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ABSTRACT
In this paper, we present a free-and-easy data publishing
and sharing system based on folksonomy. The system ac-
cepts data objects described with user-created metadata,
called data units. The system supports flexible structure on
the data units, and places no restrictions on the vocabulary
used. We devise a generic table model for storing and rep-
resenting the data units of various structures. We propose a
framework for managing the data units and providing brows-
ing, searching and querying services over them. We present
our current approaches and discuss relevant research issues.

1. INTRODUCTION
Digital information publishing and searching becomes in-

creasingly necessary in recent years, due to the popularity
of the Internet services. We have witnessed the growth of
a number of such web services including Google Base [3],
Delicious [1], liveplasma [4], and flickr [2]. While these sys-
tems vary in their particular services provided, they share
the same operation mode — users publish data items such
as URLs, pictures, advertisements, etc. that are associated
with simple descriptions such as tags and attributes created
by them. The system organizes the published data items
based on users’ own descriptions and makes them accessi-
ble. For example, Delicious allows an user to bookmark
URLs in its server, and requires each URL to have a set of
user-provided tags (a.k.a. keywords). In some sense, the
users collaboratively contribute tags to the system, which
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are then used to categorize the URLs to facilitate webpage
searching (by browsing or querying the tags). Such collab-
orative but unsophisticated way of organizing information
with user-created metadata is coined as folksonomy (com-
bination of “folk” and “taxonomy”), and such systems are
sometimes also called the collaborative tagging systems [13].
A distinguishing feature of these systems is that the user
plays the dominating role — the collaborative behavior of
the users decides the data semantics and organization of the
systems. Although the lack of controlled vocabulary and
systematic taxonomy of the concepts makes the classifica-
tion of the data objects in these systems imprecise and im-
perfect, they are convenient to users and easy to deploy, and
more importantly, they can adapt to the dynamic changes
of the Web content.

Besides simple tags, richer and flexible data structure
could be used to describe a published item to provide more
powerful expressiveness to the user. For example, Google
Base allows users to define their own attributes, and to
describe their published objects with variable numbers of
attributes. The freedom from a strict syntax of the pub-
lished data items is very convenient to users. However, it
is a challenging task to organize and classify the data items
with variable “schemas” and topics, in order to make them
searchable. In Google Base, a list of types such as products,
recipes, are provided, and users are encouraged but not re-
stricted to publish their data item to a specific type.

In this paper, we describe our attempt to build a general
system framework for supporting such free-and-easy data
publishing and searching services. The system accepts data
objects described with user-created metadata, stores and
classifies them, and provides various querying and search-
ing interfaces such as browsing, keyword search, and struc-
tured query. The metadata created by users can be both
for their own use (for labeling their published information
to the system) and for the system to use to organize all the
published information. The data unit, that users use to de-
scribe their published information of any kind, consists of
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title, a number of fields, and a set of tags. Basically, a field
is an attribute/value pair for describing certain property of
an object, e.g., color:yellow for a puppy. A tag is a word
or a phrase the user uses as “keyword” to characterize the
published object. For example, the tags of a puppy could
be animal, dog, etc.. [13] discusses 7 types of tags an user
uses to label URL bookmarks on Delicious website. Figure
1 shows two example data units that describe different types
of information. To illustrate, the left data unit describes the
blog of uzzer. It uses four fields for showing the location,
author, type, and language of the blog. In addition, it has
9 tags that are “keywords” of the blog.

Figure 1: Examples of data units.

Within our system framework, we propose a data model
for storing and representing the collection of data units ac-
cepted from users. It includes a single generic table for stor-
ing the data units, and a set of virtual relations as views of
the generic table for representing different topics of the data
stored in the generic table. The user browses and queries
over the virtual views, and the system retrieves results from
the generic table. Our generic table model differs from the
universal relation model [17, 12] proposed and studied ear-
lier in two main points. First, the universal relation is de-
signed for logical representation of an application domain in
order to free the user from dealing with specific access paths
when issuing queries, while our generic table is the schema
for physically representation and store of the tuples, which
is not visible to the user. Second, compared with that the
universal relation schema describes a specific application do-
main, our generic table model is for comprehensively storing
data of all types of domains.

Our proposed system framework also includes a data units
categorizer that dynamically clusters and assigns incoming
data units into various virtual relations according to their
different topics and structures, a multi-function query pro-
cessor for dealing with various kinds of queries, a storage
manager for storing and indexing the data units whose vol-
ume may grow quickly depending on the popularity of the
system. Figure 2 illustrates the architecture of our system.

The rest of the paper is organized as follows. We first
present the data model in our system in Section 2. Following
it, we generally describe our system framework in Section 3.
Next, we discuss our design and implementation status of
the three main components: data units categorizer, storage
manager, and query processor in Section 4, Section 5, and
Section 6, respectively. Then, we present the related work
to our approach in Section 7 and finally conclude the paper
in Section 8.

Figure 2: System architecture. (VR is the short for
Virtual Relation.)

2. DATA MODEL
The data model in our system is a generic relational table

and a set of virtual relations that are views over the generic
table. Data units published to the system are all physically
stored in the generic table in relational format. Different
from traditional relational database design, the schema of
the generic table in our system is designed in an ad-hoc and
dynamic way. It contains a set of fixed attributes and a set
of non-fixed attributes. Fixed attributes are defined by the
system, while non-fixed attributes are dynamically inserted
according to the data units published to the system. That
is, its schema is collaboratively decided by users. The choice
of such a single table model is suitable for storing the data
units in our system because there is no predictable data
dependencies among the attributes collaboratively defined
by mass users.

Definition 1 The generic relational table schema is an ex-
pression of the form R(U), where R is the name of the table,
and U is the set of attributes such that U = UF ∪ UN and
UF ∩ UN = φ. UF = {A1, A2, · · · , Am} is the finite set of
fixed attributes, UN = {Am+1, Am+2, · · · } is the infinite set
of non-fixed attributes.

The domains of the attributes in UN are initially unde-
fined, and assumed to be infinite and stored as string format.
When the generic table is populated with enough number of
tuples, we can use machine learning approach to learn the
patterns and statistics of the values in order to determine
the domains of attributes.

In our system, the fixed attributes set UF contains: id,
author, title, and tags, where id is system created when a
new data unit is inserted and it is the primary key of the ta-
ble, author and title correspond to the person who publishes
the data unit and the title of it, and tags is a textual at-
tribute for storing all the tags listed in the data unit. When
the system initializes, non-fixed attributes set UN is empty.
More and more attributes will be automatically added to
it when data units having new attributes are published to
the system continuously. On the other hand, when obsolete
data units are deleted from the system, some attributes may
also be removed from UN .

In the generic table, null values are allowed. The seman-
tics of the null is treated as inapplicable, and the opera-
tions on null values are the same as in traditional relational
model.
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When the system adds an attribute to UN of the generic
table, all tuples of the current instance I are assigned null
values for the new attribute, and they maintain equivalence
with their original forms.

The generic table is the schema for storing data units in
our system, but it cannot be semantically meaningful to
users, because the data units stored in it are very diverse in
their topics. In our system, the user poses queries in terms
of a set of virtual relations, which are defined as views of
the generic table. A virtual relation schema is mapped to
UF and a subset of the attributes in UN of the generic table.
The set of virtual relations (R1, R2, · · · , Rn) defined in the
system is called the virtual schema of the generic table.

Definition 2 A virtual relation R′(U) of the generic table
R(UF , UN ) is defined as a view with a query qI over instance
I of R(UF , UN ), denoted as R′(U) 7→ R(UF , UN ) = qI .

We allow different virtual relations to have overlap in the
data units they contain, since a data unit may be relevant
to multiple topics. In this case, the same data unit may
be presented as tuples with different schemas based on the
virtual relations that contain it.

We can query the generic table or virtual relations with
attribute-based queries in terms of selection (σ) and pro-
jection (π). In addition to ordinary comparison operators
such as =, <, >, there are also textual-based comparisons
in our data model, since most data units have lots of tex-
tual fields, e.g., tags attribute. Given a set of keywords
K = (k1, k2, · · · , kq), a relation R(U) and its instance I,
and a subset of textual attributes V ⊆ U , for each tuple
t ∈ I, the textual comparison operator match(t[V ], K) re-
turns a score score(t[V ], K) ∈ [0, 1] indicating its relevance
to the keywords. The match operator relies on a fulltext
index on the keywords of the values of textual attributes.
Given a threshold τ , σmatch(V,K)>τ (I) will return all tuples
in I whose scores are matched higher than τ .

Definition 3 A virtual schema {R1(U1), R2(U2), · · · , Rn(Un)}
is complete in terms of an instance I of the generic table
R(UF , UN ) if I(R1(U1))./oI(R2(U2))./o · · · ./oI(Rn(Un)) =
I, where ./o denotes outer join, and I(Ri(Ui))(1 ≤ i ≤ n)
is the instance of Ri(Ui) generated by evaluating query qi,
which is the view defined for Ri(Ui), over I.

With complete virtual schema, the content stored in the
generic table can be fully exposed to users.

3. SYSTEM FRAMEWORK
As a collaborative publishing and searching system, our

system initializes with an empty generic table AllUnits with
system created attributes, defined as

AllUnits(id, author, title, tags).

As users publish data units to the system, the generic table
is populated with more and more tuples, and consequently
it will have more and more attributes.

When storing a data unit into the generic table, we rep-
resent it as a tuple according to the schema of the generic
table. If there are attributes defined in the data unit that are
not in UN ∈ AllUnits, the system will add those attributes
to UN during the insertion of the new tuple. For example,
if upon the system initialization, the two data units shown

in Figure 1 are published to the system one at a time, the
resultant generic table is shown in Table 1. A data unit be-
comes a tuple in the generic table after it is stored in the
system. In the rest of the paper, we will use data unit and
tuple interchangeably for referring to the tuples stored in
the tables.

The generic table is maintained by the storage manager
component (Figure 2), and it is not visible to the user.
Users access the stored data through the virtual relations
over the generic table, which are built and updated incre-
mentally as new data units are published to the system.
Each virtual relation should represent a semantic category
meaningful to the user. For example, a virtual relation
blog(blog name, blog type, homepage) represents a category
of data units describing blogs. Since the domains of pub-
lished data units are unrestricted, constructing the virtual
relations is identified as the task of incrementally clustering
the incoming data units into various virtual relations. This
task is performed by the data unit categorizer depicted in
Figure 2.

Therefore, our system needs to perform several actions
when accepting a new data unit, which is submitted via the
publish interface — a form indicating various fields users
can provide. First, the data unit categorizer either assigns
the new data unit to one or more existing virtual relations,
or creates a new virtual relation with the new data unit
as the only tuple. Then, the data unit is passed to the
storage manager, which actually inserts the new data unit
into AllUnits, and updates the mapping between the virtual
relation accepting the new tuple and AllUnits if the new
tuple causes changes of the schema of AllUnits. It also
updates the related indices built over the generic table.

We intend to provide in the multi-function query processor
(Figure 2) a broad range of services over the published data
to the user including:

• Virtual schema browsing: The user can browse the vir-
tual relation schemas in a manner similar to browsing
each of semantic categories of a large content classifi-
cation system, in order to zoom the query to one or
more categories he or she is interested in.

• Keyword search: Given a keyword query, we return a
list of matching data units ranked according to their
estimated relevance to the query.

• Structured querying: We will also provide structured
query interface for user to issue structured query over
one or more virtual relations. The structured query
will be transformed to SQL-like query over the generic
table, and be executed over it.

4. DATA UNITS CATEGORIZER
The data units categorizer is the most important com-

ponent of our system. It constructs and maintains virtual
relations for organizing and presenting data units published
to the system of various types through clustering. Conse-
quently, each virtual relation corresponds to a cluster of data
units with similar topics and structures. In the next, we can
use either cluster or virtual relation for referring to a group
of data units resulted in the clustering process. For such
a task of clustering data units with heterogeneous schemas,
our hypothesis is that data units with similar attributes or
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id title author tags homepage blog type language

0 Uzzer’s
blog

uzzer Art, blog,
comments,
design, fun,
livejournal,
photos,
pictures,
uzzer, web

http://uzzer.
livejour-
nal.com

art-blog english
accepted,
russian

(a) Generic table after the first data unit is inserted.

id title author tags homepage blog type language news

source

publish

date

0 Uzzer’s
blog

uzzer Art, blog,
comments,
design, fun,
livejournal,
photos,
pictures,
uzzer, web

http://uzzer.
livejour-
nal.com

art-blog english
accepted,
russian

null null

1 Chinas
Interna-
tional
services
market
reached
18 billion
in 2005

Analysis
Interna-
tional

China,
internet
Services,
News and
Articles

null null null analysis
inter-
na-
tional

02/22/2006

(b) Generic table after the second data unit is inserted.

Table 1: Generic table for storing data units.

tags are likely to have similar topics and can be queried to-
gether, and we should categorize them into the same virtual
relation.

As mentioned, every time a new data unit is accepted,
it is assigned to at least one of the virtual relations, and
can immediately be searchable. This calls for an on-line
clustering model, which is generalized as the following three
steps:

1. Accepts a new data unit u and extracts its attributes
and tags, which are the features of u used for cluster-
ing.

2. Compare features of u with each virtual relation from
the existing set of virtual relationsR = {R1, R2, · · · , Rn},
and assigns u to the virtual relations that result in a
match.

3. If none of the existing virtual relations matches u, cre-
ate a new virtual relation and assign u to it as the only
tuple.

This model allows a tuple to be assigned to multiple vir-
tual relations. This is necessary considering that the topics
accumulated in the system over the time will be very diver-
sified, and a data unit is possible to be related to several
topics. For example, a blog about travel may be assigned to
two clusters that represent blog and travel, respectively. In
addition, there is no predefined parameter for limiting the
total number of clusters. This also suits to the free-and-
easy and open nature of the service we intend to provide,
as the topics in the system are constantly changing and not
predictable.

Based on this clustering model, the first important prob-
lem is the representation of features of a cluster, in order
to effectively determine whether a new data unit matches a

cluster. This is related to the problem of clustering criteria,
and we discuss it in the next subsection. Following it, we
consider how to utilize the attribute and tag features of a
data unit to match with features of clusters.

4.1 Clustering criteria
First of all, we need to answer a fundamental problem

— what is a qualified virtual relation in our system? Al-
though the ultimate answer is subjective, there is need of
some objective criteria for the automatic clustering task.

In most clustering problems such as document clustering,
the quality of a cluster is measured based on the similari-
ties between the features of the elements in it [15], and the
feature of a cluster is represented as the median of the fea-
tures of its elements. Based on this criteria, it is crucial to
select the most important and discriminative features of the
data units, and apply appropriate weightings for different
features [10].

However, after investigation, we realize that this criteria
is not applicable to our problem for two reasons. First, the
attributes and tags associated with each data unit contain
much “noise” because they are directly created by end users,
and it is hard to separate “noise” from useful features of a
new data unit due to the one pass nature of the clustering
task. Figure 3 shows the frequencies of unique attributes
and tags in our crawled data units from Google Base [3],
exhibiting power-law like distribution. We can observe that
both curves have very long tails, which correspond to vo-
cabularies with very low frequencies, which will cause the
measured inter-similarity between data elements inaccurate
if used as features. Second, since the data units are added to
the system continuously that contain uncontrolled vocabu-
laries, the total numbers of attributes and tags keep growing
as new data units are published to the system (as illustrated
in Figure 4), which makes it difficult to collect corpus level
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statistics for weighting the different features.
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Figure 3: Distribution of attributes and tags.

Therefore, considering the existence of large volume of
infrequent attributes and tags, we choose to measure the
goodness of a cluster based on the following two metrics.

1. We test if there are dominating attributes in the vir-
tual relation, i.e., the attributes for which a dominat-
ing number of tuples in it have non-null values.

2. We test if there are dominating tags, i.e., the tags used
by a dominating number of tuples.

We intend to use these two metrics to capture the collec-
tive characteristics of tuples in a cluster and avoid the affect
of “noise”, since we expect it is normal for a virtual rela-
tion to have a large number of infrequent attributes or tags.
Therefore, we represent the features of each cluster with the
dominating attributes and tags.

4.2 Clustering method
Based on the clustering criteria described above, we pro-

pose the algorithm for incrementally clustering incoming tu-
ples into various virtual relations. Since there are two kinds
of features — attributes and tags, we propose to first develop
algorithms for clustering data units based on attributes (Sec-
tion 4.2.1) and tags (Section 4.2.2) independently, and later
we study how to combine the two kinds of features to gen-
erate better clustering (Section 4.2.3).
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Figure 4: Number of unique attributes and tags with
the increasing of data units.

4.2.1 Attributes-based clustering
We define the popularity of an attribute in a virtual re-

lation R(U) with instance I(R) as the ratio between the
number of tuples that have non-null values for it and the
total number of tuples in it, i.e.,

popularity(a ∈ U) =
|{t[a] 6= null|t ∈ I}|

|{t ∈ I}|
.

The popular attribute set (PAS) of a cluster R is the set
of all attributes whose popularity values are not less than a
predefined threshold θ (0 ≤ θ ≤ 1). Formally, it is repre-
sented as

∀a ∈ PAS.popularity(a) ≥ θ∧∀a /∈ PAS.popularity(a) < θ.
(1)

Example 1 Suppose we have three data units u1, u2, and
u3, where u1 has attributes {brand, condition, manufacturer},
u2 has attributes {brand, condition, manufacturer, product type},
and u3 has {brand, condition, manufacturer, product type,
color}. If θ = 1, the PAS of the group {u1, u2, u3} is
{brand, condition, manufacturer}. If θ = 0.5, the PAS
will be {brand, condition, manufacturer, product type}.

As illustrated by the example, we intend to use PAS of
a cluster based on properly chosen θ for characterizing the
dominating attribute features of a cluster, in order that we
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can decide the relevance of a given new tuple to the cluster
by only comparing its set of attributes with PAS of the
cluster. The attributes of the virtual relation that are not in
PAS are considered as “noise”, since their popularity is low,
hence only reflecting features of individual tuples, instead of
the collective features of the cluster (e.g., color attribute of
u3 in Example 1). Therefore, we require a “good” cluster to
have a non-empty PAS with respect to a properly chosen
θ, in order to make sure that the tuples in it have similar
structures.

On the other hand, in a cluster of closely related data
units, each data unit should have sufficient number of at-
tributes from the PAS of the cluster. In Example 1, u1

have 3 attributes from the PAS (when θ = 0.5), while u2

and u3 have 4 of PAS. Consider that if a new unit u4 has
attributes {condition, model, vehicle type}, there is only 1
attribute of u4 in PAS, which may indicate that u1 cannot
join into the cluster composed by u1, u2, and u3. Given
this observation, we realize that we need another threshold
α (0 ≤ α ≤ 1) to indicate whether a tuple is relevant to the
PAS of a cluster. That is, we require all the tuples in a
cluster have more than the portion of α of attributes from
the PAS, which is formulated as

∀u ∈ I(R).|A(u) ∩ PAS| ≥ α · |PAS|, (2)

where A(u) is the set of attributes of tuple u.
The parameter α also affects the formation of PAS in a

cluster. Extremely, when α = 1, PAS is actually the inter-
section of the attributes of all tuples in a cluster, since it
requires every tuple have all the attributes in PAS. In this
case, θ has no effect whatever value it is set to. It is actually
a very strong condition, and tends to lead to large number
of small clusters. On the other hand, if α = 0, there is no re-
quirement on the relevance of tuples’ attributes to the PAS,
and thus all the tuples could be put in one cluster. Usually,
α should be chosen to be greater than 0.5, considering that
when α < 0.5, two tuples with disjoint attribute sets might
be assigned to the same cluster and regarded as similar if
they separately match with two disjoint subsets of PAS of
the cluster.

Therefore, we use the parameters θ and α together to
control the quality of a cluster, and assign incoming tuples
to relevant virtual relations.

As we have mentioned a bit previously, θ and α are ac-
tually not independent. If we model the virtual relation
as a matrix with one dimension representing attributes in
PAS and the other representing tuples, where the entries
are binary values with 1 indicating the association of the
corresponding tuple and attribute and 0 otherwise, i.e., for
a cluster R,

R =

a1 a2 · · · a|PAS|

t1 1 0 · · · 1
t2 0 1 · · · 1
...

...
t|R| 1 1 · · · 0

the frequencies of each attribute ai ∈ PAS is the number
of “1”s in its column, and the number of attributes in PAS
associated with each tuple ti ∈ R is the number of “1”s in
its row. Suppose in i-th column, the ratio of the number
of “1”s to the length, |R|, is θi; and in j-th row, the ratio
of the number of “1”s to the length, |PAS|, is αi, then we

have

Σ
|PAS|
i θi · |R| = Σ

|R|
j αj · |PAS|,

where both sides count the number of “1”s in R.

Let θ̄ =
Σ

|P AS|
i

θi

|PAS|
and ᾱ =

Σ
|R|
j

αj

|R|
, we have

θ̄ · |PAS| · |R| = ᾱ · |R| · |PAS|,

and therefore we can conclude

θ̄ = ᾱ.

We can see that although θ and α regulate the densities
of “1”s in two dimensions, respectively, the means of the
densities of “1”s along the two dimensions are always equal.

Next, we examine how to match an incoming data unit
with existing clusters in the system, and assign data unit to
the clusters that result in a match, given predefined parame-
ters θ and α. Based on our clustering criteria, the matching
between a new data unit u and a cluster R is for checking
that whether R will be in good state, i.e., having non-empty
PAS according to Equation 1 and 2, if u were assigned to
R. When a virtual relation receives a new tuple u, its PAS
might also be changed, with the affect of attributes associ-
ated with u. In this way, the PAS of a cluster is dynamically
maintained each time a new tuple is added to it.

In addition, we also consider that a new tuple u matching
PAS of a cluster based on α and θ might incur too much
“noise” if only a small portion from u’s own attributes match
PAS.

Example 2 There is a cluster R, with PAS = {a, b}, and
the rest attributes of R are {c, d}. When there is a new
data unit u with attributes A(u) = {a, b, e, f, g, h}. Since u
contains attributes {a, b}, which matches PAS of R. How-
ever, since {a, b} is only a small portion (0.33) of u’s all
attributes, which may indicate that u should not be assigned
to R.

Therefore, we require that for each single tuple, most of
its attributes should be in PAS of a cluster when it is as-
signed to it. However, note that we do not constrain the
ratio of PAS to noise of a cluster, i.e., a virtual relation can
have more “noise” attributes than those in PAS, because
we regard the “noise” as individual properties of the tuples.

Figure 5 presents the procedure of matching the attributes
of a new data unit u, A(u), with an existing cluster Ri given
parameters θ and α. Lines 1-2 are for comparing A(u) with
current PAS of Ri, in order to stipulate that u should be
relevant to the tuples already in Ri. Lines 3-9 are for gener-
ating the new PAS of Ri, PAS′

i, assuming u were assigned
to Ri, A(u). If PAS′ becomes empty, u cannot be assigned
to Ri (Lines 10-11). Then we check whether A(u) have more
“noise” compared with its intersection with PAS′

i (Lines 12-
13). Finally, we check whether Ri will keep in good state
by replacing PASi with PAS′

i — every tuple in Ri must
satisfy PAS′ in terms of α (Lines 14-20). Note that we do
not need to retrieve all the tuples of Ri for this checking,
which will be very expensive. Instead, we keep a bit vector
for each tuple in Ri representing the set of attributes it has.
Therefore, the procedure can be performed very efficiently.

When the procedure match(A(u), Ri, θ, α) in Figure 5 re-
turns true, the new data unit u will be added into Ri. Thus,
we have a simple incremental clustering algorithm based on
matching of attribute features of the tuples, as shown in
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match(A(u), Ri, θ, α)
1. if |A(u) ∩ PASi| < α · |PASi|
2. return false
3. PAS′

i ← PASi

4. for each attribute a ∈ (PAS′
i −A(u))

5. if popularity′(a) < θ
6. remove a from PAS′

i

7. for each attribute a ∈ (A(u)− PAS′
i)

8. if popularity′(a) ≥ θ
9. add a into PAS′

i

10. if |PAS′
i| = 0

11. return false
12. if |A(u)− PAS′

i| ≥ |A(u) ∩ PAS′
i|

13. return false
14. if PAS′

i = PASi

15. return true
16. if |A(u) ∩ PAS′

i| < α · |PAS′
i|

17. return false
18. for each tuple u′ ∈ Ri

19. if |A(u′) ∩ PAS′
i| < α · |PAS′

i|
20. return false
21. return true

Figure 5: Match a new data unit to a virtual relation
based on attributes.

Figure 6. It matches u with each of existing clusters, and
assigns u to the clusters that matches u (Lines 2-5). If it
turns out that u cannot match to any of existing clusters, a
new cluster will be created with u as the only tuple, which
is shown with lines 6-8.

attrClustering(u, R = {R1, R2, · · · , Rn}, θ, α)
1. boolean variable assigned← false
2. for each existing cluster Ri ∈ {R1, R2, · · · , Rn}
3. if match(A(u), Ri, θ, α) = true
4. add u into Ri

5. assigned← true
6. if assigned = false
7. create a new virtual relation Rn+1 with u
8. add Rn+1 to R

Figure 6: One pass clustering algorithm based on
attributes.

The one-pass nature of the clustering algorithm shown in
Figure 6 causes the problem that the dissimilarity between
different clusters is not guaranteed. There could result in
multiple clusters with similar structures and heavily over-
lapping tuples, which may happen depending on the arriv-
ing sequence of the data units, since we only consider the
local features of each cluster when assigning data units.

We have two solutions for this problem. The first is to con-
strain each tuple to be assigned to only one cluster. This
solution is simple, and can effectively make sure the distinct-
ness of each cluster. With our experiments, this approach
leads to slightly more number of clusters than the algorithm
in Figure 6. The second solution is using a clustering mon-
itor for adjusting existing clusters periodically, in order to
detect and combine similar clusters. We can try to combine
clusters that have the same PAS or have large portion of
overlapping tuples. The overhead of this approach is high,

because when combining two clusters, say from R1 to R2,
we need to invoke the match(A(u), R, θ, α) procedure in Fig-
ure 5 for every tuple in R1 to check whether it matches R2,
and we also need to relocate tuples in R1 that cannot be
assigned to R2. This solution is also more difficult in that it
need some similarity measure for comparing different clus-
ters. Therefore, we choose the first solution at this stage,
and we are still exploring the second approach.

We conducted preliminary experiments for testing the pro-
posed clustering method based on attributes. With an input
of around 15K number of data units crawled from Google
Base [3], our clustering method results in 756 number of vir-
tual relations when allowing overlapping between clusters,
and 842 when not allowing overlapping between clusters.
Although the numbers of clusters are large, most tuples are
concentrated on only a small portion of the clusters. By
sorting the resulted virtual relations based on the number
of tuples they contain in a decreasing order, we measure the
coverage value of first k number of virtual relations, i.e., the
ratio of the total number of distinct tuples covered by them
to the total number of input data units. Figure 7 shows the
results for both the methods with overlapping and without
overlapping. We can see that over 90% data units are cov-
ered in the first 100 clusters, for both methods. When not
allowing overlapping between clusters, the tuples are more
condensed in fewer relations. This is because there indeed
appears quite a number of similar clusters with large over-
lapping with the method that allows a tuple to go to multiple
relations. Table 2 shows the PASs of the top 10 resulted
virtual relations with most tuples.
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Figure 7: Coverage of virtual relations resulted from
attribute based clustering (θ = 0.5, α = 0.6).

4.2.2 Tag-based clustering
We can also cluster the data units based on their tag fea-

tures in a similar way as the method described above, by
requiring each of the resulting virtual relations have a pop-
ular tag set (PTS).

However, the settings of parameters for tag-based cluster-
ing are very different from that of the attribute-based clus-
tering, due to different characteristics of attributes and tags
described as follows. First, comparing Figure 3(a) with 3(b),
and Figure 4(a) with 4(b), we can see that tags are more di-
verse than attributes, which results in larger set of vocabu-
laries. For example, a PC could be labeled with many differ-
ent tags, including “computer”, “desktop”, “PC”, “IBM”,
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No PAS

1 condition(0.98), product type(0.96), brand(0.75)
2 home page(0.99), author(0.94), blog type(0.59)
3 author(0.96), publish date(0.84), news

source(0.75)
4 review type(1), name of item review(0.99), url of

item review(0.98), rating(0.97)
5 service type(1)
6 job function(0.97), job industry(0.96), em-

ployer(0.86), job type(0.77)
7 main ingredient(0.98), cuisine(0.97), cooking

time(0.91)
8 gender(0.98), education(0.97), marital sta-

tus(0.95), age(0.94), sexual orientation(0.88),
interest in(0.86)

9 author(1), product type(1), name of item re-
view(1), publication name(1), news source(1), pur-
pose(1), patent prior art report(1), link to patent
full text(1), blog for your comment(0.64)

10 author(1)

Table 2: The PAS of top 10 virtual relations with
most tuples. (The numbers in the brackets are the
popularity values of the attributes.)

“HP”, “Dell”, “sale”, “product”, etc., depending on user’s
habit or preference. However, the attributes about a PC are
relatively more uniform, typically listed as “CPU”, “RAM”,
“hard disk”, “price”, etc.. The second difference between
attributes and tags is that the tags associated with a data
unit tend to be more independent to each other than the
attributes, in terms of being features for the clustering task.
This is because usually the different tags of a data unit char-
acterize it from different angles, i.e., each tag corresponds
to a “concept category”, while the attributes of a data unit
collectively describe its various properties. We can see it
from the PC example described above, as well as from the
two example data units shown in Figure 1.

The diversity and independence characteristics of tags de-
termine that each cluster can only have few tags in PTS,
which should be very similar to each other, and a data unit
matches to a cluster based on tags only if it has a tag in the
PTS, without considering the affect of its rest set of tags.
This suggests that θ should be set to 1, in order that the
tuples in a cluster have the same set of dominating tags,
which represent a particular subject area. In this case, α
has no effect on the clustering whatever it is. Note that
we allow overlapping of data units in the clusters generated
based on tags, since data units are likely to be related to
multiple topics.

With the same set of input data units, the tag-based clus-
tering generates 3488 number of clusters. This is much more
than that of attribute based clustering, since the tags are
more diversified. Similarly, we measure the coverage of the
virtual relations resulted from the tag-based clustering. The
results are shown in Figure 8. Compared with attributed
based clustering, we can see that the tuples are distributed
more evenly in the clusters resulted from tag based cluster-
ing. Actually, the PTS of each of the resulted clusters has
only a single tag, which is shared among all the tuples in it.
Figure 9 shows such tags of the top 20 most popular clusters.

We can see that due to the diversity of the usage of tags,
there are similar clusters labeled with different tags, such as
“hotel” and “accommodation”, “sales job” and “job”, etc..
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Figure 8: Coverage of virtual relations resulted from
tag based clustering (θ = 1).

4.2.3 Combining attribute-based and tag-based clus-
tering

According to previous experiments, we realize the advan-
tages and disadvantages of both attribute-based clustering
and tag-based clustering. Specifically, attribute-based clus-
tering groups data units with similar schemas, but the topics
of the tuples in a cluster might not be closely related. For
example, looking at the PAS of the No. 1 virtual relation
resulted from attribute-based clustering shown in Table 2, it
represents a cluster of data units about products. However,
the topics of the data units it contains are very diversified,
including motorcycle, jewelry, bag, home decor, art, etc.. On
the other hand, the clusters generated based on tags usually
concentrate on very specific topics, but there often have dif-
ferent clusters with very similar topics, or with subordinate
(superordinate) relationships, which causes the number of
clusters very large.

We propose a two-phase clustering strategy to combine
the two features, attributes and tags, in order to better or-
ganize the data units, which are described as follows.

1. Group tuples coarsely based on attributes at the first
phase.

2. Divide tuples within each cluster resulted in phase 1
into more specific categories based on their tags at the
second phase, in order that the resulted clusters can

patent(1671), hotel(396), recipe(353), blog(309),
travel(243), accommodation(202), seafood(174),
all digital camera(174), music(173), google(169),
computer(154), sales job(148), technology(146),
dating(144), real estate(141), news(132), inter-
net(131), business(125), podcast(125), job(124)

Figure 9: The top 20 most popular tags resulted
from tag-based clustering. (The numbers in the
brackets are the frequency of the tags.)
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No PTS PAS

1.1 honda motorcycle brand, condition, product
type, size, speed rating

1.2 jewelry product type, condition,
brand, website, manufac-
turer

1.3 dico turf tamer at
john deere gator

condition, product type,
brand, size

1.4 bag condition, product type,
brand, size

1.5 rear radial shinko
super sport tour

brand, condition, product
type, size, speed rating

1.6 home decor product type, condition,
brand

1.7 art product type, condition,
brand, merchant

1.8 silver condition, brand, product
type

1.9 discount nascar
jacket

apparel type, brand, condi-
tion

1.10 necklace condition, product type,
brand

Table 3: The PTS and PAS of top 10 virtual re-
lations with most tuples divided from the No. 1
phase-1 cluster in Table 2.

be represented with both a set of popular attributes
and a set of popular tags.

When applying the above 2-phase clustering strategy for
categorizing each incoming data units, a large number of
very fine grained clusters are generated in total. With the
same data set, we got more than 5000 such clusters. This
is larger than that of clustering based on tags alone, be-
cause there are clusters with the same PTS resulted from
the phase-2 clustering on different phase-1 clusters. Con-
sidering that it is not convenient for users to browse the
overwhelming number of clusters, we choose to first catego-
rize arriving data units into coarse clusters in phase 1, which
are represented as virtual relations to be browsed by users.
Upon the request of users, we dynamically divide a virtual
relation in phase 1 into multiple clusters with different spe-
cific topics based on tags, such that users can zoom in their
queries on virtual relations with specific topics. It is possi-
ble that the resulted phase-2 clusters do not have the same
set of PAS with that of the corresponding phase-1 cluster,
and more likely, they have more number of attributes that
describe more specific features. Table 3 shows the PTS and
PAS of the top 10 most popular virtual relations resulted
by further clustering the tuples in the No. 1 virtual relation
in Table 2. We can see that the popular attributes of dif-
ferent phase-2 virtual relations are not uniform, since they
describe more specific features.

4.3 Discussion
Generally, it is difficult to the measure the quality of clus-

tering in terms of precision and recall as the traditional way
in such a free-and-easy publishing system, because it is hard
to get the “correct” clustering for the large amount of very
irregular data units. We have tried to manually categorize
a few of the data units, and we found it is often a very sub-

jective choice for selecting the right cluster to assign a data
unit, and actually, the clustering result do not show much
advantage over that that of automatically clustering based
on attributes and tags.

In addition, in our current implementation, we treat dif-
ferent attributes and tags as independent features. In fact,
there are often correlations between them, such as synonym,
subordinate, superordinate, etc.. It is a hard problem by it-
self to discover such correlations, as discussed in [13].

5. STORAGE MANAGER
The generic table for storing all the tuples can contain

several to tens of thousands of attributes, and the tuples in
it are very sparse — they have null values in most of the at-
tributes. This poses challenge to the storage scheme for the
generic table. To handle dynamism of data composites and
huge amount of data, we need a method that is scalable over
the number of attributes and data volume, in terms of both
storage space cost and querying and updating efficiency.

At this stage, we propose to store the tuples in compact
form with pairs of attributes and non-null values, and build
an inverted index over the attributes of the generic table.
The index includes a list of all the attributes in the generic
table, where each attribute points to an inverted list con-
taining the identifications of tuples that have non-null val-
ues for the attribute. Figure 10 illustrates the structure of
this storage and index scheme for the generic table.

Figure 10: Storage and index scheme for the generic
table.

The inverted style index is well studied in IR literature for
indexing keywords in the text documents [24]. We utilize it
for efficiently selecting tuples given attribute-based queries.
It is also convenient for inserting new attributes to the table
when new data units are added.

We conducted preliminary experiments with more than
230K number of data units crawled from Google Base. The
codes were implemented in Java, and executed on an AMD
Athlon XP 2600+ computer with 1GB of RAM running
Windows 2003 Server. We recorded the elapsed time for
inserting each 10000 attributes. Figure 11 shows the re-
sult. We can observe that with the increase of attributes,
the elapsed time also increases, since more number of index
pages need to be retrieved for insertion of attribute entry.
However, the elapsed time is proportional to the number of
attributes. Since every tuple typically contains several to
dozens of attributes, it is efficient for inserting new tuples
to the table with the storage scheme.

Next, we evaluated the efficiency of processing attribute-
based queries with the index structure. We varied the num-
bers of predicates (NOP), i.e., the numbers of distinct at-
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tributes referenced in the queries, from 1 to 4, and recorded
the corresponding elapsed query processing time. The re-
sults are shown in Figure 12. We can see that the query
processing time grows linear with the increase of the num-
ber of attributes. On the other hand, when the number
of predicates increases, the query processing time also in-
creases, since we need to access the index for more number
of times. We can see that generally, the processing time is
proportional to the number of predicates.
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Figure 11: Accumulated insertion time for every
10000 attributes.
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Figure 12: Query processing time for attribute-
based queries.

The storage manager is also in charge of maintaining the
mapping between each virtual relation Ri and AllUnits,
which is a query over the instance I of AllUnits, i.e., Ri 7→
AllUnits = qi

I . As data units are assigned to Ri, qi
I need be

modified as well.
When the mapping between the attributes of Ri to the

attributes of AllUnits is one-to-one, qi
I is a simple projec-

tion over a subset of attributes of AllUnits that matched
with the attributes of Ri, respectively. There could also
be the case that an attribute of Ri is mapped to multiple
attributes of AllUnits when the multiple attributes are de-
tected as synonyms. In this case, qi

I is a union over multiple
projections over different combinations of the attributes of
AllUnits according to the attribute mappings. At current
stage, we only consider simple one-to-one attribute map-

pings. We will investigate the issues with one-to-many map-
pings at a later time.

6. BROWSING AND QUERY PROCESSING
Users look for interesting information by browsing the vir-

tual relations, which are presented in a decreasing order ac-
cording to the number of tuples they contain, in order that
users can first see the most popular information.

Each virtual relation is represented with its schema — the
set of attributes, and description — the set of tags, which
are both ordered decreasingly according to their popularity.
Some folksonomy-based web services visualize tags with dif-
ferent size reflecting their popularity, e.g., Delicious [1] and
Flickr [2], called tag cloud. This can also be applied to our
system.

The query processor supports both simple keyword queries
and structured queries posed over the virtual relations. A
keyword query Q = (k1, k2, · · · , kq) can be posed to a par-
ticular virtual relation, or to the whole system. A fulltext
inverted index is maintained for associating each of the key-
words with the name of the attribute, the id of the tuple,
and the virtual relation it appears in. A keyword query is
evaluated by looking up the index and locating the positions
of the relevant tuples in the generic table. An inverted index
over the tags is also built in order to support queries for tu-
ples with particular tags. Structured queries are processed
by reformulating the queries posed over the virtual relations
to that of the generic table according to the mappings be-
tween them, and executed over it.

7. RELATED WORK
We present the related work to our proposed system in

this section.

7.1 Data clustering
Data clustering is useful for analysis and classification in

various applications, and there is a large research literature
for addressing various clustering problems [14, 15]. The
most related to our problem is the incremental clustering
model presented in [11], in which a set of k clusters is dy-
namically maintained as new data points are added in se-
quence. Another category related to ours is the on-line event
detection problem for identifying stories in one or more news
streams [7, 23]. When a new story arrives, it is either recog-
nized as belong to an existing event, or identified as a new
event, where an event is basically a group of stories of related
topics. This problem also requires one-pass clustering of the
stories. Compared to them, the difficulty of our problem
lies in the unpredictability of both the number of clusters
and the important features need to be extracted from each
of the data points, due to the open nature of our system.

[9] presents a technique for clustering tags to improve user
experience. It considers co-occurrences among tags for dis-
covering semantic relationships between tags, in order that
users can follow semantic related tags during browsing.

7.2 Topic taxonomy
Many web contents are organized with a taxonomy of top-

ics, e.g., Yahoo!1 and Open Directory2, for facilitating infor-
mation access and searching. Such taxonomy need to be pre-

1http://www.yahoo.com
2http://dmoz.org/
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defined by experts, and the documents can be classified into
the taxonomy either manually, or with supervised learning
techniques with the help of certain classifiers, such as C4.5
[20], and neural networks [16]. Although this approach can
render better organization of the documents with system-
atic topic hierarchies, the main concern is that it is harder
to maintain and hence not scalable to the exponentially in-
creasing of digital information on the Web.

7.3 Folksonomy
In contrast to organization of topics with the systematic

taxonomy, folksonomy is an emerging on-line data sharing
paradigm in a free-and-easy style, with the cooperation of
all the end users [5, 13, 18]. The web services based on
it are getting increasingly popularity [1, 2, 3, 4]. A dis-
tinguishing feature of folksonomy is that the categories are
self-organizing, with the metadata provided by end users.
Different from traditional taxonomy that is a hierarchy of
concepts, folksonomy results in a flat organization of cate-
gories of various information units with fuzzy boundaries.
In another word, the folksonomy approach trades precision
a bit with increased efficiency and scalability for adapting
to the increasing and dynamic data over the Web.

Currently, there are emerging works for mining the tag-
ging information in folksonomy-based web services for vari-
ous purposes, such as automatically suggesting tags to users
[22], and inducing ontology from tags [21].

7.4 Storage and querying of sparse data
There have been research works for supporting the storage

of sparse data, which are often used in e-commerce applica-
tions and medical information systems, in RDBMS [6, 8].
[6] uses 3-ary vertical scheme for storing the original sparse
tuple. The pairs of attributes and non-null values of the
sparse tuple are stored in the vertical table associated with
the id of the sparse tuple. With this approach, H2V (hor-
izontal to virtual) and V2H (virtual to horizontal) need to
be performed when processing queries and returning results.
[8] introduces an interpreted storage scheme, in which tuples
are stored as a list of non-null values associated with their
attribute identifiers. The system catalog records all the at-
tributes and their associated ids. Our storage of the generic
tuples is similar this interpreted scheme.

8. CONCLUSION AND FUTURE WORK
We have presented our design and implementation for a

folksonomy based free-and-easy data publishing and sharing
system. We devise a data model for representing and storing
the data units. We also present our approach for each system
component and discuss the research challenges.

Currently, our focus is on meaningfully clustering and ef-
fective query processing on the data units. Our ongoing
work includes designing of efficient indexes on the virtual
relations and data units to facilitate efficient retrieval, and
efficient and adaptive query processing strategies since the
less constraints imposed on the storage increased the com-
plexity of query processing.

One of the opportunities we see in such generic storage
structure is data sharing over P2P system. We intend to
adopt it onto our BestPeer [19] P2P platform after we have
resolved various technical issues on a centralized server.
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