algorithm 2:  Prioritize and Service Multiple Action  
                        Requests on a Single Device 
Input:  A set of n action requests Rd on a device d. 
1.  While Rd is non-empty { 
2.       Record the current physical status Sd of d;   
3.       For each request r ∈ Rd   
4.          Estimate the cost Cr to service r in Sd; 
5.      Select the request with the least estimated cost, 
         service it (execute the action), and remove it from Rd; 
     } 
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simultaneous requests with identical instantiated action 
input parameter values and invoke only one action on a 
device for all these requests.  However, given the premise 
that the system should ensure the correct application 
semantics of the result of each action execution, a more 
complex result sharing mechanism seems to highly 
depend on the specific semantics of an action.  We are 
currently investigating the feasibility and usefulness of 
designing general techniques in this regard.   

5. Experiments 

In this section, we use the pervasive lab monitoring 
application to validate the effectiveness of our proposed 
cost model and optimization techniques for actions.  We 
mainly present our experimental results for action-
embedded queries with the photo() action.  We chose this 
action because it is representative and its effect is highly 
visible. 

5.1 Experimental Setup 

Our Aorta query processor was implemented using Java.  
The experiments involved one Pentium III PC, four Axis 
2130(R) PTZ network cameras [2], and ten Berkeley 
MICA2 motes attached with MTS310CA sensor boards 
[10].  Two cameras were mounted on the ceiling of the 
pervasive lab and the other two were placed on desks.  
The ten sensor motes were put at ten different places in 
the pervasive lab.  For instance, Mote 1 was attached to 
the front door of the lab and Mote 2 was put by the 
window.  The view range of each camera covered the 
locations of a few motes.  The location of each mote was 
in the view range of at least two cameras.  We configured 
the cameras to tune their zoom level automatically based 
on the target location for taking photos.  The purpose was 
to take photos with the same view size no matter how far 
a camera was from the target location, so that photos of 
the same location taken by two different cameras had 
almost the same visual quality.  

5.2 Validation of the Cost Estimation Model 

We first used the snapshot query in Figure 4 to verify our 
cost model for actions.  In this experiment, all four 
cameras were started from their “home” positions: pan = 
0, tilt = 0 and zoom = 1.  We pushed the front door of the 
pervasive lab to let Mote 1 (attached to the door) get an x-
axis acceleration rate larger than 500 so that an execution 
of the query was triggered.  All cameras had no other 
workload. 

Table 2: Estimated cost versus real cost of taking a photo 
on different cameras (milliseconds) 

Camera ID 1 2 3 4 
Estimated Cost 2993 3638 N/A 3347 
Real Cost 3061 3682 N/A 3381 
 

Table 2 shows the estimated cost and the real cost for 
executing the action on three cameras.  The real cost was 
recorded by disabling the cost estimation module in the 
optimizer and letting the optimizer randomly pick one 
device for executing the action.  All values in the table 
were the average of three independent runs. 

In Table 2 we see that our cost model is reasonably 
accurate.  The error rate of the estimated cost (defined as 
the ratio of the difference to the real cost) was around 1-
2%.  The order of the cameras by the estimated cost was 
the same as that by the real cost.  The difference in 
absolute values between the estimated cost and the real 
cost was small.  The estimated cost was consistently less 
than the real cost because the transition cost between 
operations in an action was omitted in the cost model. 

Camera 3 had a long connection time due to some 
mechanical problem.  We intentionally kept this 
malfunctioning camera in the experiment to see whether 
the optimizer could successfully identify a malfunctioning 
device.  Its estimated cost was unavailable because the 
connection requests to it from the optimizer were always 
timed out.  Its real cost was unavailable because it always 
failed to execute the action.  This indicates that our 
optimizer could successfully distinguish devices that were 
having problems and avoided selecting them for executing 
actions. 

We have run a set of other experiments with randomly 
generated initial head positions for each camera and with 
other sensor locations.  In all experiments, the order of the 
cameras by the estimated cost was the same as that by the 
real cost, and the difference between the estimated cost 
and the real cost had an upper bound of 200 milliseconds.  
One set of these experimental results is shown in Table 3.  
The target location of the photo() action was the location 
of Mote 2, which was by the window of our pervasive lab.  
The reason that Camera 2 took a much longer time than 
the other two cameras was that the window was far from 
the camera and consequently the camera needed to 
enlarge its zoom level greatly, which took a lot of time. 

Table 3: Cost of taking a photo with random initial 
camera head positions (milliseconds) 

Camera 
ID 

Initial Head 
Position 

Estimated 
Cost 

Real 
Cost 

1 
pan=21  tilt=-63  
zoom=5001 

3021 3077 

2 
pan=137  tilt=-33  
zoom=1 

5425 5595 

4 
pan=-75  tilt=-30  
zoom=1 

3770 3782 

5.3 Optimization of a Single Action-Embedded 
Query 

The main performance metric used in this study is the 
response time of one execution of an action-embedded 
query, which is defined as follows: the interval between 
the time an event is detected (i.e., an execution of the 
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query is triggered) and the time the selected device 
finishes executing the action.  This metric represents how 
fast a query can respond to an event occurrence.  

For the AXIS 2130(R) PTZ network cameras used in 
our experiments, the pan, tilt and zoom ranges of them 
were [-169, 169], [-90, 10] and [1, 9999], respectively.  
Since these three types of operations are independent 
from each other and can be executed in parallel, in the 
extreme case the performance difference of two candidate 
cameras for executing a photo() action could be nearly 4.5 
seconds.  In the experiments that we did for verifying our 
cost model (see Section 5.2), the difference in response 
time between different candidate devices was 0.5 to 2 
seconds in general.   

One may wonder how pervasive computing 
applications can benefit from such a “slight” improvement 
in query response time.  To illustrate this point, consider 
the snapshot query again.  We set the head of Camera 1 to 
several different initial positions while making sure it 
always had the least estimated cost among the candidate 
cameras.  As a result, the optimizer always selected 
Camera 1 to execute the action when Mote 1 attached on 
the front door detected a movement and triggered an 
execution of the query.  We simulated the situation that 
someone was entering the pervasive lab at a normal speed 
(by pushing the front door from the outside) and ran tens 
of experiments. An execution of the query with a response 
time about 2.6 seconds always resulted in a photo similar 
to the one on the left of Figure 10, whereas an execution 
of the query with a response time about 3.2 seconds 
always resulted in a photo similar to the one on the right.  
This is simply because a physical-world event such as 
object movement may last only seconds or milliseconds. 

 

 

Figure 10: Photos taken by Camera 1 with different query 
response times   
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Figure 11: Time breakdown of four different executions 
of the snapshot query 

Figure 11 shows the time breakdown of an execution 
of the snapshot query for both the optimized case and 
non-optimized cases.  In the optimized case, the optimizer 
did action cost estimation for all candidate cameras and 
selected Camera 1 to execute the action.  In the non-
optimized cases, the cost estimation module was disabled 
and the optimizer randomly selected a camera, which 
could be any one of Cameras 1-4.  The initial head 
positions of all cameras were set to their home positions.  

In the figure, “Optimization” is the time the optimizer 
spent selecting a device from the candidates, “Action” is 
the time for the selected device to execute the action, and 
“Others” is the processing cost of the other operators in 
the query plan.  The optimization time of a non-optimized 
case was smaller than that of the optimized case, since the 
optimizer was simply doing random selection.  The 
optimization time of the optimized case shown in the 
figure was 220 milliseconds, due to the connection 
timeout of the malfunctioning Camera 3.  We also ran a 
test with Camera 3 excluded and the optimization time 
was instead 70 milliseconds only.  In comparison, the 
optimization time of a non-optimized case was 40 
milliseconds. 

In the figure, we also see that the cost of executing the 
action on the device dominated the query processing cost.  
Note that in a non-optimized case, when the optimizer 
happened to pick the device with the least cost for 
executing the action, the total query response time was 
slightly less than that of the optimized case.  However, the 
optimization cost is tiny in comparison with the action 
cost.  As a result, our optimization is beneficial since it 
trades a little larger processing cost at the server side for 
the possibly much smaller processing cost at the resource-
constrained device side.  Even when the total response 
time improvement is insignificant, our optimization 
techniques can prevent overloading of devices. 

5.4 Optimization of Multiple Action-Embedded 
Queries 

After examining the optimization issues of a single 
action-embedded query, we continue to investigate the 
impact of our group optimization techniques. 

In the first experiment, we generated ten queries and 
registered them to the system.  All queries were in the 
following format (1 ≤ i ≤ 10): 

In every minute, the i-th query requested a camera to 
take a photo of Mote i's location.  In every grouping time 
interval, we found that our Algorithm 1 could distribute 
the ten action requests from these ten queries nearly 

CREATE  AQ  test_query_i  AS  
SELECT    photo(c.ip, s.loc, “photos/test”)) 

 FROM     sensor  s, camera  c 
 WHERE     s.id = i 
 AND        coverage(c.id, s.loc) 
               AND         every(1, minute) 
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uniformly to all three functioning cameras.  Cameras 1, 2 
and 4 were assigned 3, 4, and 3 requests, respectively.    

Next, we examined the performance impact of 
prioritizing and servicing multiple action requests on a 
single device using Algorithm 2.  We unplugged Cameras 
2-4 so that all requests were directed to Camera 1.  We 
created queries to periodically request the camera to take 
photos of the mote locations.  The queries have the same 
format as the ten queries used in the previous experiment.  
We varied the hotness (the probability of being photoed) 
of the ten mote locations from uniformly distributed to 
highly skewed. 

Since we considered multiple requests as a whole in 
this scenario, we recorded the total real cost of all 
requests.  We compared the performance of the optimized 
case (using Algorithm 2) and the non-optimized case 
(Algorithm 2 was disabled in the optimizer and the 
requests were serviced in a random order on a device). 

Figure 12 shows the total real cost for both the 
optimized and the non-optimized cases when the number 
of simultaneous action requests N on Camera 1 increased 
from 2 to 10.  The hotness of the mote locations was 
skewed.  The values for the non-optimized case were the 
average of ten runs.  Taking an average was because in 
the non-optimized case Camera 1 serviced the requests 
randomly, so two runs might have a large variance in cost.   
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Figure 12: The total real cost of servicing multiple photo() 
action requests on Camera 1 

The figure illustrates that in the non-optimized case, 
the total real cost for of all requests increased greatly with 
respect to N; whereas in the optimized case, such an 
increase was less significant and  even became smooth 
when a threshold was reached (N = 8).  This suggests that 
group optimization of multiple requests on a single device 
improves the overall response time and the device 
utilization.  When the threshold was reached, the device 
was nearly fully loaded and utilized. 

The results for the mote locations with uniformly 
distributed hotness were similar to those in Figure 12 and 
therefore were omitted from the paper. 

6. Related Work 

Recent work in pervasive computing focuses on networks 
of homogeneous devices, e.g. RFID (Radio Frequency 
Identification) tags [20] and cell phones [23].  In 

comparison, Aorta handles a network of heterogeneous 
devices.  Work similar to ours is the Augmented 
Recording System [24], in which the authors proposed to 
actuate camera operations based on various sensor 
readings.  However, this idea of actuation was not 
implemented in the paper and only sensory data collection 
methodology was presented.  Moreover, Aorta takes the 
database query processing approach for the development 
and optimization of pervasive computing applications, 
which distinguishes itself from most existing work in 
pervasive computing. 

In the database area, the design and implementation of 
Aorta has been influenced by a large body of recent 
research work on sensor databases and data stream 
management systems, including Aurora [6], Cougar 
[3][4][27], IrisNet [11], STREAM [19], Telegraph [7], 
and TinyDB [17].  These systems mainly deal with data 
flows, but have basic mechanisms for events and/or 
device actuation.  In comparison, we have less emphasis 
on data flows but focus on optimizing and executing 
actions in networks of heterogeneous devices.   

Actions are closely related to user-defined functions 
and stored procedures, which are widely supported in 
commercial DBMS products, such as IBM DB2 and 
Microsoft SQL Server.  These functions and procedures 
seldom have the side effects on devices as actions in 
Aorta and usually run outside the core of the DBMS. 
Consequently, early work on optimization and execution 
techniques for expensive methods [16] and expensive 
predicates [8][14] has focused on caching the results or 
ordering the predicates in query execution plans.  In 
comparison, we regard actions as first-class citizens in 
query processing and optimize them for the performance 
of their side effects on devices.  In addition, our plan 
enumeration in query processing is on candidate device 
selection of individual action operators rather than 
ordering of operators. 

Query optimization for minimizing response time has 
been previously studied in traditional parallel and 
distributed database systems [1][12].  Our optimization 
approach is specifically designed for pervasive 
computing, which mainly involves selecting the best 
candidate device for executing an action.  Moreover, our 
proposed cost model is general and applicable to a wide 
range of cost metrics in addition to response time. 

Finally, action-embedded queries are closely related to 
triggers [13][21] and continuous queries [9][18][25].  As a 
result, general group optimization techniques in these 
areas, such as predicate indexing or query indexing, are 
applicable to our system for testing the query conditions 
of a group of queries.  Given the goal of our system on 
optimizing device actions for pervasive computing 
applications, we focus on considering the interplay 
between devices and actions in our work.  This 
consideration makes our cost model different from others 
and our query optimization and execution process more 
dynamic.  In addition, the adaptivity of our optimization 
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of actions to the current physical status of the devices and 
our group optimization of actions share a similar spirit 
with CACQ [18] and NiagaraCQ [9]. 

7. Conclusion 

We have presented the design and implementation of 
Aorta, an action-oriented query processor for pervasive 
computing.  The goal of Aorta is to ease the development 
and the optimization of pervasive computing applications.   

We have extended SQL for pervasive computing 
applications to specify their actions and action-embedded 
queries.  We treat actions as first-class operators in query 
execution plans, and investigate adaptive, cost-based 
optimization techniques for them.  We have proposed a 
cost model to estimate the cost of an action execution on 
candidate devices in terms of response time.  We have 
also investigated group optimization techniques for 
multiple action-embedded queries that have the same 
action.  Our experimental results with a pervasive lab 
monitoring application demonstrate that our cost model is 
reasonably accurate, and that our proposed single-query 
or multi-query optimization techniques ensure correct 
application semantics, improve query response time and 
balance device workload. 

Future work includes extending our techniques for 
multi-device actions and actions towards new types of 
devices, studying more sophisticated group optimization 
techniques for action-embedded queries, and improving 
our query interface to be more general and expressive. 
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