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Michael J. Cafarella, Christopher Ré, Dan Suciu, Oren Etzioni, Michele Banko
University of Washington

Seattle, WA 98195
{mjc, chrisre, suciu, etzioni, banko}@cs.washington.edu

ABSTRACT
The Web contains a huge amount of text that is currently
beyond the reach of structured access tools. This unstruc-
tured data often contains a substantial amount of implicit
structure, much of which can be captured using information
extraction (IE) algorithms. By combining an IE system with
an appropriate data model and query language, we could en-
able structured access to all of the Web’s unstructured data.
We propose a general-purpose query system called the ex-
traction database, or ExDB, which supports SQL-like struc-
tured queries over Web text. We also describe the technical
challenges involved, motivated in part by our experiences
with an early 90M-page prototype.

1. INTRODUCTION
The vast quantity of text on the Web is currently only

accessible using search engines’ keyword-in, documents-out
queries. We would often prefer to pose queries that take ad-
vantage of the structure embedded in much of that text. For
example, consider a website of classified postings. Although
the classifieds consist of free-form text, many contain easily-
recognizable fields such as price, the seller’s phone number,
the seller’s address, etc. No one has published a formal
schema, but nonetheless there is clearly structural informa-
tion that a query-writer should be able to use.

Information extraction (IE) systems can often extract small
pieces of structured data from text. For example, Brin used
DIPRE to extract author/book pairs, Agichtein, et al. used
Snowball to find corporation/headquarters pairs, and Et-
zioni, et al. have used KnowItAll to discover hypernym
(“is-a”) relationships, among others [6, 1, 20]. Mansuri and
Sarawagi proposed an extraction integration system that
works with any existing schema and constraint set [31].

But IE systems to date require an administrator to pre-
define the schema that will be populated, as well as any
database constraints. Manual schema design is not feasi-
ble when building a structured query system for the entire
Web. The number of possible tables and their attributes
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a b c probability

Kepler log books 1630 0.7902
Heisenberg matrix mechanics 1976 0.7897

Galileo telescope 1642 0.7395
Newton calculus 1727 0.7366

Figure 1: The top-ranked results for a query to our
ExDB prototype. The query here is q(?a, ?b, ?c)

:- invented(?a, ?b), died-in(?a, <year> ?c). This
query took 30 seconds to process on a database of
90M Web pages.

is prohibitively large, and moreover, may change as new
communities and topics emerge. Other proposed or real-
ized systems integrate IE results, but not in an automatic
domain-independent way. The AVATAR system relies on a
series of hand-written annotators to emit structured tuples,
e.g., a tuple that has a person’s name or phone number [27].
The CIMple project’s semantic schema integrates informa-
tion from a variety of sources, but is specific to one ap-
plication domain; for example, CIMple’s DBLife prototype
is meant to manage data relevant to the database commu-
nity, including sets of researchers, publications, conferences,
etc [16].

We propose a structured Web query system called the
extraction database, or ExDB. It uses IE systems to ex-
tract data, schema, and constraint information from Web;
every string on the Web may become both a data value
and a structural component. Since the extractions are in-
evitably flawed, we model them as tuples that are proba-
bilistically true (as in the MYSTIQ system) [15]. These
extractions form a probabilistic database. ExDB also of-
fers a language for describing probabilistic queries over this
extracted database.

Figure 1 shows the top-four results of a sample query
posed to an early ExDB prototype. The user has asked
for a list of 3-column tuples, in which the first and second
columns make up an extracted invented fact, and the first
and third columns form a born-in fact. Finally, the third
column is constrained to be a year. The results are ranked
by probability of being true. The user’s predicates and types
are not published in any official metadata; the user simply
enters them as the most appropriate way to describe her
desired query.

In Figure 2 we show the ExDB work flow. Having down-
loaded a corpus of Web text, the ExDB runs a series of un-
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Figure 2: Constructing the ExDB requires several processing steps. In step 1, we run information extractors
over the downloaded web text, as described in Section 3. In step 2, the extracted information is stored in
the ExDB data model, described in Section 2. Finally, applications can query the ExDB middleware and
probabilistic RDBMS. Sections 4 and 5 describe query processing and possible applications.

supervised natural-language-driven extractors over the text;
this extraction step is described in Section 3. The result-
ing extractions are used to populate a huge probabilistic
database that contains Web data, schemas, and constraints.
We call this database the Web Data Model, and describe it
in Section 2. Finally, as described in Sections 4 and 5, we
use this database for users’ queries and many other possible
applications.

At each step in constructing the ExDB, there are substan-
tial problems that remain unsolved. This paper is devoted
to describing the ExDB framework, and we have even con-
structed an initial prototype that runs on a corpus of 90M
downloaded pages. However, the ExDB raises outstanding
technical issues in almost every step of its construction, from
information extraction, to reference reconciliation, to prob-
abilistic query processing. The ExDB is a promising idea
that motivates many different research questions, serving as
a technical challenge to the entire field.

2. THE WEB DATA MODEL
This section discusses ExDB’s extraction-based data model,

its handling of imprecision, and the way ExDB queries make
use of both.

2.1 Data Model
Through a combination of IE techniques, ExDB should

extract several base-level concepts:

Objects are the data values in the system. Examples:
Einstein, telephone, Boston, light-bulb1. Our pro-
totype contains 102M unique objects.

Predicates are binary tables populated by pairs of objects.
Examples include discovered(Edison, phonograph),
born-in(A.-Einstein, Switzerland), and
sells(Amazon, PlayStation). Our prototype has pop-
ulated these tables with 338M facts. These tuples
make up the data contents of the ExDB.

1Multiple-word concepts are presented with hyphens for
readability. Our system does not need them for parsing.

Semantic types are unary tables populated by objects.
Examples are city(Boston), city(New-York),
electronics(dvd-player). Our prototype contains
6.6M type instances. In addition, the system should
have a fixed set of predefined data types, such as integer,
date, year, etc.

This data model can capture many useful real-world facts,
but obviously cannot perfectly model an arbitrary domain:
for the sake of simplicity, we currently limit it to predicate
tuples with arity two. ExDB should allow for higher-arity
tuples. However, as will be noted below, extractors there are
practical limitations in finding good domain-independent
(and thus scalable) extractors for high-arity tuples.

The resulting ExDB database may contain an enormous
amount of structural information (in the form of predicates
and semantic types), but the user is not expected to know
it a priori. Instead, the user formulates queries using her
own choices for objects, types, and predicates; ExDB then
matches the query to the extracted elements as best it can.

In addition to the base schema elements, the ExDB should
extract a series of relationships designed to make queries
even easier for the user:

Synonyms denote two equivalent objects, predicates, or
types. For example, Einstein and A.-Einstein al-
most certainly refer to the same real-world object. Sim-
ilarly, invented and has-invented refer to the same
predicate. ExDB should maintain a set of these syn-
onyms for each object, predicate, and type. By trans-
forming user queries using this synonym information,
the ExDB could answer queries using extractions that
do not match the actual query text. Object synonymy
alone could enable hugely improved equijoin process-
ing.

Our prototype implements only predicate synonymy,
and has extracted 17,000 synonym pairs.

Inclusion dependencies describe a subset relationship be-
tween two predicates. For example, invented(?x, ?y)

⊆ discovered(?x, ?y) indicates that true instances
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Database element Description Linguistic term Extractor

invented(Edison, phonograph) Edison invented the phonograph arity-two fact TextRunner [4]
scientist(Einstein) Einstein is a scientist hypernymy KnowItAll [20]

invented(x, y) = has-invented(x, y) invented is similar to has invented synonymy DIRT [29]
invented(x, y) ⊆ discovered(x, y) invented specializes discovered troponymy ?

FD: has-capital[x, y] → has-capital[y] there is just one capital for any entity rule ?

Table 1: Database concepts, their text equivalents, and their extraction mechanisms. Recent advances in
IE can help find some constraints; others are future work. In addition to algorithmic extractors, linguistic
resources like thesauri could help populate an ExDB.

of tuples in invented are also in discovered 2. An
elaboration of a verb is called a troponym and is the
closest linguistic analogue to this kind of dependency [22].
As with synonyms, these inclusion dependencies can be
used by the query processor to return results for, say,
invented(?x, ?y) whenever the user asks for
discovered(?x, ?y).

Our prototype does not yet extract troponyms from
the Web data.

Functional dependencies are especially useful for queries
with negation or for explaining why an object is not an
answer to a query. We discuss functional dependencies
in more detail in Section 2.2.

It is not yet clear how necessary these synonyms and other
constraints will be. Their main advantage is that they allow
a probabilistic mapping between the strings from text ex-
tractions and the strings in a user’s query. (For example, a
query on the for-sale predicate can be rewritten to include
results from the on-auction predicate.) It may be that data
embedded in Web text is so prevalent and easily-extracted
that the IE system naturally derives all reasonable syn-
onyms. It seems likely that the utility of synonyms will de-
pend on the type of data extracted (e.g., invented(Edison
phonograph) will probably appear under more synonyms
than will is-selling(John-Smith, Toyota-9392).)

Table 1 shows all the database concepts the ExDB incor-
porates, their language analogues, and an appropriate ex-
traction mechanism, if available. For some useful concepts,
we are unaware of a matching extractor. We discuss these
mechanisms in more detail in Section 3.

2.2 Managing Imprecision
We use probabilities to represent imprecision arising from

genuine uncertainty about the world and from errors by
inevitably-flawed text extractors. Several recent research
projects have used probabilities to describe uncertainty at
the data level [36, 5, 35, 3, 15, 14]. However, ExDB also
needs to represent uncertainties at the schema level, and in
the constraints.

Probabilistic Data and Schema Tuples in the predi-
cate tables and in the semantic type tables are probabilistic:
each tuple in these relations has a value 0 ≤ p ≤ 1 describing
the probability that the tuple is in or out. This is similar to
existing systems [36, 14].

Synonyms Predicate, type, and object synonyms are also
probabilistic; there is always a chance that Einstein and

2This relationship may not be technically accurate, but it is
inarguably present in real-world usage. We would expect to
find it in both Web text and in the ExDB query workload.

A.-Einstein refer to different entities. The predicates invented
and created are only partly equivalent. Items in each syn-
onym set are present with some value 0 ≤ p ≤ 1.

Probabilistic Constraints Probabilistic inclusion de-
pendencies are similar to probabilistic predicate synonyms
that are applied only “one-way.” Functional dependencies
are somewhat more interesting; they describe rules about
what fact sets should be simultaneously true. ExDB will
use them to process negated queries, or to explain to a user
why a certain object is not the answer set. For example, con-
sider the following probabilistic FD, indicating that (with
high probability) a person can only be born in one country.
born-in(?x, <country> ?y): ?x → ?y p=0.95

Suppose the user asks for all scientists born in Germany

that taught at Princeton, and, surprised by the answer, asks
the system: “why is Einstein not an answer?”. Using the
functional dependency above, the system could answer that
because Einstein was born in Switzerland, and because
the FD tells us a person can be born in only one country,
his probability of being born in Germany is exceedingly low.
(Also, we note that Switzerland and Germany have very low
probability of being synonyms.)

Probabilistic FDs allow us to make statements about the
data with less than total confidence, which is important
given that the managed data is not curated; the extrac-
tion set may include obscure or confusing cases that violate
a constraint that is generally true.

Our prototype has implemented support for extracted data,
types, and synonyms, but not yet for inclusion dependencies
or functional dependencies.

2.3 ExDB Queries
We propose that users ask SPJU queries over the Web

Data Model, using a Datalog-like notation. For example,
the query q(?i) :- invented(Edison, ?i) returns all in-
ventions by Edison. Query answers are ranked by their
probabilities.

Data items in the head are returned as query results. Vari-
able names start with ? to distinguish them from data val-
ues. We can constrain variables to types or to specific values:

q(?x, ?y) :- died-in(<scientist> ?x, 1955 ?y)

This query returns a two-column table (three, if including
the probability) in which the first column is a an instance
of scientist, the second column has value 1955, and they
were extracted as part of the died-in predicate (or perhaps
one of its synonyms). When querying a set of classifieds, we
might search for locally-available electronics with the follow-
ing query:

q(?x, ?y) :- for-sale-in(<electronics> ?x, Seattle ?y)
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We can also add additional clauses, as in:

q(?x, ?y, ?z) :- invented(<scientist> ?x, ?y),

died-in(?x, <year> ?z),

(?z < 1900)

which returns a three-column table, where the third col-
umn is the year in which the scientist died. We will only
return tuples where we know the scientist’s year of death,
and where the scientist died prior to 1900. Similarly, we can
limit our shopping search for inexpensive items with:

q(?x, ?y, ?z) :- for-sale-in(<electronics> ?x,

Seattle ?y),

costs(?x, ?z),

(?z < 25)

Finally, we can perform projections by modifying vari-
ables in the head. The following query simply finds scientists
who have invented something:

q(?s) :- invented(<scientist> ?s, ?i)

Efficient probabilistic query processing is an active re-
search area. For additional details on query processing, see
Section 4.

It is important to note again the difference between the
database query paradigm deployed by ExDB and the keyword-
in, documents-out paradigm of search engines. In ExDB the
granularity of the data is a concept (a word or short phrase),
not a document. Oftentimes a query’s answer is obtained by
joining multiple facts that have been extracted from multi-
ple, unrelated Web pages. Search engines make no attempt
to integrate information across the page boundary.

ExDB can explain the answers it retrieves at two lev-
els: the query lineage [41], which is essentially a proof tree
for each item in the query’s answer, and the extraction lin-
eage [13, 7], which is an explanation of how and from which
pages the basic facts used to derive the query were extracted.
Our prototype implements support for extraction lineage,
but not yet query lineage.

3. EXTRACTION MECHANISMS
The ExDB is feasible because its data, schema, and con-

straints have analogues with extractable linguistic phenom-
ena. In this section we describe how ExDB converts infor-
mation embedded in Web text into ExDB elements. Al-
though the fact that such extraction is possible is more im-
portant than the actual technique, the approaches described
here give a flavor of what is possible 3.

3.1 Fact Extractions
The most basic form of extracted fact for the ExDB is a

simple predicate of arity two. Every query returns one or
more of these basic facts.

Many recent information extraction projects have attempted
to find fact triples with little or no supervision [40, 37].
Our prototype uses an unsupervised system called TextRun-
ner [4]. It runs once over an entire corpus of text, generating

3It is sometimes possible to use hand-annotated linguistic
resources such as WordNet[33] or thesauri. They contain
high-quality information, but are often limited in coverage,
limited to a certain kind of phrase (e.g., only single-word
phrases), and are unavailable in many target languages.
Thus in general, algorithmic approaches are indispensable.

a large set of probabilistically-assessed extractions. Unlike
many extractors, TextRunner does not require an input list
of target predicates or object pairs, so it can be run over the
entire Web without concern for the domain.

The TextRunner extractor starts by using a heavyweight
deep linguistic parser to identify a small number of high-
quality extraction triples. These triples consist of two entity
strings within a single sentence and a descriptive relation-
ship string that links them. It then computes a number
of lightweight language-driven statistics on this small set of
good examples. These statistics are used to compute an
“extraction-classifier” that is lightweight enough to apply
to a Web-scale corpus.

Finally, the extractor applies the classifier to the entire
corpus, and counts extraction repetitions. Repeated inde-
pendent extractions make a fact extraction more probable,
whereas rare extractions are considered errors and receive a
low probability. (The probability model is similar to that
described by Downey, et al. [19].)

3.2 Type Extractions
Semantic types allow the user to refer to large collections

of objects. By placing many objects in, say, the scientist
type relation, the user can naturally query many facts at
once.

Type hierarchies are natural in the real-world (e.g., a
chemist is a scientist) but for simplicity’s sake the ExDB type
hierarchy has a single level. Where necessary, we flatten the
hierarchy (e.g., so that both chemist and scientist contain
Lavoisier).

Semantic types are very similar to natural language “hy-
pernyms” or “is-a” relationships. The ExDB prototype ex-
tracts these types from Web text using the KnowItAll sys-
tem [20]. KnowItAll searches the text corpus for phrases
that strongly indicate the “is-a” relationship (e.g., “I like
cities such as Seattle and Boston.”), noting the pair of
words embedded in each phrase. Each extractions is given a
probability based on its frequency, just as with fact extrac-
tions.

KnowItAll is limited to facts that appear in well-phrased
sentences, so it will fail to extract facts that are only implied
by web page layout or typographic practices. For example,
it will fail to extract the fact is-PC-chair(Weikum, CIDR)

from the CIDR web page because there is no declarative sen-
tence that explicitly states that it4.

Because the ExDB is intended to handle Web data in a
domain-independent way, we avoid using any specific refer-
ence databases (e.g., DBLP) which may allow us to signifi-
cantly improve extraction quality, as in [9].

3.3 Synonymy Extractions
Our prototype uses a large-scale version of the DIRT al-

gorithm to deduce predicate synonyms automatically from a
corpus of text [29]. DIRT works by comparing the degree to
which the arguments of two predicates coincide. For exam-
ple, a corpus’ worth of argument-pairs to the invented and
has-invented predicates will overlap to a substantial de-
gree. We expect them to share pairs such as Edison/light-bulb
and Einstein/theory-of-relativity, but these pairs are
fairly rare for the average predicate. Predicates that strongly
share argument pairs are likely synonyms.

4The rendered text is, “Program Committee Chair: Gerhard
Weikum, MPI Saarbruecken.”
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Figure 3: The physical database schema, performing
a join between the Types and Facts tables.

We do not yet have object synonyms. There are exist-
ing techniques for object synonyms, such as q-grams [23] or
Dong, et al.’s solution for reference reconciliation [18].

3.4 Inclusion and Functional Dependencies
Inclusion dependencies among predicate tables can be mod-

eled in text by verb specializations, or “troponyms.” Our
prototype does not yet extract these, nor have we seen an ex-
traction mechanism which does. But it seems possible that
an enhanced DIRT algorithm may be able to test for near-
subset relationships between textual predicates. It seems
that a high-quality troponym extractor should be possible.

Extracting functional relationships from text is probably
best considered a subject for data mining research. Rule
learning is an active research topic in data mining, and
advances in this area would directly benefit the quality of
ExDB constraints. However, some initial work suggests that
good results are possible by examining how often a given
predicate preserves an FD over large numbers of contained
object-pairs.

4. QUERY PROCESSING
Our Web Data Model is simply a probabilistic database,

whose mathematical properties have been discussed else-
where. Instead, this section covers how the current proto-
type optimizes query execution, whether or not projections
are present.

4.1 Non-projecting queries
Queries that contain no projections are fairly straight-

forward An ExDB query involves a series of joins against
tables in the Web Data Model. Following the probabilistic
semantics from the MYSTIQ system [15], the probability of
a joined tuple is the product of the local tuples’ probabili-
ties. (See the simple two-table join in Figure 3.4.) We are
usually satisfied with just the top-k tuples (as ranked by
probability), so we use top-k queries to try to obtain results
as quickly as possible.

Our prototype builds heavily on the work of Natsev, et
al., who introduced an algorithm for performing top-k join
queries over ordered data sets [34]. For each dimension’s
score in their system, we employ a tuple’s probability; our
aggregation function is simply product.

We also improve non-projection queries using the work
of Theobald, et al. [39] who observed that a user of top-
k ranking systems will typically accept an approximation of
the true top-k results. They were able to achieve much lower
running times than the standard Threshold Algorithm [21]
at the cost of reduced top-k recall.

Similarly, in our prototype we attempt to compute the
probability that a partially-processed output tuple (with a
partially-computed score) will ever have a high enough score
to make it into the top-k. We apply some statistically-
derived probability bounds to tell us when to bother with
additional processing for a tuple.

4.2 Projections
Consider the query q(?s) :- invented(<scientist> ?s,

?i), which should rank scientists by the probability the sci-
entist invented something. (The actual inventions are irrel-
evant.) A scientist, say Tesla, appears in the output of q
whenever the tuple invented(Tesla, I0) is in the database.
There may be many inventions, I1, . . . , Im, such that
invented(Tesla, Ii). Any of these are sufficient to return
Tesla as an answer for q.

In the ExDB, these tuples are present only probabilisti-
cally. The probability of the query should be the proba-
bility that any tuple invented(Tesla, Ii) is truly in the
database. Unfortunately, this means computing a disjunc-
tion of m probabilistic events, and at Web scale m could be
extremely large. Computing the correct answer will doom
any hope of real-time performance.

Projections also pose a question of semantics that is slightly
unsettling. Many of these purported inventions (which we
are projecting out) will be the result of very low-probability
extractions. These extractions are likely to be inaccurate
and perhaps reflect idiosyncratic language use more than
any other factor. But since we use disjunction to com-
pute the final tuple probability, a large number of very-low-
probability extractions can unexpectedly result in a quite
large probability.

What can we do to make projections practical?
A Panel of Experts Our current attempt to solve the

problems associated with large numbers of contributing terms
is the abstraction of a panel of experts. An expert is a tuple
with a score (e.g. invented(Tesla, Fluorescent-Lighting),

0.95) that tells the probability a tuple appearing in the out-
put of q. We then select a small panel of experts (e.g., 5)
that best supports the output tuple. Let S(~t) denote the
set of tuples which contributes to the presence of the output
tuple ~t, then our returned score for a tuple ω(~t) is given by

ω(~t) = max
L⊆S ∧ |L|=5

Pr[
_
l∈L

l]

Effect of the Panel The small size of the panel elimi-
nates a slew of low quality tuples boosting a poor answer.
Computationally, it reduces the calculation to a small num-
ber of facts. Two additional benefits of this semantic are
that it circumvents known lower bounds [15] about comput-
ing output probabilities in the general case, and allows us to
place more aggressive bounds on the contributions of future
tuples.

The panel semantics offers some advantages and is our
current best solution to the problem of computing proba-
bilistic projections at large scale. Although promising, this
semantic choice requires much more study to determine its
impact on result quality and performance.

Implementation Issues We compute join statistics be-
tween tables to predict the panel probability, given a prejoin
tuple probability. We can use these statistics to determine
when the query processor has likely discovered the top-k
results.
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died-in invented published taught

Aristotle 322 BC logic records Alexander
Galileo 1642 telescope Dialogue mathematics
Newton 1727 calculus Principia
Johannes Kepler Regensberg log books Rudolphine Tables

Table 2: A possible synthetic table about scientists, generated by merging answers
from died-in(〈scientist〉 ?x, ?y), born-in(〈scientist〉 ?x, ?y), invented(〈scientist〉 ?x, ?y),
published(〈scientist〉 ?x, ?y), and taught(〈scientist〉 ?x, ?y). All tuples are derived from queries on
the working ExDB prototype, though the table was composed by hand.

5. APPLICATIONS
ExDB suggests a number of interesting new applications

that make use of structured Web data.

5.1 Synthetic Tables
When human designers create schemas, they are designing

structures that are useful for database software as well as
for human observers trying to make sense of the domain.
ExDB’s extracted structural elements are not meant to be
examined directly, but perhaps an application can use them
to build topic-specific tables that a human would appreciate.

In some cases, a simple ExDB star join with appropriately-
chosen predicates will create a table relevant to the topic. If
the database is sparse, the synthetic-table application may
instead choose to merge multiple ExDB queries and accept
empty table cells when ExDB lacks a high-probability an-
swer. An interesting research question is how to balance
competing notions of what makes a good schema table. For
example, a high-quality table should contain relatively few
NULL values, but a NULL value might be preferable to in-
cluding an extremely low-probability tuple.

Table 2 shows a small sample synthetic table, composed
with several ExDB queries on our prototype system.

5.2 Unstructured Access to Structured Data
Unstructured access to structured data is a well-known

database problem, considered by keyword systems such as
DISCOVER and DBXplorer [26, 2]. As a search engine does
with documents, these systems return structured database
tuples that are relevant to the user’s query.

We have seen how the ExDB can generate a structured
database from text extractions and a user’s structured query.
If it were possible to generate an ExDB query automat-
ically from keywords, we could build a slightly circuitous
but very powerful query system. Its inputs would be Web
text and keyword queries, just as with a standard search
engine. However, its output would be a structured table of
relevant data, not simply a ranked list of documents.

5.3 Web Data Warehousing
An ExDB contains a large amount of read-only struc-

tured data, so it is natural to consider data warehousing
operations such as exploration and visualization. We would
like to enable a form of OLAP-like functionality over the
ExDB, creating the “Web data cube.” The result could
be a novel tool for exploring large aggregates of web data,
which today can only be explored a single document at a
time via keyword-driven search engines.

Doing so will require that we add at least GROUPBY
functionality to our query language, and also consider prob-
abilistic query processing for aggregates in more depth.

6. PRELIMINARY FINDINGS
Even though our prototype lacks many of our desired

ExDB features, we have some promising initial evidence
about result quality and execution times.

First, for result quality, examine Table 3. The left-hand
side shows the results of the following projection query:

q(?s) :- invented(<scientist> ?s, x)

It lists scientist names but projects out the inventions
themselves. The justification for the projection here is to
find practically-minded scientists, not to find the inventions
themselves.

On the right side is a listing of results from a Google search
query for scientist invented. The search query will obviously
return just unstructured documents, but we expected the
documents to contain some easily-extracted structure.

ExDB did very well. All of the listed scientists in Ta-
ble 3 had practical inventions as well as scientific discover-
ies. In contrast, the bottom of the result (not pictured) has
a much higher concentration of incorrect answers, including
the theoretician Wolfgang Pauli and the biochemist/novelist
Asimov. Clearly, these results would have been impossible
without knowledge of the scientist semantic type and the
extracted invented predicate.

The Google search for scientist invented returns just three
pages in the top-ten that contain factual information about
multiple scientists, and only item 1 comes close to answering
the query. After this document’s fourth paragraph, there
is an inline bulleted-list of 30 scientific fields and the “fa-
ther” of each field. Information in this list arguably satisfies
the query, but it would still need to be discovered and ex-
tracted. Also, the text contains few structural “hints” about
the data. Without an extremely sophisticated extractor, it
is hard to see how this document can be useful5

The query as shown took 100 seconds to execute. With
more aggressive use of join statistics in query processing,
we can currently achieve a runtime of 22 seconds at a cost
of about 1.5 errors in the top-10 result set. (The author
Tolkien and the physicist Heisenberg, who was primarily a
theoretician, make it into the bottom two positions.)

7. ALTERNATIVE MODELS
This paper focuses on one particular model for structured

queries over unstructured data. However, it is not the only

5Of course, it is probably possible to formulate a search
query that is much more elaborate than “scientist invented,”
and which would yield better results. However, it is not clear
how to formulate such a search query, and the problems of
structure-extraction still stand. Our point here is only to
show that the results for a reasonably-chosen keyword query
are very far from meeting the system goals.
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scientist p

Tesla 0.9987
Galileo 0.9945

Benjamin Franklin 0.9935
Newton 0.9905

Ben Franklin 0.9905
Gauss 0.9869
Henry 0.9817

Isaac Newton 0.9817
Farnsworth 0.9817
Leonardo 0.9756

Rank Summary

1 Article on history of science with a religious focus
2 Many short scientist biographies
3 Inventors and inventions from 1800s
4 Article on the inventor of plastic
5 Page containing a single trivia question
6 Same page, different format
7 Discussion board on ancient science
8 News article about the early German telephone
9 Two sentences on the thermometer
10 Summary of an article about cat allergies

Table 3: Top-10 prototype-ExDB results for q(?s) :- invented(〈scientist〉 ?s, ?x), and Google search results
for scientist invented. The goal is to retrieve a list of practical-minded scientists. Only one document returned
by Google arguably contains an answer to the query; it is still embedded in unstructured text. Note that
some of the ExDB entries are duplicates and should be merged; object synonyms will make this possible.

plausible one. In this section we describe two alternative
models which take somewhat more extreme places in the
design space. In the Schema Extraction Model, we pro-
pose to compute a single best schema for the entire set of
input extractions; after doing so, the text has been trans-
formed into a traditional relational database. In the Text
Query Model, the query system does not perform any in-
formation extraction at all, but instead offers users a query
language that blends extractive and structural elements.

7.1 Schema Extraction Model
The Schema Extraction Model attempts to derive a sin-

gle “best” schema for an input set of extractions. It then
populates the schema with the extractions to generate a re-
lational database that can be queried using standard SQL.
The work flow for this model is shown in Figure 4. As in
the ExDB system, we start with a set of Web text and run
IE over them. Unlike the ExDB, we do not preserve any
ambiguity about the extracted data or structure.

We assume a slightly different extraction model from that
of ExDB. Rather than derive a series of semantic relation-
ships (i.e., those listed in Table 1), the IE system simply
emits a series of objects with associated values. These emit-
ted items are similar to the facts table in the Web Data
Model. For example, the object Edison might have val-
ues phonograph, Menlo-Park, etc. Each value has at least
one attribute label (e.g., invention for phonograph). We
call these items Unstructured Tuples. We apply a score
threshold to tuples emitted by the extractor, removing un-
likely ones; after thresholding, we do not treat the remainder
probabilistically.

Although most objects in a domain will contain similar
information, the difficulties of human authors and unreliable
IE systems mean that there will inevitably be missing values
and off-topic extraneous ones. Assembling a good schema
from this set of messy extractions will be very difficult, even
for a human designer. We expect that in most cases, the
best schema will be “noisy”; for example, the schema might
be very easy to understand but might lack a few extracted
attributes.

Noisiness opens several competing design criteria for re-
lational schemas, and an instance of the Schema Extraction
Model should be able to make compromises among them. It
may decide to drop some extracted values rather than com-
plicate the schema with additional columns. It may also
decide to fill some cells with NULL rather than split a table

into two separate smaller ones. We believe that three good
criteria are: simplicity (the output has few tables), com-
pleteness (all extractions from text appear in the output)
and fullness (the output database has no NULLs).

If we define the costs of violating these criteria (e.g., we
give a score to the “badness” of complicating the schema
with an additional table) then creating a schema for all of
the Web is simply a matter of cost minimization.

Note that this problem of choosing one schema over an-
other also appears in the “synthetic table” application from
Section 5.1.

7.2 Text Query Model
Figure 5 shows the simple Text Query work flow. It simply

indexes Web text for later querying. Unlike the Schema
Extraction Model, we do not attempt any extraction at all.
The user’s query provides all the needed information. The
role of the query system is simply to provide an expressive
language that generates answers quickly.

As an example, consider a user who would like to check
whether a favorite band is playing nearby. In one query,
she can: a) extract the city/date tuples from the band’s
website, b) indicate the city where she lives, c) compute the
dates when the band’s city and her own city are within 100
miles of each other:

SELECT bandCity, bandDate

FROM ("http://thebandilike.com/**",

["to appear in <string> on <date>",

bandCity, bandDate])

WHERE

bandDate > 2006 AND

geographicdist(bandCity, "Seattle") =< 100

The FROM clause here indicates a relevant set of web pages,
a regular expression that can be applied to the text to gener-
ate a table with two columns plus labels for those columns.
The WHERE clause tests the date to see if it is valid, declares
the user’s current city, and uses a built-in function to mea-
sure the distance between two cities.

Others have proposed Web text query languages, such as
Squeal, WebSQL, and W3QL [38, 32, 28]. These languages
are quite elaborate and some can express a query similar to
the one above. However, these systems were not designed
for good query-time performance. For example, in all three,
executing a query may entail actually fetching remote pages
or finding URLs via remote search engines (as opposed to
simply using prefetched and preindexed pages).
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...our 
hotel 

room was 
cold but 
nice...

...our 
hotel 

room was 
cold but 
nice...

...and 
Alfred 

Hitchcock 
directed...

Frenzy: Hitchcock [directed], 116 [length], ...
Gaslight: great [movie-quality, acting-quality], ...
...
Hamlet: difficult [acting-skill], 242 [length], ...

InfoExtraction SchemaExtraction

Input Text Unstructured Tuples Output Schema

r0 Frenzy 1972

Title Year

116

Length

color

Filmtype

r1 Gaslight 1944 114 bw

r9 Hamlet 1990 242 color

...

r1 great hard

Movie-quality Acting-Skill

r9 okay very difficult

Figure 4: Construction pipeline for the Schema Extraction Model. We still run an IE system over downloaded
text, but use the resulting extractions to compute a single traditional relational database.

In contrast, we would like to construct a system that
can scale to a large number of users while providing search
engine-like response times. These queries are more compli-
cated than just keywords, and so we expect that users would
want to interactively edit queries and see immediate results.

There are tantalizing opportunities for query optimization
when we consider both the extractive and structural query
components. If there are no values of bandDate greater than
2006, then ideally we would avoid half the extraction work
and all of the work of a call to geographicdist.

Unfortunately, neither a search engine’s inverted index nor
a standard relational index can solve this problem efficiently.
With an inverted index, we cannot retrieve any extracted
values without incurring an I/O to fetch the entire original
text; even if the bandDate test fails for every item in the
database, we do not avoid any significant extraction work.
With a standard relational database, any index based on
the extracted tuples would need to be recomputed (over the
entire Web corpus) whenever a user enters a new extraction
clause.

We believe that text indexing techniques such as the neigh-
bor index and the multigram index could be very helpful to
an implementation of the Text Query Model [8, 11].

8. RELATED WORK
The Information Extraction literature is clearly critical to

a useful ExDB; we have cited a substantial amount of work
above. Good surveys on research in IE are available [12, 17].

Halevy, et al. proposed that structural elements are criti-
cal when managing non-traditional data, largely in the con-
text of schema matching [25]. Many concepts from schema
matching could be used in our system, to refine the structure
after extraction.

Liu, et al. recently suggested using triple queries, very
similar to our extracted predicate facts, to perform struc-
tured queries on unstructured data [30]. Their “query graph”
may be similar to a join-graph performed across our ex-
tracted structures, though there is no probabilistic interpre-
tation for the query graph.

Gubanov and Bernstein described a TDBMS, or Text
Database Management System [24]. The TDBMS allows
users to perform textual versions of selection and join queries.
A set of sentences is the basic handled object: the result

Like Gore, 
Mr. Vallee 

lived at 
Silvertip, high 

in the 
Hollywood 

Hills.

Orson had 
become so 
fat he had 

trouble 
getting out of 
cars.  Connie 
Chung was...

... with a new 
drummer.  
They will 
appear in 
Seattle on 

October 3...

Input Text

Indexing

Original Text

Indexed Text Query System

Inverted Index

Neighbor Index

Multigram Index

Figure 5: The simple construction pipeline for the
Text Query Model.

of a selection query is a sentence-set relevant to a given
topic, and two joined sentence-sets cover the same topic.
The TDBMS parser finds sentences that are similar to the
objects and predicates in ExDB, and TDBMS makes use of
synonyms. However, data items are always sets of sentences
rather than data values extracted from the text, limiting the
usefulness of the query output.

Chang, et al.’s MetaQuerier for deep-web querying uses
an extractor that assumes a strong underlying schema; that
schema helps in the extraction process [10]. While Meta-
Querier is designed to be scalable to the entire web, the
schema matching component is only used in certain domain
subject areas. It is intriguing to consider a similar scheme
with ExDB, in which structural information is fed to the IE
components to improve their accuracy.

9. CONCLUSIONS
Despite the implicit structural information that abounds

in Web text, modern search engines do not offer any kind
of structured query service. We have suggested a system
that uses IE to make the structure in text available to query
writers.

We believe an ExDB-like system would be an important
tool for querying the Web. Our work so far suggests a num-
ber of interesting research directions across information ex-
traction, data modeling, and probabilistic query processing.
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By extracting data, schemas, and constraints from text, we
believe the database community can someday offer powerful
new tools for applying structured queries to unstructured
data.
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