
Life beyond Distributed Transactions:
an Apostate’s Opinion

Position Paper

Pat Helland

Amazon.Com
705 Fifth Ave South
Seattle, WA 98104

USA
PHelland@Amazon.com

The positions expressed in this paper are
personal opinions and do not in any way reflect
the positions of my employer Amazon.com.

ABSTRACT

Many decades of work have been invested in the
area of distributed transactions including
protocols such as 2PC, Paxos, and various
approaches to quorum. These protocols provide
the application programmer a façade of global
serializability. Personally, I have invested a non-
trivial portion of my career as a strong advocate
for the implementation and use of platforms
providing guarantees of global serializability.

My experience over the last decade has led me to
liken these platforms to the Maginot Line1. In
general, application developers simply do not
implement large scalable applications assuming
distributed transactions. When they attempt to
use distributed transactions, the projects founder
because the performance costs and fragility make
them impractical. Natural selection kicks in…

1 The Maginot Line was a huge fortress that ran the length
of the Franco-German border and was constructed at great
expense between World War I and World War II. It
successfully kept the German army from directly crossing
the border between France and Germany. It was quickly
bypassed by the Germans in 1940 who invaded through
Belgium.

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make
derivative works and make commercial use of the work, but you must
attribute the work to the author and CIDR 2007.

3rd Biennial Conference on Innovative DataSystems Research (CIDR)
January 7-10, Asilomar, California USA.

Instead, applications are built using different
techniques which do not provide the same
transactional guarantees but still meet the needs
of their businesses.

This paper explores and names some of the
practical approaches used in the implementations
of large-scale mission-critical applications in a
world which rejects distributed transactions. We
discuss the management of fine-grained pieces of
application data which may be repartitioned over
time as the application grows. We also discuss
the design patterns used in sending messages
between these repartitionable pieces of data.

The reason for starting this discussion is to raise
awareness of new patterns for two reasons. First,
it is my belief that this awareness can ease the
challenges of people hand-crafting very large
scalable applications. Second, by observing the
patterns, hopefully the industry can work
towards the creation of platforms that make it
easier to build these very large applications.

1. INTRODUCTION
Let’s examine some goals for this paper, some

assumptions that I am making for this discussion, and
then some opinions derived from the assumptions. While
I am keenly interested in high availability, this paper will
ignore that issue and focus on scalability alone. In
particular, we focus on the implications that fall out of
assuming we cannot have large-scale distributed
transactions.

Goals

This paper has three broad goals:

 Discuss Scalable Applications
Many of the requirements for the design of scalable
systems are understood implicitly by many application
designers who build large systems.

132

The problem is that the issues, concepts, and
abstractions for the interaction of transactions and
scalable systems have no names and are not crisply
understood. When they get applied, they are
inconsistently applied and sometimes come back to bite
us. One goal of this paper is to launch a discussion
which can increase awareness of these concepts and,
hopefully, drive towards a common set of terms and an
agreed approach to scalable programs.

This paper attempts to name and formalize some
abstractions implicitly in use for years to implement
scalable systems.

 Think about Almost-Infinite Scaling of Applications
To frame the discussion on scaling, this paper presents
an informal thought experiment on the impact of
almost-infinite scaling. I assume the number of
customers, purchasable entities, orders, shipments,
health-care-patients, taxpayers, bank accounts, and all
other business concepts manipulated by the application
grow significantly larger over time. Typically, the
individual things do not get significantly larger; we
simply get more and more of them. It really doesn’t
matter what resource on the computer is saturated first,
the increase in demand will drive us to spread what
formerly ran on a small set of machines to run over a
larger set of machines… 2

Almost-infinite scaling is a loose, imprecise, and
deliberately amorphous way to motivate the need to be
very clear about when and where we can know
something fits on one machine and what to do if we
cannot ensure it does fit on one machine. Furthermore,
we want to scale almost linearly3 with the load (both
data and computation).

 Describe a Few Common Patterns for Scalable Apps
What are the impacts of almost-infinite scaling on the
business logic? I am asserting that scaling implies
using a new abstraction called an “entity” as you write
your program. An entity lives on a single machine at a
time and the application can only manipulate one entity
at a time. A consequence of almost-infinite scaling is
that this programmatic abstraction must be exposed to
the developer of business logic.

By naming and discussing this as-yet-unnamed
concept, it is hoped that we can agree on a consistent
programmatic approach and a consistent understanding
of the issues involved in building scalable systems.

Furthermore, the use of entities has implications on the
messaging patterns used to connect the entities. These
lead to the creation of state machines that cope with the

2 To be clear, this is conceptually assuming tens of
thousands or hundreds of thousands of machines. Too
many to make them behave like one “big” machine.
3 Scaling at N log N for some big log would be really
nice…

message delivery inconsistencies foisted upon the
innocent application developer as they attempt to build
scalable solutions to business problems.

Assumptions

Let’s start out with three assumptions which are
asserted and not justified. We simply assume these are
true based on experience.

 Layers of the Application and Scale-Agnosticism
Let’s start by presuming (at least) two layers in each
scalable application. These layers differ in their
perception of scaling. They may have other differences
but that is not relevant to this discussion.

The lower layer of the application understands the fact
that more computers get added to make the system
scale. In addition to other work, it manages the
mapping of the upper layer’s code to the physical
machines and their locations. The lower layer is scale-
aware in that it understands this mapping. We are
presuming that the lower layer provides a scale-
agnostic programming abstraction to the upper layer4.

Using this scale-agnostic programming abstraction, the
upper layer of application code is written without
worrying about scaling issues. By sticking to the scale-
agnostic programming abstraction, we can write
application code that is not worried about the changes
happening when the application is deployed against
ever increasing load.

Over time, the lower layer of these applications may

evolve to become new platforms or middleware which
simplify the creation of scale-agnostic applications
(similar to the past scenarios when CICS and other TP-
Monitors evolved to simplify the creation of
applications for block-mode terminals).

The focus of this discussion is on the possibilities
posed by these nascent scale-agnostic APIs.

 Scopes of Transactional Serializability
Lots of academic work has been done on the notion of
providing transactional serializability across distributed
systems. This includes 2PC (two phase commit) which
can easily block when nodes are unavailable and other
protocols which do not block in the face of node
failures such as the Paxos algorithm.

4 Google’s MapReduce is an example of a scale-agnostic
programming abstraction.

Scale Agnostic Code

Scale-Aware Code
Implementing Support
for the Scale-Agnostic

Programming Abstraction

Application

Upper Layer
of Code

Lower Layer
of Code

Scale Agnostic
Programming Abstraction

Scale Agnostic Code

Scale-Aware Code
Implementing Support
for the Scale-Agnostic

Programming Abstraction

Application

Upper Layer
of Code

Lower Layer
of Code

Upper Layer
of Code

Lower Layer
of Code

Scale Agnostic
Programming Abstraction

133

Let’s describe these algorithms as ones which provide
global transactional serializability5. Their goal is to
allow arbitrary atomic updates across data spread
across a set of machines. These algorithms allow
updates to exist in a single scope of serializability
across this set of machines.

We are going to consider what happens when you
simply don’t do this. Real system developers and real
systems as we see them deployed today rarely even try
to achieve transactional serializability across machines
or, if they do, it is within a small number of tightly
connected machines functioning as a cluster. Put
simply, we aren’t doing transactions across machines
except perhaps in the simple case where there is a tight
cluster which looks like one machine.

Instead, we assume multiple disjoint scopes of
transactional serializability. Consider each computer
to be a separate scope of transactional serializability6.

Each data item resides in a single computer or cluster7.
Atomic transactions may include any data residing
within that single scope of transactional serializability
(i.e. within the single computer or cluster). You cannot
perform atomic transactions across these disjoint
scopes of transactional serializability. That’s what
makes them disjoint!

 Most Applications Use “At-Least-Once” Messaging
TCP-IP is great if you are a short-lived Unix-style
process. But let’s consider the dilemma faced by an
application developer whose job is to process a
message and modify some data durably represented on
disk (either in a SQL database or some other durable
store). The message is consumed but not yet
acknowledged. The database is updated and then the
message is acknowledged. In a failure, this is restarted
and the message is processed again.

The dilemma derives from the fact that the message
delivery is not directly coupled to the update of the
durable data other than through application action.
While it is possible to couple the consumption of
messages to the update of the durable data, this is not
commonly available. The absence of this coupling
leads to failure windows in which the message is
delivered more than once. The messaging plumbing

5 I am deliberately conflating strict serializability and the
weaker locking modes. The issue is the scope of the data
participating in the transactions visible to the application.
6 This is not intended to preclude a small collection of
computers functioning in a cluster to behave as if they are
one machine. This IS intended to formally state that we
assume many computers and the likelihood that we must
consider work which cannot be atomically committed.
7 This is excluding replication for high-availability which
will not change the presumption of disjoint scopes of
tra`nsactional serializability.

does this because its only other recourse is to
occasionally lose messages (“at-most-once”
messaging) and that is even more onerous to deal with8.

A consequence of this behavior from the messaging
plumbing is that the application must tolerate message
retries and the out-of-order arrival of some messages.
This paper considers the application patterns arising
when business-logic programmers must deal with this
burden in almost-infinitely large applications.

Opinions to Be Justified

The nice thing about writing a position paper is that
you can express wild opinions. Here are a few that we
will be arguing in the corpus of this position paper9:

 Scalable Apps Use Uniquely Identified “Entities”
This paper will argue that the upper layer code for each
application must manipulate a single collection of data
we are calling an entity. There are no restrictions on
the size of an entity except that it must live within a
single scope of serializability (i.e. one machine or
cluster).

Each entity has a unique identifier or key. An entity-
key may be of any shape, form, or flavor but it
somehow uniquely identifies exactly one entity and the
data contained within that entity.

There are no constraints on the representation of the
entity. It may be stored as SQL records, XML
documents, files, data contained within file systems, as
blobs, or anything else that is convenient or appropriate
for the app’s needs. One possible representation is as a
collection of SQL records (potentially across many
tables) whose primary key begins with the entity-key.

8 I am a big fan of “exactly-once in-order” messaging but
to provide it for durable data requires a long-lived
programmatic abstraction similar to a TCP connection.
The assertion here is that these facilities are rarely
available to the programmer building scalable
applications. Hence, we are considering cases dealing
with “at-least-once”.
9 Note that these topics will be discussed in more detail.

Data for an app comprises
many different entities.

Key = “UNW” Entity

Entity

Entity

EntityKey = “ABC”

Key = “WBP”

Key = “QLA”

Data for an app comprises
many different entities.

Key = “UNW” EntityKey = “UNW”Key = “UNW” Entity

Entity

Entity

EntityKey = “ABC”

Key = “WBP”

Key = “QLA”

134

Entities represent disjoint sets of data. Each datum
resides in exactly one entity. The data of an entity
never overlaps the data of another entity.

An application comprises many entities. For example,
an “order-processing” application encapsulates many
orders. Each order is identified by a unique Order-ID.
To be a scalable “order-processing” application, data
for one order must be disjoint from the data for other
orders.

 Atomic Transactions Cannot Span Entities
We will argue below why we conclude that atomic
transactions cannot span entities. The programmer
must always stick to the data contained inside a single
entity for each transaction. This restriction is true for
entities within the same application and for entities
within different applications.

From the programmer’s perspective, the uniquely
identified entity is the scope of serializability. This
concept has a powerful impact on the behavior of
applications designed for scaling. An implication of
this we will explore is that alternate indices cannot be
kept transactionally consistent when designing for
almost-infinite scaling.

 Messages Are Addressed to Entities
Most messaging systems do not consider the
partitioning key for the data but rather target a queue
which is then consumed by a stateless process.

Standard practice is to include some data in the
message that informs the stateless application code
where to get the data it needs. This is the entity-key
described above. The data for the entity is fetched
from some database or other durable store by the
application.

A couple of interesting trends are already happening in
the industry. First, the size of the set of entities within
a single application is growing larger than can fit in a
single data-store. Each individual entity fits in a store
but the set of them all does not. Increasingly, the
stateless application is routing to fetch the entity based
upon some partitioning scheme. Second, the fetching
and partitioning scheme is being separated into the
lower-layers of the application and deliberately isolated
from the upper-layers of the application responsible for
business logic.

This is effectively driving towards the message
destination being the entity key. Both the stateless
Unix-style process and the lower-layers of the
application are simply part of the implementation of the
scale-agnostic API for the business-logic. The upper-
layer scale-agnostic business logic simply addresses the
message to the entity-key that identifies the durable
state known as the entity.

 Entities Manage Per-Partner State (“Activities”)
Scale-agnostic messaging is effectively entity-to-entity
messaging. The sending entity (as manifest by its
durable state and identified by its entity-key) sends a
message which is addressed to another entity. The
recipient entity comprises both upper-layer (scale-
agnostic) business logic and the durable data
representing its state which is stored and accessed by
the entity-key.

Recall the assumption that messages are delivered “at-
least-once”. This means that the recipient entity must
be prepared in its durable state to be assailed with
redundant messages that must be ignored. In practice,
messages fall into one of two categories: those that
affect the state of the recipient entity and those that do
not. Messages that do not cause change to the
processing entity are easy… They are trivially
idempotent. It is those making changes to the recipient
that pose design challenges.

To ensure idempotence (i.e. guarantee the processing
of retried messages is harmless), the recipient entity is
typically designed to remember that the message has
been processed. Once it has been, the repeated
message will typically generate a new response (or
outgoing message) which mimics the behavior of the
earlier processed message.

The knowledge of the received messages creates state
which is wrapped up on a per-partner basis. The key
observation here is that the state gets organized by
partner and the partner is an entity.

We are applying the term activity to the state which
manages the per-party messaging on each side of this
two-party relationship. Each activity lives is exactly
one entity. An entity will have an activity for each
partner entity from which it receives messages.

In addition to managing message melees, activities are
used to manage loosely-coupled agreement. In a world
where atomic transactions are not a possibility,
tentative operations are used to negotiate a shared
outcome. These are performed between entities and
are managed by activities.

This paper is not asserting that activities can solve the
well known challenges to reaching agreement
described so thoroughly in workflow discussions. We
are, however, pointing out that almost-infinite scaling
leads to surprisingly fine-grained workflow-style
solutions. The participants are entities and each entity
manages its workflow using specific knowledge about
the other entities involved. That two-party knowledge
maintained inside an entity is what we call an activity.

Examples of activities are sometimes subtle. An order
application will send messages to the shipping
application and include the shipping-id and the sending
order-id. The message-type may be used to stimulate
the state changes in the shipping application to record

135

that the specified order is ready-to-ship. Frequently,
implementers don’t design for retries until a bug
appears. Rarely but occasionally, the application
designers think about and plan the design for activities.

The remaining part of this paper will examine these
assertions in greater depth and propose arguments and
explanations for these opinions.

2. ENTITIES
This section examines the nature of entities in greater

depth. We first consider the guarantee of atomic
transactions within a single entity. Next, we consider the
use of a unique key to access the entity and how this can
empower the lower-level (scale-aware) part of the
application to relocate entities when repartitioning. After
this, we consider what may be accessed within a single
atomic transaction and, finally, examine the implications
of almost-infinite scaling on alternate indices.

Disjoint Scopes of Serializability

Each entity is defined as a collection of data with a
unique key known to live within a single scope of
serializability. Because it lives within a single scope of
serializability, we are ensured that we may always do
atomic transactions within a single entity.

It is this aspect that warrants giving the “entity” a
different name then an “object”. Objects may or may not
share transactional scopes. Entities never share
transactional scopes because repartitioning may put them
on different machines.

Uniquely Keyed Entities

Code for the upper layer of an application is naturally
designed around collections of data with a unique key.
We see customer-ids, social-security-numbers, product-
SKUs, and other unique identifiers all the time within
applications. They are used as keys to locate the data
implementing the applications. This is a natural
paradigm. We observe that the boundary of the disjoint
scope of serializability (i.e. the “entity”) is always
identified by a unique key in practice.

Repartitioning and Entities

One of our assumptions is that the emerging upper-
layer is scale-agnostic and the lower-layer decides how
the deployment evolves as requirements for scale change.
This means that the location of a specific entity is likely to

change as the deployment evolves. The upper-layer of the
application cannot make assumptions about the location
of the entity because that would not be scale-agnostic.

Atomic Transactions and Entities

In scalable systems, you can’t assume transactions for
updates across these different entities. Each entity has a
unique key and each entity is easily placed into one scope
of serializability10. How can you know that two separate
entities are guaranteed to be within the same scope of
serializability (and, hence, atomically updateable)? You
only know when there is a single unique key that unifies
both. Now it is really one entity!

If we use hashing for partitioning by entity-key,
there’s no telling when two entities with different keys
land on the same box. If we use key-range partitioning
for the entity-keys, most of the time the adjacent key-
values resides on the same machine but once in a while
you will get unlucky and your neighbor will be on another
machine. A simple test-case which counts on atomicity
with a neighbor in a key-range partitioning will very
likely experience that atomicity during the test
deployment. Only later when redeployment moves the
entities across different scopes of serializability will the
latent bug emerge as the updates can no longer be atomic.
You can never count on different entity-key-values
residing in the same place!

Put more simply, the lower-layer of the application
will ensure each entity-key (and its entity) reside on a
single machine (or small cluster). Different entities may
be anywhere.

A scale-agnostic programming abstraction must have
the notion of entity as the boundary of atomicity. The
understanding of the existence of the entity as a
programmatic abstraction, the use of the entity-key, and
the clear commitment to assuming a lack of atomicity
across entities are essential to providing a scale-agnostic
upper layer to the application.

Large-scale applications implicitly do this in the
industry today; we just don’t have a name for the concept
of an entity. From an upper-layer app’s perspective, it
must assume that the entity is the scope of serializability.
Assuming more will break when the deployment changes.

Considering Alternate Indices

We are accustomed to the ability to address data with
multiple keys or indices. For example, sometimes we
reference a customer by social security number,
sometimes by credit-card number, and sometimes by
street address. If we assume extreme amounts of scaling,
these indices cannot reside on the same machine or a
single large cluster. The data about a single customer

10 Recall the premise that almost-infinite scaling causes
the number of entitys to inexorably increase but size of the
individual entity remains small enough to fit in one scope
of serializability (i.e. one computer or small cluster).

Entity

Key = “ABC”

Entities are spread across scopes of serializability
using either hashing or key-range partitioning.

Entity

Key = “QLA”

Entity

Key = “UNV”

Entity

Key = “WBP”

Entity

Key = “ABC”

Entity

Key = “ABC”

Entities are spread across scopes of serializability
using either hashing or key-range partitioning.

Entity

Key = “QLA”

Entity

Key = “QLA”

Entity

Key = “UNV”

Entity

Key = “WBP”

Entity

Key = “UNV”

Entity

Key = “UNV”

Entity

Key = “WBP”

Entity

Key = “WBP”

136

cannot be known to reside within a single scope of
serializability! The entity itself can reside within a single
scope of serializability. The challenge is that the copies
of the information used to create an alternate index must
be assumed to reside in a different scope of serializability!

Consider guaranteeing the alternate index resides in
the same scope of serializability. When almost-infinite
scaling kicks in and the set of entities is smeared across
gigantic numbers of machines, the primary index and
alternate index information must reside within the same
scope of serializability. How do we ensure that? The
only way to ensure they both live within the same scope is
to begin locating the alternate index using the primary
index! That takes us to the same scope of serializability.
If we start without the primary index and have to search
all of the scopes of serializability, each alternate index
lookup must examine an almost-infinite number of scopes
as it looks for the match to the alternate key! This will
eventually become untenable!

The only logical alternative is to do a two step lookup.
First, we lookup the alternate key and that yields the
entity-key. Second, we access the entity using the entity-
key. This is very much like inside a relational database as
it uses two steps to access a record via an alternate key.
But our premise of almost-infinite scaling means the two
indices (primary and alternate) cannot be known to reside
in the same scope of serializability!
The scale-agnostic application program can’t atomically
update an entity and its alternate index! The upper-layer
scale-agnostic application must be designed to understand
that alternate indices may be out of sync with the entity
accessed with its primary index (i.e. entity-key).

What in the past has been managed automatically as
alternate indices must now be managed manually by the
application. Workflow-style updates via asynchronous
messaging are all that is left to the almost-infinite scale
application. Reading of the data that was previously kept
as alternate indices must now be done with an
understanding that this is potentially out of sync with the
entity implementing the primary representation of the
data. The functionality previously implemented as
alternate indices is now harder. It is a fact of life in the
big cruel world of huge systems!

3. MESSAGING ACROSS ENTITIES
In this section, we consider the means to connect

independent entities using messages. We examine
naming, transactions and messages, look at message
delivery semantics, and consider the impact of
repartioning the location of entities on these message
delivery semantics.

Messages to Communicate across Entities

If you can’t update the data across two entities in the
same transaction, you need a mechanism to update the
data in different transactions. The connection between the
entities is via a message.

Asynchronous with Respect to Sending Transactions

Since messages are across entities, the data associated
with the decision to send the message is in one entity and
the destination of the message in another entity. By the
definition of an entity, we must assume that they cannot
be atomically updated.

It would be horribly complex for an application
developer to send a message while working on a
transaction, have the message sent, and then the
transaction abort. This would mean that you have no
memory of causing something to happen and yet it does
happen! For this reason, transactional enqueuing of
messages is de rigueur.

If the message cannot be seen at the destination until
after the sending transaction commits, we see the message
as asynchronous with respect to the sending transaction.
Each entity advances to a new state with a transaction.
Messages are the stimuli coming from one transaction and
arriving into a new entity causing transactions.

Naming the Destination of Messages

Consider the programming of the scale-agnostic part
of an application as one entity wants to send a message to
another entity. The location of the destination entity is
not known to the scale-agnostic code. The entity-key is.

It falls on the scale-aware part of the application to
correlate the entity-key to the location of the entity.

Repartitioning and Message Delivery

When the scale-agnostic part of the application sends a
message, the lower-level scale-aware portion hunts down
the destination and delivers the message at-least-once.

As the system scales, entities move. This is
commonly called repartitioning. The location of the data

Entity-B

Transaction T2

Entity-A

Transaction T1

Entity-B

Transaction T2Transaction T2

Entity-A

Transaction T1Transaction T1

Entity keys indexed
by secondary key

K
ey

K
ey

K
ey

K
ey

K
ey

Entities indexed
by unique key

Different keys (primary entity-key versus alternate
keys) cannot be collocated or updated atomically.

Entity keys indexed
by secondary key

K
ey

K
ey

K
ey

K
ey

K
ey

Entity keys indexed
by secondary key

K
ey

K
ey

K
ey

K
ey

K
ey

Entities indexed
by unique key

Entities indexed
by unique key

Different keys (primary entity-key versus alternate
keys) cannot be collocated or updated atomically.

137

for the entity and, hence, the destination for the message
may be in flux. Sometimes, messages will chase to the
old location only to find out the pesky entity has been sent
elsewhere. Now, the message will have to follow.

As entities move, the clarity of a first-in-first-out
queue between the sender and the destination is
occasionally disrupted. Messages are repeated. Later
messages arrive before earlier ones. Life gets messier.

For these reasons, we see scale-agnostic applications
are evolving to support idempotent processing of all
application-visible messaging11. This implies reordering
in message delivery, too.

4. ENTITIES, SOA, AND OBJECTS
This section contrasts the ideas in this paper to those

of object orientation and service orientation.

Entities and Object Instances

One may ask: “How is an entity different than an
object instance?” The answer is not black and white.
Objects have many forms, some of which are entities and
others which are not. There are two important
clarifications that must be made to consider an object to
be an entity.

First, the data encapsulated by the object must be
strictly disjoint from all other data. Second, that disjoint
data may never be atomically updated with any other data.

Some object systems have ambiguous encapsulation
of database data. To the extent these are not crisp and
diligently enforced; these objects are not entities as
defined herein. Sometimes, materialized views and
alternate indices are used. These won’t last when your
system attempts to scale and your objects aren’t entities.

Many object systems allow transaction scopes to span
objects. This programmatic convenience obviates most of
the challenges described in this paper. Unfortunately, that
doesn’t work under almost-infinite scaling unless your
transactionally-coupled objects are always collocated12.
To do this, we need to assign them a common key to
ensure co-location and then realize the two
transactionally-coupled objects are part of the same
entity!

Objects are great but they are a different abstraction.

11 It is common that scale-aware applications are not
initially designed for idempotence and re-ordering of
messages. At first, small scale deployments do not
exhibit these subtle problems and work fine. Only as time
passes and their deployments expand do the problems
manifest and the applications respond to handle them.
12 Alternatively, you could forget about collocation and
use two phase commit. Per our assumptions, we assert
natural selection will kick in eliminating this problem…

Messages versus Methods

Method calls are typically synchronous with respect to
the calling thread. They are also synchronous with
respect to the calling object’s transaction. While the
called object may or may not be atomically coupled with
the calling object, the typical method call does not
atomically record the intent to invoke a message and
guarantee the at-least-once invocation of the called
message. Some systems wrap message-sending into a
method call and I consider those to be messages, not
methods.

We don’t address the differences in marshalling and
binding that usually separate messaging from methods.
We simply point out that transactional boundaries
mandate asynchrony not usually found with method calls.

Entities and Service Oriented Architectures

Everything discussed in this paper is supportive of
SOA. Most SOA implementations embrace independent
transaction scopes across services.

The major enhancement to SOA presented here is the
notion that each service may confront almost-infinite
scaling within itself and some observations about what
that means. These observations apply across services in a
SOA and within those individual services where they are
designed to independently scale.

5. ACTIVITIES: COPING WITH MESSY
MESSAGES

This section discusses means to cope with the
challenges of message retries and reordering. We
introduce the notion of an activity as the local information
needed to manage a relationship with a partner entity.

Retries and Idempotence

Since any message ever sent may be delivered
multiple times, we need a discipline in the application to
cope with repeated messages. While it is possible to build
low-level support for the elimination of duplicate
messages, in an almost-infinite scaling environment, the
low-level support would need to know about entities. The
knowledge of which messages have been delivered to the
entity must travel with the entity when it moves due to
repartitioning. In practice, the low-level management of
this knowledge rarely occurs; messages may be delivered
more than once.

Typically, the scale-agnostic (higher-level) portion of
the application must implement mechanisms to ensure
that the incoming message is idempotent. This is not
essential to the nature of the problem. Duplicate
elimination could certainly be built into the scale-aware
parts of the application. So far, this is not yet available.
Hence, we consider what the poor developer of the scale-
agnostic application must implement.

138

Defining Idempotence of Substantive Behavior

The processing of a message is idempotent if a
subsequent execution of the processing does not perform
a substantive change to the entity. This is an amorphous
definition which leaves open to the application the
specification of what is and what is not substantive.

If a message does not change the invoked entity but
only reads information, its processing is idempotent. We
consider this to be true even if a log record describing the
read is written. The log record is not substantive to the
behaviour of the entity. The definition of what is and
what is not substantive is application specific.13

Natural Idempotence

To accomplish idempotence, it is essential that the
message does not cause substantive side-effects. Some
messages provoke no substantive work any time they are
processed. These are naturally idempotent.

A message that only reads some data from an entity is
naturally idempotent. What if the processing of a
message does change the entity but not in a way that is
substantive? Those, too, would be naturally idempotent.

Now, it gets harder. The work implied by some
messages actually cause substantive changes. These
messages are not naturally idempotent. The application
must include mechanisms to ensure that these, too, are
idempotent. This means remembering in some fashion
that the message has been processed so that subsequent
attempts make no substantive change.14

It is the processing of messages that are not naturally
idempotent that we consider next.

Remembering Messages as State

To ensure the idempotent processing of messages that
are not naturally idempotent, the entity must remember
they have been processed. This knowledge is state. The
state accumulates as messages are processed.

In addition to remembering that a message has been
processed, if a reply is required, the same reply must be

13 In the database community, we frequently use this
technique. For example, in a physiological logging
(ARIES-style) system, a logical undo of a transaction will
leave the system with the same records as before the
transaction. In doing so, the layout of the pages in the
Btree may be different. This is not substantive to the
record-level interpretation of the contents of the Btree.
14 Note that it is hard (but certainly doable) to build the
plumbing to eliminate duplicates as messages flow
between fine-grained entities. Most durable duplicate
elimination is done on queues with a coarser granularity
than the entity. Migrating the state for duplicate
elimination with the entity isn’t commonly available.
Hence, a common pattern is that the scale-agnostic
application contains application specific logic to ensure
redundant processing of messages has no substantive
impact on the entity.

returned. After all, we don’t know if the original sender
has received the reply or not.

Activities: Managing State for Each Partner

To track relationships and the messages received, each
entity within the scale-agnostic application must
somehow remember state information about its partners.
It must capture this state on a partner by partner basis.
Let’s name this state an activity. Each entity may have
many activities if it interacts with many other entities.
Activities track the interactions with each partner.

Each entity comprises a set of activities and, perhaps,
some other data that spans the activities.

Consider the processing of an order comprising many
items for purchase. Reserving inventory for shipment of
each separate item will be a separate activity. There will
be an entity for the order and separate entities for each
item managed by the warehouse. Transactions cannot be
assumed across these entities.

Within the order, each inventory item will be separately
managed. The messaging protocol must be separately
managed. The per-inventory-item data contained within
the order-entity is an activity. While it is not named as
such, this pattern frequently exists in large-scale apps.

In an almost-infinitely scaled application, you need to
be very clear about relationships because you can’t just do
a query to figure out what is related. Everything must be
formally knit together using a web of two-party
relationships. The knitting is with the entity-keys.
Because the partner is a long ways away, you have to
formally manage your understanding of the partners state
as new knowledge of the partner arrives. The local
information that you know about a distant partner is
referred to as an activity.

If an entity works with many partners, it will have
many activities. These are one per partner.

Entity-A

Entity-B

Entity-D

Entity-C

If an entity works with many partners, it will have
many activities. These are one per partner.

Entity-A

Entity-B

Entity-D

Entity-C

Entity-X

Msg-A

Msg-B

Activities are simple.
They are what an entity
remembers about other

entities it works with. This
includes knowledge about

received messages.

Entity-X

Msg-A

Msg-B

Entity-X

Msg-AMsg-AMsg-A

Msg-BMsg-B

Activities are simple.
They are what an entity
remembers about other

entities it works with. This
includes knowledge about

received messages.

139

Ensuring At-Most-Once Acceptance via Activities

Processing messages that are not naturally idempotent
requires ensuring each message is processed at-most-once
(i.e. the substantive impact of the message must happen
at-most-once). To do this, there must be some unique
characteristic of the message that is remembered to ensure
it will not be processed more than once.

The entity must durably remember the transition from
a message being OK to process into the state where the
message will not have substantive impact.

Typically, an entity will use its activities to implement
this state management on a partner by partner basis. This
is essential because sometimes an entity supports many
different partners and each will pass through a pattern of
messages associated with that relationship. By leveraging
a per-partner collection of state, the programmer can
focus on the per-partner relationship.

The assertion is that by focusing in on the per-partner
information, it is easier to build scalable applications.
One example is in the implementation of support for
idempotent message processing.

6. ACTIVITIES: COPING WITHOUT
ATOMICITY

This section addresses how wildly scalable system
make decisions without distributed transactions.

The emphasis of this section is that it is hard work to
manage distributed agreement. In addition, though, in an
almost-infinitely scalable environment, the representation
of uncertainty must be done in a fine-grained fashion that
is oriented around per-partner relationships. This data is
managed within entities using the notion of an activity.

Uncertainty at a Distance

The absence of distributed transactions means we
must accept uncertainty as we attempt to come to
decisions across different entities. It is unavoidable that
decisions across distributed systems involve accepting
uncertainty for a while15. When distributed transactions
can be used, that uncertainty is manifest in the locks held
on data and is managed by the transaction manager.

In a system which cannot count on distributed
transactions, the management of uncertainty must be
implemented in the business logic. The uncertainty of the
outcome is held in the business semantics rather than in
the record lock. This is simply workflow. Nothing
magic, just that we can’t use distributed transaction so we
need to use workflow.

The assumptions that lead us to entities and messages,
lead us to the conclusion that the scale-agnostic
application must manage uncertainty itself using

15 At the time of writing this paper, funny action at a
distance has not been proven and we are limited by the
speed of light. There ain’t no such thing as simultaneity
at a distance…

workflow if it needs to reach agreement across multiple
entities.
Think about the style of interactions common across
businesses. Contracts between businesses include time
commitments, cancellation clauses, reserved resources,
and much more. The semantics of uncertainty is wrapped
up in the behaviour of the business functionality. While
more complicated to implement than simply using
distributed transactions, it is how the real world works…

Again, this is simply an argument for workflow.

Activities and the Management of Uncertainty

Entities sometimes accept uncertainty as they interact
with other entities. This uncertainty must be managed on
a partner-by-partner basis and one can visualize that as
being reified in the activity state for the partner.

Many times, uncertainty is represented by relationship.
It is necessary to track it by partner. As each partner
advances into a new state, the activity tracks this.
If an ordering system reserves inventory from a
warehouse, the warehouse allocates the inventory without
knowing if it will be used. That is accepting uncertainty.
Later on, the warehouse finds out if the reserved
inventory will be needed. This resolves the uncertainty.

The warehouse inventory manager must keep relationship
data for each order encumbering its items. As it connects
items and orders, these will be organized by item. Within
each item will be information about outstanding orders
against that item. Each of these activities within the item
(one per order) manages the uncertainty of the order.

Performing Tentative Business Operations

To reach an agreement across entities, one entity has
to ask another to accept some uncertainty. This is done
by sending a message which requests a commitment but
leaves open the possibility of cancellation. This is called
a tentative operation and it represented by a message
flowing between two entities. At the end of this step, one
of the entities agrees to abide by the wishes of the other16.

Tentative Operations, Confirmation, and Cancellation

Essential to a tentative operation, is the right to cancel.
Sometimes, the entity that requested the tentative
operation decides it is not going to proceed forward. That
is a cancelling operation. When the right to cancel is
released, that is a confirming operation. Every tentative
operation eventually confirms or cancels.

When an entity agrees to perform a tentative
operation, it agrees to let another entity decide the
outcome. This is accepting uncertainty and adds to the
general confusion experience by that entity. As
confirmations and cancellations arrive, that decreases

16 This is the simple case. In some cases, the operations
can be partially handled. In other cases, time-outs and/or
reneging can cause even more problems. Unfortunately,
the real world is not pretty.

140

uncertainty. It is normal to proceed through life with ever
increasing and decreasing uncertainty as old problems get
resolved and new ones arrive at your lap.

Again, this is simply workflow but it is fine-grained
workflow with entities as the participants.

Uncertainty and Almost-Infinite Scaling

The interesting aspect of this for scaling is the
observation that the management of uncertainty usually
revolves around two-party agreements. It is frequently
the case that multiple two-party agreements happen. Still,
these are knit together as a web of fine-grained two-party
agreements using entity-keys as the links and activities to
track the known state of a distant partner.
Consider a house purchase and the relationships with the
escrow company. The buyer enters into an agreement of
trust with the escrow company. So does the seller, the
mortgage company, and all the other parties involved in
the transaction.

When you go to sign papers to buy a house, you do not
know the outcome of the deal. You accept that, until
escrow closes, you are uncertain. The only party with
control over the decision-making is the escrow company.

This is a hub-and-spoke collection of two-party
relationships that are used to get a large set of parties to
agree without use of distributed transactions.

When you consider almost-infinite scaling, it is
interesting to think about two-party relationships. By
building up from two-party tentative/cancel/confirm (just
like traditional workflow) we see the basis for how
distributed agreement is achieved. Just as in the escrow
company, many entities may participate in an agreement
through composition.

Because the relationships are two-party, the simple
concept of an activity as “stuff I remember about that
partner” becomes a basis for managing enormous
systems. Even when the data is stored in entities and you
don’t know where the data lives and must assume it is far
away, it can be programmed in a scale-agnostic way.

Real world almost-infinite scale applications would
love the luxury of a global scope of serializability as is
promised by two phase commit and other related
algorithms. Unfortunately, the fragility of these leads to
unacceptable pressure on availability. Instead, the
management of the uncertainty of the tentative work is
foisted clearly into the hands of the developer of the
scale-agnostic application. It must be handled as reserved
inventory, allocations against credit lines, and other
application specific concepts.

7. CONCLUSIONS
As usual, the computer industry is in flux. One

emerging trend is for an application to scale to sizes that
do not fit onto a single machine or tightly-coupled set of
machines. As we have always seen, specific solutions for
a single application emerge first and then general patterns

are observed. Based upon these general patterns, new
facilities are built empowering easier construction of
business logic.

In the 1970s, many large-scale applications struggled
with the difficulties of handling the multiplexing of
multiple online terminals while providing business
solutions. Emerging patterns of terminal control were
captured and some high-end applications evolved into TP-
monitors. Eventually, these patterns were repeated in the
creation of developed-from-scratch TP-monitors. These
platforms allowed the business-logic developers to focus
on what they do best: develop business logic.

Today, we see new design pressures foisted onto
programmers that simply want to solve business
problems. Their realities are taking them into a world of
almost-infinite scaling and forcing them into design
problems largely unrelated to the real business at hand.

Unfortunately, programmers striving to solve business
goals like eCommerce, supply-chain-management,
financial, and health-care applications increasingly need
to think about scaling without distributed transactions.
They do this because attempts to use distributed
transactions are too fragile and perform poorly.

We are at a juncture where the patterns for building
these applications can be seen but no one is yet applying
these patterns consistently. This paper argues that these
nascent patterns can be applied more consistently in the
hand-crafted development of applications designed for
almost-infinite scaling. Furthermore, in a few years we
are likely to see the development of new middleware or
platforms which provide automated management of these
applications and eliminate the scaling challenges for
applications developed within a stylized programming
paradigm. This is strongly parallel to the emergence of
TP-monitors in the 1970s.

In this paper, we have introduced and named a couple
of formalisms emerging in large-scale applications:
 Entities are collections of named (keyed) data which

may be atomically updated within the entity but never
atomically updated across entities.

 Activities comprise the collection of state within the
entities used to manage messaging relationships with
a single partner entity.

Workflow to reach decisions, as have been discussed for
many years, functions within activities within entities. It
is the fine-grained nature of workflow that is surprising as
one looks at almost-infinite scaling.

It is argued that many applications are implicitly
designing with both entities and activities today. They are
simply not formalized nor are they consistently used.
Where the use is inconsistent, bugs are found and
eventually patched. By discussing and consistently using
these patterns, better large-scale applications can be built
and, as an industry, we can get closer to building solutions
that allow business-logic programmers to concentrate on
the business-problems rather than the problems of scale.

141

