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ABSTRACT
Information ubiquity has created a large crowd of users
(most notably scientists), who could employ DBMS technol-
ogy to process and share their data more effectively. Still,
this user base prefers to keep its data in files that can be
easily managed by applications such as spreadsheets, rather
than deal with the complexity and rigidity of modern database
systems.

In this paper, we propose a vision for enabling non-experts,
such as scientists, to build content sharing communities in
a true database fashion: declaratively. The proposed infras-
tructure, called the data ring, enables users to manage and
share their data with minimal effort; the user points to the
data that should be shared, and the data ring becomes re-
sponsible for automatically indexing the data (to make it
accessible), replicating it (for availability), and reorganiz-
ing its physical storage (for better query performance). We
outline the salient features of our proposal, and outline re-
search challenges that must be addressed in order to realize
this vision.

1. INTRODUCTION
Imagine a community of scientists who collect experimen-

tal data. To infer interesting information out of the col-
lected data, a scientist clearly needs the ability to query
it. Moreover, it is common within such communities to
share data, in order to promote more research and enable
the quick dissemination of information. (SWISSPROT1 and
the Genome Browser2 are characteristic examples of this sce-
nario.) These two elements of querying and sharing informa-
tion can be found in other contexts as well, especially with
the advent of the Web and the creation of user communities,
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such as Flickr. This evidence indicates an emerging trend to-
wards building what we name content sharing communities:
groups of users that wish to share and query information in
some specific domain.

A database expert would probably suggest the use of a
distributed DBMS as the solution to this problem. In prin-
ciple, the distributed DBMS would enable users to query
their information declaratively (no more programming with
Perl scripts!), while allowing them to share it transparently.
In practice, however, the picture is completely different and
users avoid using DBMS technology due to its complexity.
Consider for instance the conceptually simple operation of
loading data in a DBMS. This involves several tasks, such
as, defining a schema, tuning the database, collecting statis-
tics, etc., that are not trivial for non-experts. Of course,
this operation is dwarfed in complexity by the next logical
step, which is linking the local databases in a distributed or
federated system. And even if a database expert is found to
perform all these time consuming tasks, users may still find
a conventional database system too rigid when it comes to
its control over the data. Essentially, a DBMS has to import
data before it can query it, and export it before the data can
be processed with other software; users (and especially sci-
entists), on the other hand, prefer to store their data in file
systems, where it is easily accessible by 3rd party programs.

We believe that this user base forms a formidable chal-
lenge for database researchers and a chance to bring database
systems to the “masses”. In this direction, we propose
the data ring that can be seen as a network analogue of
a database or a content warehouse. The vision is to build a
P2P middleware system that can be used by a community of
non-experts, such as scientists, to build content sharing com-
munities in a declarative fashion. Essentially, a peer joins
a data ring by specifying which files (or services in general)
are to be shared, without having to specify a schema for the
data, load it in a store, create any indices on it, or spec-
ify anything complex regarding its distribution. The data
ring enables users to perform declarative queries over the
aggregated data, and becomes responsible for reorganizing
the physical storage of data and for controlling its distribu-
tion. Thus a primary focus of the data ring is simplicity of
use. The inherent diversity and complexity is hidden be-
hind a simple and unified interface for publishing, querying,
monitoring, integrating, and updating the available infor-
mation. Besides clicking to select resources, the use of a
ring resource should be no more complicated than the use
of the same resource in a familiar local system.
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As previously stressed, data rings target non-expert users,
implying that the deployment of the ring and its adminis-
tration should be almost effort-less. The “pay-as-you-go”
philosophy (promoted by “dataspaces” [21]) is replaced here
by “pay-only-by-providing-content”; the physical organiza-
tion is (almost) for free. A first essential facet of the data
ring proposal is thus the use of fully automatic and dis-
tributed data administration, both for data residing in file
systems (a most common situation) and for more controlled
systems, such as databases. Access structures, e.g., materi-
alized views or indexes, are automatically introduced by the
system when needed. Also, the system may choose to “ac-
tivate” some static file-systems data, e.g. a large collection
of RSS seeds, to assign its management to a more efficient
system such as a relational database. The relational system
is then in charge of managing the collection and its efficient
querying and monitoring.

To facilitate the exploitation of the ring by non-experts,
we propose the use of declarative languages in the style of
SQL/QBE, rather than languages such as Java or Ajax that
require programming skills. More precisely, the data ring
adopts the (reasonably well-accepted) standard XML for
data exchange. Most content, from emails to relational data
including multimedia and meta data, can easily be mapped
to XML. This said, we see the vision of a data source as a
set of XML documents waiting to be queried in a Xquery-
style as way too limited. A data source (as in deductive
databases) may include intensional data, e.g. mediate data
from different external Web services. A data source (as in
active databases) may provide active features, e.g., monitor
changes in a data source or push answers of query subscrip-
tions. In short, the data ring promotes a rich vision of con-
tent sharing based on combining extensional (stored) data
with intensional, dynamic or active data.

The richness of these concepts may seem in contradiction
with the original goal to make the data ring usable by non-
experts. However, the data ring thesis is that a high-level
declarative language will enable users to integrate their data
effectively, and to make it readily accessible by other non-
experts. More precisely:

(Thesis-logic) Non-experts, as well as application program-
mers, should use a logical language to declaratively
combine information from push or pull Web services,
databases, files, and all other resources managed by
the data ring.

We propose to use ActiveXML [10, 3] for this logical lan-
guage, namely a language based on XML documents with
embedded Web service calls. Of course, a most important
issue becomes query evaluation and optimization in this set-
ting. For that, we need an algebraic optimization frame-
work. More precisely, we believe:

(Thesis-algebraic) An algebraic language over distributed
XML streams3 should be used for describing distributed
query plans interleaving query optimization, query eval-
uation, and possibly, error recovery and transaction
processing, that can be exchanged between peers.

We stress that our goal is not to market ActiveXML specif-
ically, but to argue, more generally, that further efforts should
3An XML stream may be used to produce the trees in an
XML forest and different pieces of a large XML tree.

be devoted towards languages that do address what we be-
lieve are most important issues: the quest for a language for
defining data distribution and data exchange, the quest for
a language for describing distributed query plans, and the
study of optimization techniques in this context.

In this paper, we discuss the salient features of the data
ring proposal, insisting on its most novel and challenging
aspects. The remainder of the paper is organized as fol-
lows. Section 2 presents a cursory review of related work.
Section 3 presents a high-level overview of the data ring pro-
posal, while the following sections focus on specific issues,
namely, self-administration (Section 4), data activation for
file sources (Section 5), query optimization/evaluation (Sec-
tion 6), and logical and algebraic languages for data distri-
bution (Section 7). Section 8 concludes the paper.

2. RELATED WORK
In principle, a data sharing community can be maintained

as a distributed database system using existing commercial
solutions. Under this model, each user runs a local DBMS
on the data that he/she wishes to publish, and all the par-
ticipating databases are connected in a loose federation that
forms a virtual global repository. As mentioned earlier, how-
ever, the main issue is the increased complexity of setting up
and tuning such a system. It should be noted that modern
database systems are equipped with several “advisors” [13,
46, 19], that can assist users in the difficult task of system
maintenance. Such tools, however, implicitly assume that
the user has some experience with database systems and can
thus make informed decisions based on the recommendations
that the advisors generate. Thus, the target audience is pri-
marily system administrators rather than non-expert users.
Moreover, the proposed techniques focus primarily on the
tuning of a centralized system, and it is not clear if they can
be extended to the equally important problem of tuning the
distributed system.

Peer-to-Peer (P2P) file sharing systems, such as, Gnutella
or eDonkey, offer a light-weight alternative to the complex-
ity of a full blown database system. The main shortcom-
ing, however, is that their query functionality is limited
to locating files based on name matching, whereas users
in data sharing communities are primarily interested in lo-
cating data based on content. Moreover, P2P file-sharing
systems typically rely on query flooding as the main query
processing mechanism, which does not scale well for complex
queries and high querying rates [23].

Several research projects in academia have investigated
the development of P2P database systems as the platform
for supporting data sharing communities. In particular, pre-
vious works have investigated issues related to data integra-
tion [45, 34], system design [17], and processing of complex
queries [29, 28, 22, 23] over P2P networks. These aspects
are undoubtedly important in the development of tools for
the creation of data sharing communities. As noted earlier,
however, an important issue is the development of mecha-
nisms for self-administration that allow the P2P system to
operate efficiently in an autonomous fashion. In this di-
rection, earlier studies [24, 18] have investigated self-tuning
techniques for the DHT [44, 40] substrate of P2P systems.
The proposed techniques monitor the get/put requests sub-
mitted to the DHT and adaptively change its configuration
in order to optimize for the exchange of network messages.
These works are clearly an important step in the realization
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of self-managed distributed systems. It is equally important,
of course, to explore self-tuning mechanisms for the upper
layers of the system, that provide the support for complex,
declarative queries over the distributed data.

The data ring proposal borrows ideas from several pre-
vious works on distributed data management. From P2P
content warehouse [1], we adopt the idea of using semantic
tools to enrich the data at our disposal, e.g. by discovering
links between pieces of data. From [21], we borrow the vision
of a dataspace where data is integrated. Optimization tech-
niques can be used from the existing large body of works on
distributed query optimization, such as, PIER [29, 28] and
ActiveXML [10]. In particular, our proposal resembles the
goals of PIER [29] in that it introduces a middleware system
for running distributed query processing applications. The
main difference, however, is that we focus on a system to be
used by non-experts, insisting on declarative management
wherever possible.

Technology already developed for other systems may prove
useful for data rings: structured p2p networks such as Chord
or Pastry, XML repositories such as Xyleme, DBMonet, or
eXist, file sharing systems such as BitTorrent or Kazaa, dis-
tributed storage systems such as OceanStore or Google File
System, content delivery network such as Coral or Akamai,
multicast systems such as Bullet or Avalanche, Pub/Sub
system such as Scribe or Hyper. Works on data integra-
tion (see e.g., [36, 35, 30]), warehousing [12] and distributed
database systems [37] are also relevant. The data ring pro-
posal treats all these works mostly as enabling technologies,
and less as areas for innovation. (We prefer to leave this
task to the respective experts.)

Finally, the present paper has been strongly influenced by
on-going works with Ioana Manolescu and Tova Milo around
ActiveXML, the KadoP P2P indexing system [6, 5] and the
Edos content distribution system [20].

3. THE DATA RING
In this section, we present a high-level overview of the data

ring and its conceptual architecture. Abstractly, a data ring
is formed by a collection of peers, where each peer exports a
set of resources (services and data). The collaborating peers
are autonomous, heterogeneous, and their capabilities may
greatly vary, e.g., from a sensor to a large database. More-
over, their exported resources may be quite diverse, e.g.,
some peers enable access to data resources, such as, a phone
book or a genome bank, while others offer computational
resources, such as, an ontology-based classifier, or a gene
matching library.

We use P to denote a peer in the data ring, and r@P
to denote a resource r that peer P exports. A resource r
can be either a data item or a service that P hosts. As
an example, a scientist (with peer name “Joe”) that joins a
data ring may export data files “exper1.txt@Joe” and “ex-
per2.xls@Joe”, as well as a service “run SQL()@Joe” that
enables the execution of SQL queries over a locally hosted
relational DBMS. The notion of exporting means that P is
willing to share r with the other participants of the data
ring4. Thus, other peers gain access to the contents of r if it
is a data item, or are able to invoke r at P if r is a service.

As mentioned earlier, we advocate a data model for ser-

4P also provides the permissions for accessing r. We ignore
this aspect for simplicity.
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Figure 1: Information abstraction in a data ring.

vices and data that is based on ActiveXML. More specifi-
cally, we assume that each data item is represented with an
XML view, while services are specified in the Web Services
Description Language [15] (WSDL). Two observations are
in order. First, we employ XML solely as a model for data
integration, and do not insist that each peer uses XML as its
native data model. We assume that the latter is determined
on a per-peer basis, depending on the type of exported data.
Second, we advocate an enriched XML model that can cap-
ture both extensional and intensional data. We discuss this
point in Section 7, where we argue that the default XML
model is too rigid and cannot describe effectively the infor-
mation in a distributed data store.

Peers query the information in the data ring using a suit-
able XML query language. Given an XML query issued
at some peer, the data ring translates it to a set of native
queries over the published resources. Continuing with our
previous example, a query issued over “exper1.txt@Joe” will
be translated to a query over a suitable file algebra, while a
query on “exper2.xls@Joe” will be translated to operations
over the spreadsheet; similarly, a query over the relational
database that “Joe” exports will be translated to an SQL
query that will be pushed to the service “run SQL@Joe”.
In a sense, therefore, the data ring borrows several features
from mediation systems [32]. A key issue of course is that
of efficiency. For instance, while a relational database can
enable optimized access to its contents, file sources (e.g.,
the text file or the spreadsheet in our example) only provide
limited access methods for query evaluation. We revisit this
issue in Section 5, where we introduce the novel concept of
self activation for files.

Following the established principles of database systems,
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a data ring organizes information at three levels of abstrac-
tion: the external layer, the topological layer, and the phys-
ical layer. (See Figure 1). The following summarizes the
functionality of each part.

Topological Layer The topological layer contains the logi-
cal description of the information managed by the data
ring, i.e., the set of participating peers and the re-
sources that they export. While the topological layer
does not expose the overlay network that is used to
realize the distributed system, it does include infor-
mation on the location of resources, i.e., the @P spec-
ification. (This is why we use “topological” instead of
the more common term “logical” for the identification
of the layer.) Hence, a valid query is “Retrieve Mike’s
phone number in David’s PDA, e.g., using the ser-
vice contacts@DavidPDA”. The topological layer also
supports generic resources that are offered by several
peers in the ring. We denote such a resource as r@any,
where any is a reserved location name. The idea is
that the data ring may choose to replicate a resource
depending on its querying patterns in order to increase
its availability or ensure its efficient access. By using
r@any, a query leaves it to the data ring to resolve the
best method for accessing the particular resource.

The topological layer provides declarative query ser-
vices, in the same way that the logical model of a re-
lational database supports SQL queries. A peer can
thus submit an ad-hoc query against the registered re-
sources, monitor a resource for changes, or open a con-
tinuous query against a stream resource (e.g., sensor
readings, or an RSS stream). We also assume that the
topological layer records the lineage and uncertainty
properties of the data, and supports their integration
in the query language. Following our previous exam-
ple, a valid query can thus be “Retrieve Mike’s phone
number along with the source of this information, the
date it was acquired, the name of the server where it
was found, and the estimated confidence in it”. We
discuss the specifics and requirements for the query
language further.

External Layer As described previously, the topological
layer manages different kinds of information: tradi-
tional data (as in relational systems), content (mails,
letters, reports, etc.), metadata, as well as domain
specific knowledge (e.g., ontologies) needed to inter-
pret data and metadata. Since this level of detail can
still be daunting for a large class of users, we enable
the generation and maintenance of semantically richer
data models in the external layer. For instance, the
external layer can house the data models that are pro-
posed in dataspaces. In this fashion, a user will observe
concepts and relationships between concepts, and will
pose semantically rich queries such as “what is the
name of John Doe’s company”, typically using some
simple syntax or some forms-based interface. We ex-
pect such queries to be realized by combining declar-
ative queries over the topological layer, driven by the
semantic information in the external data model.

Physical Layer The physical layer supports the evalua-
tion of distributed query plans over the registered re-
sources. It comprises a physical model and language
for distributed query evaluation, as well as physical
structures for managing the registered data, such as,
DHTs, indexes, caches, and/or replicas of data and
services. A key component of the physical layer is the
data catalog that stores meta-data on the published
resources. The meta-data includes the location of re-
sources, information on their contents/capabilities, statis-
tics on data and workload distribution, and in general
any information that is pertinent to the evaluation of
distributed queries. In general, we distinguish two key
features of the physical layer: (a) it is completely dis-
tributed, and (b) it is self-administered. As we discuss
in Section 4, these two elements combined introduce
novel challenges in the design of autonomic (i.e., self-
tuning) systems.

Overall, the aforementioned organization follows the basic
principles of database systems, where the data is managed
at three separate layers (external, logical, and physical) in
order to ensure logical and physical independence. Our con-
ceptual architecture is motivated by the same goals. Also
similar to relational systems, we view the topological and
physical layer as being absolutely necessary for realizing a
data ring and we thus focus on these two layers for the re-
mainder of this paper. This is not to say that we find the
external layer to be less important; on the contrary! We
hope to find some synergy here with works in dataspace
support platforms [21], which examine data models similar
to the ones that we envision for the external layer.

In the following sections, we discuss key issues towards the
realization of our proposal, in particular with respect to the
topological and physical layer of the data ring. We want to
stress that our goal is to outline major research challenges
involved in implementing a data ring, rather than to propose
concrete solutions to specific problems. We are also well
aware that our proposal is likely to keep several researchers
busy for a while before it can be declared realized.

4. AUTONOMIC ADMINISTRATION
As mentioned from the beginning, our vision is to enable

non-experts, such as scientists, to create content sharing
communities with minimal overhead. In turn, this clearly
implies that the users should be alleviated from any admin-
istration duties, and hence the ring should function without
the intervention of an administrator or any central authority.
Moreover, the distributed nature of data rings suggests that
this autonomic operation must be completely decentralized.

The administration of the data ring is fully autonomic
and distributed.

Our goal of autonomic administration clearly targets the
physical layer of the data ring. Similar to previous pro-
posals on autonomic computing, we envision the following
functionality:

Self monitoring The system must monitor itself, gather-
ing statistics and logs. This information can be used to
derive predictive models of system usage that can be
used for tuning (next point). Also, the logs are useful
for error diagnosis, billing, etc.
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Self tuning The system must reorganize itself to achieve
better performance by enriching the physical layer with
the appropriate access structures (e.g., indices, caching,
replication, materialized views). Observe that this
may involve both some local decision (the addition of
some local index) and possibly some cooperation be-
tween peers (e.g., the replication of a service). We note
that there are two-levels of tuning: (a) a data resource
may self-tune its organization at the owning peer, e.g.,
by building local indices or materialized views, (b) the
data ring may self-tune its organization across peers,
e.g., by replicating resources, caching them locally, or
increasing the level of detail of its metadata.

Self healing The system must help the peers recover from
errors, e.g., by suggesting a substitute for some failing
Web service, or by taking corrective actions when some
process fails. We revisit this issue in Section 6, where
we discuss in more detail the integration of error re-
covery in the query evaluation process.

The notion of self-administration (and most importantly
self-tuning) has been already explored in the context of rela-
tional databases [8, 11, 14]. Our proposal may thus initially
sound as a mere rehashing of old ideas. However, the issue
of autonomic computing acquires unique flavors in the con-
text of data rings, and thus requires new approaches. More
precisely, one can distinguish the following novel features:

System integration In the data ring, self-administration
is not only a cool gadget that sits on the side of the sys-
tem; it becomes an absolute necessity. It is thus nec-
essary to rethink the architecture of the database sys-
tem to incorporate self-administration as a core com-
ponent, and not as an add-on.

Distribution Existing solutions on self-administration typ-
ically target a centralized scenario, e.g., the selection
of physical access structures in a server based on the
workload. In the case of data rings, the administra-
tion becomes totally distributed. For instance, physi-
cal structures can be created in several peers, and there
is no centralized authority to coordinate the tuning.

On-line tuning Existing self-tuning solutions typically ad-
opt an off-line approach, assuming that the tuning oc-
curs separately from normal database operation. As
a result, the tuning process is generally expensive and
cannot be executed too often. This makes off-line tun-
ing unattractive for a data ring, since the system may
need a frequent re-tune due to unpredictable changes
in the user generated workload. A more suitable op-
tion is on-line tuning, where the system monitors its
performance continuously and re-organizes its configu-
ration based on the latest traits of the query workload.
This is a major paradigm shift that we started explor-
ing in [42, 43].

Proactive tuning One can classify existing self-tuning tech-
niques as reactive, since they are invoked after a change
in the workload is detected. To deal with the highly
volatile nature of a P2P system, however, a data ring
has to be proactive. For instance, the system may de-
cide (in a proactive manner) to replicate a file based
on the prediction that it is going to be heavily used,
before this actually happens.

One can argue that we set the bar too high. After all,
the simpler problem of zero-administration for centralized
relational systems still remains an elusive goal. Is there any
reason to believe that the self-administration of a data ring
is feasible? We believe that there is no alternative! We also
believe that the power of parallelism that comes with a P2P
system may compensate limitations of the technology. For
instance, with many machines at our disposal, we can run in
parallel more costly tuning algorithms that can meet some
(or hopefully all) of the requirements that we have outlined.

5. DATA ACTIVATION FOR FILES
One of our basic assumptions is that a significant portion

of the available data resides in file systems that do little
effort to optimize their access or their updates. Still, we en-
vision that the data ring should provide efficient declarative
query capabilities over such sources, by means of data self-
activation. To illustrate this idea, let us consider a music
catalog that has been published as a file in the ring and is
queried heavily. Again, we assume that the catalog is pre-
sented as an XML view to the users, and queries are trans-
lated to a suitable file algebra. Clearly, the efficiency and
reliability of accessing this data is constrained by its phys-
ical organization in its owning peer. Since that physical
organization cannot be changed, the data ring may instead
decide, based on self-statistics, to reorganize the catalog in
redundant physical structures that are more efficient to ac-
cess. For instance, it may decide to replicate the catalog (or
some part thereof) on a different peer. Another option is
to replicate the catalog in a different physical system, e.g.
an indexed relational database, in order to answer efficiently
queries that access some specific attributes.

The data ring monitors the querying patterns over files
and automatically reorganizes them to optimize their
access.

Typically, a specific file resource r@P starts its life in the
ring as “static”, i.e., being manipulated through file system
calls (essentially, block-based reads and updates). Based on
the usage patterns, the data ring may decide to activate
some portion of r in order to increase its access efficiency.
There are a variety of means to do so from very light (just
providing several replicas of a file), to very heavy (reorganiz-
ing part of the data in a relational database), to intermediate
ones (e.g., indexing the strings in a plain text file). The key
idea of course is that access to the activated portions is now
more efficient, while inactivated portions are still accessed
through file system calls. Clearly, this hints at the develop-
ment of a suitable cost model that determines when activa-
tion can be beneficial, which in turn implies the existence of
query algebras for file based sources. Previous studies [4, 16]
have looked at the theoretical foundations of this problem,
but have not examined the associated systems issues, i.e.,
optimization techniques, cost model for physical operators,
and optimization statistics over files. Finally, an interesting
research direction is the integration of self activation with
the file system itself, e.g., by exploiting the functionality
of active disks [41]. In this fashion, the data ring can op-
timize the physical file organization at the storage level in
addition to materializing secondary access structures. We
believe that this topic provides fertile ground for building
collaborations with the data storage community [25].
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As a last remark, we stress that the data ring should be
extensible in terms of the supported file types. Here, we
adopt the “pay-as-you-go” principle of dataspace systems
and require some minimal amount of work from the user in
order to incorporate a new file type in the topological and
physical layers. More precisely, the user has to register a
parser module (written in his/her language of choice) that
enables serial access to the XML view describing the con-
tents of a file of this type. This is a relatively easy task,
since a sequential parser has a simple interface and we as-
sume that the user is already familiar with the structure of
the new files. This parsed content represents the static ver-
sion of the file, which may then be activated by the data
ring depending on the query patterns.

6. QUERY EVALUATION
In classical (distributed) data management systems, the

query evaluation process proceeds in distinct stages: the
query is first optimized; it is then handed over to a coordi-
nator site that is in charge of orchestrating the sub-queries;
sub-queries are finally executed at different sites and their
results typically combined by the coordinator to generate the
final answer. This clean separation, however, is not feasible
in a data ring where there is no notion of global state and
the environment is highly volatile. Consider, for instance,
a query Q that accesses some resource r@P , and assume
that P leaves the data ring when Q starts being evaluated.
In a classical setting, this would trigger an error since P
is no longer available (its sub-query failed). It might be
the case, however, that r@P has been replicated in another
node P ′ and Q can thus be rerouted on-the-fly to P ′. Even
if r@P ′ is an old replica of r@P , the user may still be satis-
fied with getting some results (with specific uncertainty and
lineage properties) rather than no results at all. Of course,
such decisions must be driven by the query optimizer which
will evaluate the trade-offs (and the feasibility) in recover-
ing from specific errors. Hence, we arrive at the following
requirement for query evaluation in a data ring:

Query optimization, query execution, and error recov-
ery are unified.

Previous works [9, 31, 33] have explored the idea of mixing
query optimization and execution in the context of relational
database systems, while there has been some initial work on
XML query evaluation over a distributed system [38]. The
key difference here is the integration of error recovery in
the query evaluation process, and the massively distributed
setting that results from the P2P layer. In particular, the
last point raises several interesting issues with respect to
the optimization of declarative queries, as the search space
of an optimizer grows tremendously and performance statis-
tics are not readily available. Hence, it seems necessary to
integrate optimization and execution in a continuous pro-
cess: the system starts with a rough physical plan, and
gradually refines it as more of the query is evaluated and
more statistics are gathered. The optimization of declara-
tive queries over massively distributed systems remains an
open problem [28] and is thus an interesting area for future
work.

7. STREAM CALCULUS & ALGEBRA
The success of the relational model essentially comes from

the combination of a declarative language (relational cal-
culus), an equivalent relational algebra, and optimization
techniques based on rewrite rules. There have been a num-
ber of extensions, such as object databases, but the classical
pattern (calculus, algebra, rewrite rules) has proved its ro-
bustness. It is only natural therefore to adopt it the data
ring context. The situation however is fundamentally dif-
ferent (e.g., distributed vs. centralized, semi-structured vs.
very structured, Web scale) which requires a complete over-
hauling of the languages. This is the topic that we discuss
in this section. We argue for the need of a calculus and
an algebra for distributed data management, and present a
number of features that we believe are fundamental for such
languages.

We make the following claim and explain it next.

The logical model should be based on extensional, and
intensional XML streams both in pull and push modes,
i.e., in the style of ActiveXML.

We believe that, to support effectively the loose integra-
tion paradigm of the ring, one essential aspect is the seamless
transition between explicit and intentional data. One should
not have to distinguish between extensional data (e.g., XML
or HTML pages) and intensional data (e.g., access to a rela-
tional database provided by a Web service). As an example,
consider the query “give me the name and phone number
of the CEO of the Gismo company”. Answering this query
may require first finding the name of that CEO in an XML
collection of company synopses, finding the service that ex-
ports the phone book of Gismo Inc, and finally calling this
service with the name of this CEO. The query can be an-
swered only (a) because we have a logical description of the
resources, and (b) because based on that, we have derived a
distributed query plan.

ActiveXML was designed to capture such issues. An Ac-
tiveXML document is an XML document where certain ele-
ments denote embedded calls to Web services. For instance,
the company document may contain the CEO phone num-
ber as a Web service call. The service calls embedded in
the document thus provide intensional data in the sense of
deductive databases. Suppose now that the phone number
of the CEO changes. The next call to the service will return
the updated phone number, which implies that the company
document also becomes up-to-date. Thus the embedding of
service calls is also capturing active data in the sense of
active databases [39]. We note that the use of intensional
information is quite standard on the Web, e.g. in Web sites
that are realized with PHP-mySQL. It is also common in
databases, as in object or deductive databases. The main
novelty here is that the intensional data is provided by Web
services. Thus the corresponding service calls may be acti-
vated by any peer and do not have to be evaluated prior to
sending the document.

Henceforth, we assume that every peer exports its re-
sources in the form of ActiveXML documents or Web ser-
vices. The topological layer thus consists of a set of Ac-
tiveXML documents and services and their owning peers.
The external layer will be dealing with the semantics of doc-
uments, but this aspect will be ignored in this section. A
computation will consist in local processing and exchanging

159



such documents. Articles on ActiveXML as well as the open-
source code of an ActiveXML peer may be found from [10].

Before turning to the algebra, we discuss two aspects that
are essential to the framework and motivate basing it on
XML streams (as in ActiveXML) and not simply on XML
documents:

Push vs. Pull In pull mode, a query-service is called to
obtain information. In push mode, on the other hand,
the service provides a stream of answers, e.g., notifi-
cations of certain events of interest. A company docu-
ment may include such a service to, for instance, obtain
the news of the company. Essentially, the push mode
captures the notion of subscriptions and is thus very
relevant in the context of the Web. Such a subscrip-
tion feature is also essential for supporting a number
of functionalities ranging from monitoring the ring, to
synchronization and reconciliation of replicas, or gath-
ering ring statistics.

Recursion The embedded service calls may be seen as views
in the spirit of those found at the core of deductive
databases. In classical deductive databases, recursion
comes from data relationships and recursive queries,
such as ancestor. In our setting, recursion kicks in sim-
ilarly and is also found in the query language (e.g., the
XPATH // primitive). But more fundamentally, recur-
sion comes from the graph nature of the Web which is
also reflected on the processing of Web services in the
ring: site1 calls site2 that calls site3 that calls site1,
etc. Indeed, the use of recursive query processing tech-
niques in P2P contexts has been recently highlighed
in several works in topics as different as message root-
ing on the Web [27] and error diagnosis in telecom
networks [2]. Now, recursive query processing clearly
requires the use of streams.

Besides the logical level, our thesis is that a language in
the style of ActiveXML should also serve as the basis for the
physical model. In particular, the use of streams is unavoid-
able at this level. As a trivial example, observe how answers
are returned by Google or try to send 100K in a standard
Web service without obtaining a timeout. As shown in a
recent work [7], distributed query evaluation and optimiza-
tion can be naturally captured using ActiveXML algebraic
expressions, based on the exchange of distributed query ex-
ecution plans. The expressions include standard algebraic
XML operations and send/receive operators, all over XML
streams. Note that these may be seen as particular workflow
descriptions of a strong database flavor.

The physical model is based on a distributed algebra
over XML streams, i.e., in the style of ActiveXML
algebra.

An example will best illustrate this principle. Consider
the data described in Figure 2. We use here a visual repre-
sentation of ActiveXML documents. Peer P1 and P2 have
their own collections of music with metadata described in re-
lations r1 and r2 respectively. Peer P1 knows about t(itles)
and s(ingers), whereas P2 knows about a(lbum) t(itles) and
s(ingers). Peer P1 also knows that P2 has some music; P2
knows that P3 (not shown here) has some; P3 knows P4,
etc. The metadata of P3, P4, P5 are organized as that of

P1. The actual texts underneath the tags s, t, at are not
shown. Now suppose that P1 wants to get the titles of
songs by Carla Bruni. Figure 3 shows three different query
plans. Each box describes some peer computation. Query
plan (a) is the one that would result from an evaluation of
the query without optimization, i.e., from applying the pure
semantics of ActiveXML. Query plan (b) results from push-
ing selections, while Query plan (c) is obtained by also op-
timizing data transfers (cutting some middle peers in data
transmissions). One (particularly interesting) rewrite rule
is illustrated in Figure 4 which shows the evaluation of a
service call at peer P1. To perform the evaluation, the
external service call at peer P1 is replaced by a “receive”
node and a remote computation is activated at peer P2.
This computation proceeds in parallel and sends the results
asynchronously to the receive node.

We can make the following observations:

1. Peers P1 and P2 can already be producing answers,
while P3 is still optimizing the request it receives,
while P5 is still not even aware of the query. This il-
lustrates the need for streaming: Peer P2 can send an-
swers to P1 before obtaining results from other peers.

2. Each peer separately receives a request and is fully in
charge of evaluating it. (Some optimization guidelines
may be provided as well.) For instance P2 receives
a query where she cannot really contribute and may
decide to cut herself out of it and ask P3 to evaluate
its part and send the result directly to P1.

3. We assumed so far that the peers cooperate to evalu-
ate a query. Think now that the goal is to support a
subscription. Then the same plans apply. Suppose a
new song of Carla Bruni is entered in P3. It is then
sent to P1 (with Query Plan (c)), and produced as a
new answer unless this title has already been returned.

In all cases, a query or a subscription for the songs of Carla
Bruni (at the topological layer) is translated to a distributed
plan (at the physical layer). Observe that the physical plan
is essentially a workflow of Web services (i.e., an ActiveXML
document), where the services encapsulate the different plan
operators and the respective locations encode the distribu-
tion of computation and the flow of data. The main idea
therefore is that the complete plan itself (or a portion of it),
along with its current state of execution, can be described as
an ActiveXML document, which in turn can be exchanged
between peers in order to support query optimization and
error recovery in a distributed fashion.

Another important element in the Figure 3 is the distinc-
tion between local query evaluation (inside each box) that
is the responsibility of a local system, perhaps a relational
system, and global query evaluation that is the domain of
the data ring. The functional architecture of a peer query
processor is shown in Figure 5. Note that the processor
comprises both a local query optimizer and a ring query op-
timizer that collaborates with other peers to perform global
query optimization. Essentially, this separation leads to
physical plans that combine local query processing with dis-
tributed evaluation. Clearly, a collaboration between the
two systems (local and data ring) is preferable but is un-
likely to be widespread in the near future. This implies that
the data ring will have to view the local query optimizers
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Figure 2: A graphical representation of ActiveXML data.
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as boxes with possibly different querying capabilities, in the
same vein as mediation systems [26].

To conclude this section, we want to note again that the
goal was not to advertise particular languages but to stress
the need for more works in this area. ActiveXML and Ac-
tiveXML algebra were used to illustrate aspects that a cal-
culus and an algebra for the ring should emphasize.

8. CONCLUSION
The starting point of this paper is the observation that

large communities of users are (and will) more and more
share content over the Internet. We proposed the data rings,
that are meant to bring the great benefits of database tech-
nology to these communities by enabling them to easily cre-
ate, administer, and exploit shared content. We have out-
lined the general principles behind data rings, and discussed
some research challenges met on the way to the realization
of this vision. The realization of data rings will clearly re-
quire the collaboration of numerous researchers, and this is
precisely one goal of this paper: to entice other researchers
to join us in this endeavor.
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