
Isolation Support for Service-based Applications

A Position Paper
Paul Greenfield

School of Information Technologies
University of Sydney NSW 2006

Australia
+61 2 9560 4952

p.greenfield@computer.org

Alan Fekete
School of Information Technologies
University of Sydney NSW 2006

Australia
+61 2 9351 4287

fekete@it.usyd.edu.au

Julian Jang
CSIRO ICT Centre

PO Box 76 Epping NSW 1710
Australia

+61 2 9372 4658

julian.jang@csiro.au

Dean Kuo
School of Computer Science
University of Manchester

UK M13 9PL
+44 (0) 161 275 0683

dkuo@cs.man.ac.uk

Surya Nepal
CSIRO ICT Centre

PO Box 76 Epping NSW 1710
 Australia

+61 2 9372 4256

surya.nepal@csiro.au

ABSTRACT

In this paper, we propose an approach that provides the benefits

of isolation in service-oriented applications where it is not

feasible to use the traditional locking mechanisms used to support

ACID transactions. Our technique, called ‘Promises’, provides a

uniform mechanism that clients can use to ensure that they can

rely on the values of information resources remaining unchanged

in the course of long-running operations. The Promises approach

covers a wide range of implementation techniques on the service

side, all allowing the client to first check a condition and then rely

on that condition still holding when performing subsequent

actions.

Categories and Subject Descriptors

D.2.12 [Software engineering]: Interoperability; D.2.11

[Software Engineering]: Software Architectures.

General Terms

Design, Reliability, Standardization.

Keywords

Isolation, concurrency, reservation, promise, precondition, service

interface.

1. INTRODUCTION
Web Services and service-oriented architectures are widely

accepted as being the technologies that will be used to build the

next generation of Internet-scale distributed applications. These

applications are constructed by gluing together opaque and

autonomous services, possibly supplied by business partners and

third party service providers, to form loosely-coupled virtual

applications. The services model is extremely simple but,

unfortunately, this simplicity does not mean that service-based

applications will prove to be easy to develop in practice, or be

sufficiently reliable and robust.

Building robust large-scale stateful distributed systems is a long-

standing and inherently hard problem. Some of the difficulties

come as consequences of having to deal with the effects of

concurrency and partial failures, and are made worse by the

opaque and autonomous nature of services. Traditional distributed

ACID transaction technologies provide an elegant and powerful

solution to these problems, but depend on assumptions of trust

and timeliness that no longer apply in the new loosely-coupled

services-based world.

Our earlier work [4] on improving the robustness of service-based

distributed applications focussed on the consistency problem: how

to ensure that the set of autonomous services making up one of

these applications always finish in consistent states despite

failures, races and other such difficulties. Rather than attempting

to provide the equivalent of traditional distributed transactions for

the loosely-coupled Web Services world, our approach instead

was to develop tools, programming models and protocols for the

detection and avoidance of consistency faults, at both design time

and at run-time. The key to this work was establishing a

relationship between internal service states, messages and

application-level protocols. This insight let us transform the

problem of ensuring consistent outcomes into a protocol problem

that could be addressed using proven techniques from the world

of protocol verification. We then developed tools that could test

whether the contracts defining the behaviour of two services were

compatible and that their interactions would never lead to an

inconsistent outcome. The same message-based definitions of

correctness and consistency were also used as the basis for a

protocol for dynamically checking for consistency failures at the

termination of service-based applications, without requiring an

overall coordinator or a global view of the entire application.

This article is published under a Creative Commons License Agreement

(http://creativecommons.org/licenses/by/2.5/).

You may copy, distribute, display, and perform the work, make derivative

works and make commercial use of the work, but you must attribute the

work to the author and CIDR 2007.

3rd Biennial Conference on Innovative Data Systems Research (CIDR)

January 7-10, 2007, Asilomar, California, USA.

314

This earlier work addressed only the ‘atomicity’ part of the larger

problem of simplifying the construction of robust and reliable

service-based distributed applications. We could prove that the

use of correctly designed contracts and the resulting application

protocols could avoid inconsistent outcomes, but we still required

the programmer to provide code to handle each possible message

under every possible state. For example, the methodology of [4]

requires a merchant service to have code for the situation where

payment arrives for an accepted order when there is insufficient

stock on hand. In the simpler world of ACID transactions,

programmers could simply start a transaction and check stock

levels when the order was accepted, and then rely on sufficient

stock being available throughout the rest of the order process,

regardless of any concurrent orders or other activities. The

challenge we faced was providing a useful degree of isolation in a

services-based world where autonomy and lack of trust meant that

traditional lock-based isolation mechanisms could not be used.

Our approach to this problem was to first identify a range of real-

world examples where the lack of isolation was actually a

problem, and then to understand and generalise the solutions to

these problems already adopted in traditional business processes.

The result of this work is a general pattern and protocol called

‘Promises’.

2. PROMISES
A Promise is an agreement between a client application (a

‘promise client’) and a service (a ‘promise maker’). By accepting

a promise request, a service guarantees that some set of conditions

(‘predicates’) will be maintained over a set of resources for a

specified period of time.

In the conceptual model discussed in this paper, promises are

granted and guaranteed by a Promise Manager rather than directly

by services. A promise manager sits between clients and

application services and implements Promise functionality on

behalf of a number of services and resource managers. The job of

a promise manager is to work with application services and

resource managers to grant or deny promise requests, check on

resource availability and ensure that promises are not violated.

Client applications can determine what resources they need to

have available in order to always complete successfully, express

these as a precise set of predicates and send them to the relevant

promise manager as a promise request. The promise manager will

examine both the complete set of existing promises and the

availability of the requested resources, and either grant or reject

the promise request. Once a promise request is granted, the client

application is isolated from the effects of concurrent activities

with respect to the resources protected by its promises. For

example, the merchant order-handling process we mentioned

above can now ask the manager of the stock resource for an initial

promise that the goods required to meet an order will not be sold

to anyone else for the duration of the order handling process.

Once this promise has been obtained, the order-handling process

can proceed with the knowledge that the required stock will be

available when needed, even though concurrent order processes

may be also selling the same type of goods to other customers.

Traditional lock-based isolation can be seen as a very strong and

monolithic form of promise, one where the resource manager is

guaranteeing that no other concurrent process can alter, or

possibly even examine, the state of a protected resource for the

duration of an operation. The proposed promise-based isolation

mechanism is weaker but can be just as effective because it can be

more precise. The predicates contained within a promise specify a

client application’s exact resource requirements, allowing other

promises covering the same resources to be granted concurrently

as long as they do not conflict with any already granted promises.

Promises do not last forever. The client and promise manager

agree on the period of time for which a promise will be valid as

part of the promise request/granting process, and promises will

expire at the end of this time. Promise managers return ‘promise-

expired’ errors to clients that attempt to perform operations under

the protection of expired promises.

Promise-aware applications can be written with the knowledge

that the resources they need for successful completion will always

be available, and any unavailability exceptions can be treated as

serious errors rather than as part of the normal processing flow. Of

course, applications can always perform actions that are not

protected by promises, but resource changes that violate promises

will be detected by the promise manager and undone in order to

honour the guarantees it has made.

Promises are an abstract way for a client to specify the resources

they need to ensure that they can complete successfully. A granted

promise guarantees that the requested resources will be available

when needed by later actions, but does not necessarily guarantee

that any particular instance of the resource will be used to meet

this promise. For example, a client may request a promise that a

5th floor room will be available on the requested date. The

response to this promise will be that a room matching the

requirements will be available, not that the client has been

assigned room 512. The messages and services used in the

application have to reflect this level of abstraction, in this case by

later making a booking for a 5th floor room, rather than trying to

confirm a booking for room 512.

Promises are both a pattern and a protocol that supports this

pattern. The pattern is simply that client applications determine

the constraints they need to have hold over a set of resources and

express these as predicates that are sent within promise requests to

a promise manager. The promise manager will consult with

resource managers to determine whether a promise can be

granted, and reply with either a granted or rejected response. Once

a promise has been granted, the client application can continue

and call services that will make changes to the resources protected

by its promises with the guarantee that they will be successful if

they are within the constraints implied by its promises. Client

applications then release their promises by sending promise

release messages to their promise managers. Promise release

requests can be combined with application request messages. In

this case the promise release and the application request form an

atomic unit, and the promise will only be released if the associated

action succeeded.

The Promises model places no limitations on the nature or form of

predicates, nor on the way that promise managers should

implement these predicates to guarantee that they hold despite

concurrent updates to the same resources. This flexibility means

that promise managers and resource managers are free to

implement what ever form of constraint checking or isolation

mechanism is best for the type of resource being protected.

315

Some forms of promises could be implemented using the common

business practice sometimes called ‘soft locks’. This approach

uses a field in the database record to show whether an item has

been allocated or reserved for a client. The record is not locked

against access once the allocation has been made; instead

applications read this field when looking for available resources

and ignore any record that has been already allocated. Different

forms of promises, such as guaranteeing that there will be enough

money in an account to pay for a future purchase, could best be

implemented using techniques such as escrow locking [8].

The Promise pattern accommodates both of these ways of

implementing isolation, but it is more general, separating the

model and its supporting protocol from any specific

implementation or resource schema considerations. The flexibility

that results lets us also support more general predicates where the

actual allocation of a particular resource to a client is delayed to

long after the promise is made, and also to support promises over

pools of different but acceptable resources that export the same set

of properties. Section 5 discusses a range of implementation

alternatives.

The motivation behind the development of the Promises approach

to isolation was to provide application programmers with

something akin to the simplicity that comes from the traditional

ACID transaction model. By implementing weaker but effective

constraints over shared resources, we wanted to let programmers

establish those resource-based pre-conditions needed to ensure

their application can complete successfully, letting them then

write their application code with the guarantee that concurrent

activities could not violate these promises. Promise violation is

still possible for other reasons (an accident might damage

previously-promised stock or a third party may default on a

promise they have made) but these incidents can now be treated as

serious exceptions. This is very far from the situation without

isolation where the effects of concurrency are common enough

that they need to be included throughout the normal processing

paths.

The promises obtained by clients conceptually place constraints

on the behaviour of the services that they invoke. Clients get

promises about resource availability and the services they then

call should only make changes to protected resources that comply

with these promises. For example, if a client obtains a promise

that 5 pink widgets will be available to fulfil an order, then the

services it calls can complete the order process for these promised

goods, or the client can release the promise. The client should not

use the promise for pink widgets to ask the order service to deliver

some un-promised blue widgets. This restriction on the behaviour

of services could be largely theoretical, being more like a design

pattern than a type-safety mechanism, or the restrictions could be

enforced to some degree by promise and resource managers.

Our proposed Promise protocol fits very naturally into the SOAP

protocol and the Web Services model. All of our promise protocol

messages can be transferred as elements in SOAP message

headers and the associated actions can be carried within the body

of the same SOAP messages. The fit between the Promise

protocol and SOAP is discussed more fully in Section 6.

We are not the first to propose transaction-like models based on

conditions that must be preserved and Section 9 points to previous

work in this area. Our key innovations lie in the analysis of the

variety of resources and conditions, in considering how to

atomically combine several related aspects of managing a single

promise, and in integrating these ideas into the services-oriented

message exchange framework.

3. RESOURCES AND PREDICATES
This section discusses several different ways that resources can be

viewed by client applications, and how these differences are

reflected in the types of predicates that can be used in promises

over the availability of these resources. Applications can use these

different types of resource availability predicates to obtain just the

degree of isolation they need for their purposes, without needing

to resort to using traditional locking techniques.

Predicates are simply Boolean expressions over resources. Our

model imposes no restrictions on the form these expressions can

take, and in practice their form will depend on the application

involved, nature of the resources and the way we want to view

these resources at the time.

The simplest form of predicate expression is an application-

dependent request for resources, such as asking for ‘room 212,

Sydney Hilton, 12/3/2007’. In this case there is a close coupling

between the application, the promise manager and the resource

schema, and the promise manager is responsible from translating

from this application-dependent predicate to any necessary

queries and updates on the room availability data held by the

resource manager. The relationship between predicates,

applications and resources can be much more abstract than shown

in this simple example, and complex applications could define

their own resource predicate language and implement their own

promise managers to guarantee resource availability.

In their most general and complex form, predicates can be general

Boolean expressions over defined resource availability data that is

specified using standard schemas. In this case, the client would be

responsible for understanding resource schemas and how resource

availability is represented, and for constructing suitable predicates

in the agreed standard syntax. The promise manager in this case

can be completely general purpose, knowing nothing about the

applications, schemas or resource availability. All that the promise

manager has to be able to do is maintain sets of predicate

expressions represented in this standard syntax, check them for

consistency, and evaluate them with the assistance of the

appropriate resource manager. For example, we could send and

maintain resource availability predicates written in a standard

language such as XPath or SQL, and have these query expressions

evaluated by a compatible resource manager whenever the

promise manager needs to check for resource availability or

predicate violation.

Predicates are expressions over resources but the form and

structure they take in any particular application can depend on the

way we regard the resources involved. Different applications may

want to treat the same physical resource, such as a particular

airline seat or an individual pink widget, in different ways, and so

will want to use different types of predicates to achieve the

required level of isolation from any other applications that might

be using the same or related resources at the same time.

In this section we discuss three different ways of regarding

resources: anonymous view, named view, and view via properties.

These abstractions were derived from a study of different isolation

316

mechanisms commonly used in existing business practices. These

different ways of viewing resources influence the sort of

predicates that clients will need to use in order to achieve the level

of isolation they require to always operate correctly.

3.1 Anonymous View
From the point of view of client applications, some resources can

naturally be regarded as pools of indistinguishable and identical

resource instances, any of which could meet a client application’s

requirements. All the resources in the same pool have the exactly

same values for the set of attributes that are relevant to the client

and it is not important to the client which items from the pool it is

allocated and when this allocation takes place.

Most retail goods can be regarded as anonymous for many

purposes. Barnes and Noble may have many copies of each book

title in stock, and a client who wants a promise that a book will be

available does not care which physical copy they are given when

the order is dispatched. In this case, the book title represents a

resource pool, consisting of many identical and indistinguishable

copies, and all that the retailer needs to track in order to be able to

make promises about availability is the number of copies they

have available for sale.

Financial applications, such as banking, use anonymous resources

all the time. For example, if a promise is made that a client

application will be able to withdraw $500 from an account, the

bank is not obliged to set aside five specific $100 bills, uniquely

identified by their serial numbers.

There can be any number of promises outstanding on anonymous

resources, the only constraint being that the sum of all promised

resources should not exceed the resources that are actually

available. For example, our bank can grant many promises against

Alice’s account, just as long as the account will not be overdrawn

if all of these promises are followed by withdrawal requests.

The availability of anonymous resources is usually explicitly

tracked and recorded in an attribute associated with each resource

pool. These attributes are traditionally called something like

‘quantity on hand’ or ‘account balance’.

3.2 Named View
Clients using a named view of a resource know that each instance

of the resource is unique and possesses an identifier, such as a

serial number or some other set of distinguishing characteristics

that can be used to refer to it,. Clients can obtain a promise about

the availability of a resource based on this identifier, and they can

later make use of that resource instance, knowing that the promise

will ensure it will be available when needed.

Some resources are naturally unique and there is only one

instance of a given resource. For example, used cars could be

considered unique and not interchangeable, as each one is

distinguishable by the distance it has travelled and its condition. A

client who gets a promise on a particular vehicle is expecting to

get that one, not an ‘equivalent’ substitute. Conversely, new cars

and hire cars would normally be accessed anonymously by model

or category as they can be considered identical for the purposes of

selling or hiring.

Resources such as airline seats or hotel rooms are another

common class of named resources. These are virtual resources

which represent the opportunity to use a (more or less) physical

resource at a specific time. For example, ‘Room 212, Sydney

Hilton’, 12/3/2007’ names a specific room instance, and the date

is the necessary part of the unique identifier that distinguishes one

booking for the room from another.

The concepts of named and anonymous resources are about the

way client applications view the resources, not about the

resources themselves. A group of related named resources might

be accessed anonymously in some situations, and by their unique

names in others. For example, each seat on a flight has a unique

name (e.g. seat 24G on QF1 departing on 8/10/2007). Some client

applications may let customers try to book specific seats on a

flight, and so need named access to the seat instance. In many

cases though, all economy seats will be regarded as equivalent,

and client applications will be using anonymous access to get

promises about the availability of economy class seats on that

flight.

The availability of named resources will often be tracked by the

use of something like free/busy attributes associated with each

resource instance. Many resources will support both anonymous

and named views at the same time, allowing some clients to

obtain promises on specific resources instances while others are

getting promises over a collection of such resource instances.

A single named resource instance cannot be promised to more

than one client application at the same time, regardless of the

predicates being used and how resources are being viewed by

client applications. For example, if one client is promised ‘seat

24G on QF1 departing on 8/10/2007’, this seat must not be

included in the considerations leading to the granting of a promise

for an arbitrary economy-class seat on the same flight.

3.3 View via Properties
The concepts of named and anonymous resource views we just

discussed are really based the properties (or attributes) exposed by

a resource, and the characteristics of these properties are what

determine the type of promise predicates can be requested over

these resources. If a set of properties can be used to always

uniquely determine a specific resource instance, we can use these

properties in predicates where we want a named view of the

resources. If a set of properties inherently determine a set of

resource instances, then we could use these properties when we

want anonymous access to a pool of acceptable and

interchangeable resources.

An individual resource or collection of resources would normally

expose multiple properties, many of which could be of interest to

clients and potentially be the target of promise predicates. For

example, a hotel booking service would maintain a collection of

rooms and information about their availability on specific dates.

Each of these rooms has a number of properties, such as the size

and type of beds, whether or not smoking is allowed in the room,

whether or not there is a view, and which floor it is on. All of

these properties can be used in promise predicates by client

applications wanting to determine room availability.

Different client applications, acting on behalf of different

customers, can make concurrent requests over the same collection

of rooms and use different sets of these properties in their promise

predicates. For example, one customer may be asking for a room

with a view, while another might be requesting any 5th floor room.

317

Room 512 could be a suitable available resource that would allow

the promise manager to grant either of these requests, but the

manager has to ensure that the same room is not allocated to both

requests at once. The use of different properties in the two

competing promise requests makes this task more difficult as it

may not be straightforward to see that their predicates are

effectively overlapping.

Users may regard some properties as essential and others as

desirable but not required, and this could be reflected in their

promise predicates. The interplay between essential and desirable

properties when obtaining a promise may be complicated and

could lead to systems where the promise requestor and the

promise maker negotiate to find a promise that is both satisfiable

and maximally desirable. For example, the client may initially

request a non-smoking room with a view and twin beds, and

eventually accept a promise for a room with just twin beds.

Another interesting possibility is that the values of certain

properties could be treated as ordered in acceptability, with it

being understood that a promise can be satisfied either by a

resource that meets the precise value for a property as requested

or by one offering a ‘better’ value. For example, a customer who

holds a promise for an economy class airline seat will not

normally complain if, when they fly, they are upgraded to

business class.

Predicates are expressions over the values of abstract properties of

resources, not over concrete fields in database tables. This

abstraction gives rise to the possibility of treating resources

polymorphically, allowing a single predicate to cover any number

of acceptable resources as long as they all expose the required

properties. For example, a hotel booking service could aggregate

availability information from a number of providers, each with

their own schemas for describing available rooms. A single

predicate could be used to obtain a promise from any of these

providers, as long as they all exported the set of properties

required by the predicate (or if the properties they do export can

be transformed to the required ones by the promise manager).

4. ATOMICITY AND PROMISES
In this section we identify three important atomicity requirements

for the implementation of promises and promise managers. While

the autonomy of service-providers means that there is no way to

demand atomicity across long duration business processes, it is

feasible to require that specific atomicity guarantees apply during

the handling of a single Promise message. These requirements are:

Request guarantees on several predicates at once. While it may

be common to seek a single guarantee such as ‘ensure that at least

5 widgets are available when I decide to buy them’, sometimes a

client will want to ensure that several different properties (perhaps

involving several resources) will all be true when the resources

are required at later stages of the application’s execution. The

classic example is from travel planning, where a client may want a

promise that a flight and a rental car and a hotel room will all be

available. By treating the evaluation and granting of all the

predicates carried in a single promise request as an atomic unit,

the client can ensure that they will either get all the resources they

need or none of them. As an aside here, the travel agent client

could also build up the set of required promises needed by

obtaining them one at a time, trying alternative resources and

predicates when other promise requests are rejected.

Perform an action which depends on, but violates, a previously

promised condition, together with releasing the promise. One

common pattern where promises are useful is where a promise of

resource availability is used to protect a later operation which

consumes the resource (and thus makes it not available any more).

Suppose an art gallery service has promised a client that a

particular painting will be available, and the client then goes

ahead and buys the painting. When the purchase occurs, the

gallery service is released from the promise (the client cannot

expect the painting to still be available after they themselves

bought it!); however if the purchase fails for some reason (perhaps

no shipper is available that day) then the promise should remain

in force. In this case, the promise release and the action which

depends on the promise form a unit and both parts must succeed

or fail together.

Modify the predicate whose preservation is promised, by

obtaining a new promise and releasing a previous one atomically.

An important use-case is where the client requests changes to

promises they have already been granted. The requested change

can be to upgrade the promises, or to weaken them. For example,

if a client has obtained a promise that an account will have a

balance of at least $100, they may find that their anticipated later

withdrawal has changed to $200 (a stronger promise is needed) or

to $50 (a weaker promise). In either case, it would be too

restrictive to force the service to honour the new guarantee as well

as the previous one, nor would the client want to release the

previous one until the new one was obtained. Thus obtaining a

new promise should be atomic with releasing the old one, and the

previous one should be retained if the service can’t guarantee the

modified request.

5. IMPLEMENTATION TECHNIQUES
The Promise Pattern we are proposing allows clients to ask a

service to guarantee that a supplied predicate will remain true for

some specified time into the future. The usefulness of this

proposal depends on the existence of mechanisms which will

allow the provider to guarantee that they can honour these

promises, regardless of other promise requests that may be made

and any other actions that may take place against the same set of

resources. In this section we describe several well-known

techniques that could be used in the implementation of promises.

Some of these techniques have been used in a proof-of-concept

implementation [6] that is discussed briefly in Section 8.

These implementation techniques are not meant to be exposed to

clients through the language used to express promise predicates.

This principle means that clients can express their resource

requirements by using abstract predicates over resource

properties, and the promise manager that receives these requests

can then use whatever techniques it wants to implement the

promises and meet the guarantees it has made. This approach lets

the client deal in the abstractions of predicates and resources, and

gives the promise manager the ability to implement these

abstractions in whatever way is best at the time, and to change

these implementations over time without forcing corresponding

changes in client applications.

318

• Resource Pool: In managing anonymous interchangeable

resources, it is common to keep the available instances of

each resource in a pool, and move them to a separate

‘allocated’ pool to ensure that a promise can be honoured.

For example, when we promise that we can supply 10

widgets, we remove 10 widgets from the pool of available

widgets and place them in the allocated pool. The digital

equivalent can be implemented by keeping a count of

available and allocated items in the record corresponding to

each type of resource. This technique is similar to escrow

locking [8].

• Allocated Tags: In the case of resources that are accessed via

a named view, we can keep an availability status field as part

of the data used to describe the resource instance. This field

would be set to something like ‘available’ initially and then

to ‘promised’ when the instance was provisionally allocated

to a client as a result of making a promise. It would then be

either set to ‘taken’ by a subsequent action, or would be reset

back to ‘available’ if the promise is released and the client

has no further use for the resource.

• Satisfiability Check: The promise manager keeps a record of

all the promises it is currently committed to honouring and

also has access to the current state of all resources covered

by these promises. Whenever a new promise request is

received, the manager checks that it and all relevant existing

promises can be honoured, based on the current state of the

resources involved. Similarly, a check is performed after

every client-requested operation has completed to be sure

that the state afterwards still allows all existing promises to

be honoured.

If property-based access is used, the decision about which

resource will be used to honour a granted promise can be

delayed until the execution of the operation which takes the

resource. In this approach, the promise manager needs to be

able to check the compatibility of a set of promises with the

state of the resources. This might be done by finding a

matching in a bipartite graph where edges link the untaken

resources to the promise predicates that they can satisfy.

One consequence of this model is that the availability of a

resource is indicated by the presence (or absence) of a

covering predicate, as well as (possibly) fields in the

resources themselves. In contrast to the ‘allocated tag’

mechanism just described above, we now have the situation

where the availability field in the resource now only indicates

whether or not the resource has been definitely taken. This

means that status information for a single set of resources is

now distributed between the promise and resource managers,

and special care will be needed to ensure consistency.

• Tentative allocation: This is a hybrid mechanism, where

property-based promise requests are met by marking the

chosen resource instances as ‘promised’, and also

remembering the specific predicate that resulted in this

resource allocation. If a later promise request is not

satisfiable from the pool of unallocated instances, the

manager can consider rearranging these tentative allocations

to allow it continue to meet all previous promises as well as

granting the new request. For example, a request for a hotel

room with a view may lead to tentatively allocating room 512

(on the basis that it has a view). When a later request is made

to promise a 5th floor room, the system may reallocate 512 to

the new request as long as a different room with a view can

be still be provided to meet the earlier request.

• Delegation: Promises are made that rely on the promises of

third parties. For example, a purchase order can be accepted

by the merchant if it has received a promise from the

distributor that a backorder will be fulfilled on time. In this

scenario, the promise is delegated from the merchant to the

merchant’s supplier.

As mentioned earlier, the architectural model we are using here

has promises being granted and guaranteed by a Promise

Manager. This system component acts as an intermediary between

clients and services by receiving and granting promises, working

with resource managers to help determine availability and passing

application requests on to services for execution.

In this model, client applications always send both promise

messages and application requests to an intermediate promise

manager rather than directly to services or resource managers. The

promise manager will act on the promise messages, consulting

with applications and resource managers as needed to determine if

promises can be granted. Application requests pass through the

promise manager so that they can be rejected if any associated

promises cannot be granted or if executing the request would

cause existing promises to be violated.

This is only a conceptual model, although it is the one

implemented in our prototype. Actual implementations are free to

implement the required promise functionality in any way at all.

Implementations could move all promise functionality into the

application services, letting them use whatever application-

dependent mechanisms they wish to express predicates, record

promises and determine resource availability. Another alternative

would be to move the responsibility for granting and enforcing

promises to the resource managers where they could be

implemented as a form of dynamic integrity constraint.

6. PROMISE PROTOCOL
This section discusses the structure of some protocol elements that

could be used in a SOAP-based implementation of the Promise

Pattern. In this protocol, clients and promise managers exchange

promise-related information using <promise> and <environment>

message header elements. <Promise> elements are used in the

creation and release of promises. <Environment> elements are

used to specify the promise context that applies for the SOAP

service requests carried in the associated message body.

A <promise> element can have zero or more <promise-request>

elements; each representing one request for the recipient to make

a promise that will guarantee the included predicates for a certain

period of time. A <promise> element can also include zero or

more <promise-response> elements which are used to return

outcomes from previous requests that flowed in the reverse

direction. Each participating service can act as both client and

promise-maker, so a single <promise> element can include both

<promise-request> and <promise-response> elements.

A <promise-request> defines:

• A request identifier that can uniquely identify each

promise-request. This request identifier is used to

correlate promise-requests and promise-responses.

319

• A set of predicates that specify the conditions on which

the client will rely in a later interaction and that the

promise-maker must maintain.

• A set of resources that specify the subjects of the

promise.

• A promise duration that indicates how long the client

wants the promise to be kept.

• An optional set of promise identifiers that refer to

existing promises that can be released if this new

promise request is successfully granted.

Each promise-request must be treated atomically. All of the

predicates over the specified resources must be promised or the

entire promise must be rejected. A promise request may hand

back previous promises in exchange for new promises, and if

these new promises cannot be granted, the existing promises must

continue to hold.

Promise makers send promise responses back to promise

requestors to inform them whether their promise requests have

been accepted or rejected. The elements of a <promise response>

are:

• A promise identifier that the promise maker uses to

uniquely identify this promise.

• A promise result that says whether a promise request is

accepted or rejected. Promise responses could also

return other results, such as ‘pending’ or ‘accepted

with the condition XX’ but these possibilities have still

to be investigated.

• A promise duration that indicates how long the

promise manager will guarantee to keep this promise.

This may be the same as the duration which was

requested, but the promise manager might, for

example, offer a guarantee that expires sooner than the

client wished.

• A promise correlation which is the request identifier

of the earlier promise request.

Successful promise requests establish promise environments.

Application requests can specify that they must be executed

within a specific promise environment (with the set of resource

guarantees defined by its promises) by including an

<environment> element in the associated message header. An

<environment> must define;

• A set of promise identifiers that define which promises

will apply for the execution of the request.

• A corresponding set of promise release options that

indicate whether the associated promises should be

released after the request has completed.

We note that each message may contain any subset of the different

elements relating to promises, and these may be related to the

message body or unrelated. For example, we allow an application

message from A to B to contain a related request for B to make a

promise, and it can also carry a piggybacked response reporting

on the outcome of a previous request that B had sent to A.

7. PROMISES AND ISOLATION
The key contribution of the Promise pattern is that it allows a

client to check for the availability of resources and then later make

service requests with the assurance that these operations will not

fail because the required resources are no longer available (except

for very rare catastrophic situations that might need human

intervention). Programmers are relieved of the need to consider

the frequent but unwelcome situation where concurrent activity

has changed the truth of relied-on conditions after they were

checked.

We will illustrate how applications can use promises to achieve

the precise degree of isolation they require through two examples

based on the merchant example mentioned earlier. Both of these

examples make use of the Promise Pattern but differ in the

resources involved, the way they view them and the predicates

they use.

The first example [Figure 1] shows how the ordering process can

check for the availability of goods using a promise and then be

guaranteed that these goods will continue to be available for

purchase, regardless of any concurrent activities, until the order is

completed or abandoned. In this example, the customer is trying

to order 5 pink widgets. As our customer doesn’t care exactly

which 5 of the many identical pink widgets in stock they will

receive as a result of this order, we will use the anonymous access

view defined in Section 3.1 for this example.

Order process Promise manager

Determine we need 5 pink widgets to be in stock
Send promise request that (quantity of ‘pink widgets’ >= 5)

Check stock levels of pink widgets and…
Accept promise if >=5 currently available

Record promise as predicate over stock
levels, guaranteeing that at least 5 units
will always be available. This predicate
will be checked before any further
promises are granted or purchases are
performed.
Send ‘accept’ <promise response>

Reject promise request if <5 units available
Send ‘reject’ <promise response>

If promise rejected
 Terminate order process saying goods unavailable
If promise accepted…
 Continue processing order (organise payment, shippers)

Send ‘purchase stock’ request to promise manager
and release promise to keep stock level >= 5

Pass ‘purchase stock’ to application service
 (Release 5 pink widgets for delivery
 Reduce stock-on-hand by 5)
Remove this promise from the set of
predicates over the pink widget stock level

Figure 1. Outline of Ordering Process Code

The second example is more complex and illustrates the flexibility

of promise predicates. In this example, our merchant offers ‘next

day’ shipping to its customers for a fixed additional cost on all

orders. The order process asks the promise manager for the

shipping component for a promise of next day delivery, with the

predicate making no assumptions about how this promise will be

implemented or needing any information about the structure of the

shipping component and its internal states. The shipping promise

320

manager could implement the promise by obtaining soft-locks on

warehouse and shipping capacity but other implementations are

possible. The merchant may even have a number of shipping

alternatives available, each with different capacity and cost

structure, and the actual choice of which shipper to use could be

deferred until shipping is required in order to reduce costs and

optimise utilisation. This flexibility is not visible to the order

process or the customer, all that they need to know is that the

shipping component has promised next-day delivery and

guarantees that this will occur.

8. PROTOTYPE IMPLEMENTATION
We implemented a prototype Promise-based system as a proof-of-

concept demonstrator and to help further explore some of the

design concepts and issues involved. This prototype is more fully

discussed in [6]. The overall architecture of this system is shown

in Figure 2. The implementation follows the conceptual model

discussed earlier, with the promise manager being a separate

component, and uses a satisfiability-based mechanism for

checking promises. The messages sent by the client to the promise

manager can include both Promise and Action parts, keeping with

the protocol model discussed in Section 6.

Figure 2. Structure of Promise Prototype

The prototype Promise Manager is best seen as an intermediary

between the client and the application. The client adds promises

header messages to its normal service requests and sends them to

the promise manager for processing. The promise manager then

does its work and passes the request on to the application. The

roles of the components in this promise system are:

• Promise Manager (PM): The promise manager receives each

message as it arrives from the client and breaks it up into its

Promise and Action component pieces. If a message contains

a Promise part, this is split into its promise request and

promise environment parts and any new promise requests are

checked for consistency against the existing promises and

resource availability. After this step, any Action is passed on

to the associated application and the promise manager waits

for a response. If the Action succeeds, the promise manager

then uses the supplied promise environment to update the set

of applicable promises and checks once again that all

relevant promises are still consistent with the resource

availability information held by the resource manager. This

step is what allows the promise manager to guarantee that

promises will be honoured, regardless of what state changes

have occurred as a result of executing the Action. If all

promises can still be honoured, the promise manager passes

back the response it received from the application back to the

client. If the result of the action was that promises were

violated, the promise manager will roll back the changes

made by the Action and return a failure message to the client.

In the prototype, an ACID transaction is used for the

complete processing of each request, and this allows us to

either commit or rollback any changes made by the

application after checking for promise violations.

• Application: The responsibility of the application is to

process the action request passed from the promise manager.

The application uses a resource manager to keep the global

system state which is shared between operations. After the

action has completed, the application sends a response

message back to the promise manager.

• Resource Manager (RM): The role of the RM is to store the

state of the system, and to process queries and updates on

this data as requested by the application and the promise

manager.

The most critical part of the promise manager is the code that

guarantees the validity of non-expired promises by ensuring that

sufficient resources are available to satisfy every active predicate.

The promise manager keeps a record of all non-expired promises

and their predicates in a ‘promise table’. Promises are placed in

this table when they are granted and removed when they are

released. The promise manager evaluates incoming promise

requests by checking that the new predicates do not conflict with

any existing promises and that they are consistent with the current

state of the resources involved. This process of evaluating a set of

promises for consistency is called ‘promise checking’. The actual

code used for this checking depends on the type of resource view

embodied in the predicates used in the promises.

For the case of a named resource, promise checking is relatively

simple and we just have to ensure that one of the following

situations holds: there are no duplicate promises for the resource

(as identified by its unique identifier); or the resource must be

recorded as available in the RM, and there is at most one

unexpired promise over that resource.

For an anonymous resource where there is a pool of equivalent

items, the promise checking process sums the quantities of the

specified resource required by all unexpired promises, and this

value must be at least as large as the amount recorded in the RM

as being available.

Property-based views of resources are much more complicated

because deciding whether to grant promise requests requires

bipartite graph matching. Checking promises over these views is

not implemented in our prototype at present.

Promise checking is used in several places in the promise manager

• Making New Promises: Granting a new promise must

consider the mutual satisfiability of all existing unexpired

promises and the requested promise, using currently

available resources as known by the RM. The request will be

granted if this consistency check passes, and rejected

otherwise.

• Executing Actions: The Application executes actions that

were coded without explicit knowledge of the PM or its

promises. These actions might change the state of resources,

for example by updating the account balance upon receiving

payment or modifying the availability of rooms when

PM

App

RM

Promise
+

Action

Response Response

Action

321

customers make a booking. In a well-designed system,

actions would make no state changes except those that were

guaranteed by relevant promises. However the promise

manager cannot rely on the application code being always

well-behaved, so the promise manager also has to check for

consistency after an action has been completed. This ensures

that the state changes made by the application have not

violated any unrelated promises. Applications are allowed, of

course, to make state changes that will violate those promises

that are being released atomically with the action.

• Updating Existing Promises: Promise clients can request to

update existing promises. Updating existing promises can be

seen as the atomic combination of two operations: removing

the previous promises and creating new promises. The

promise manager has to check the consistency of the

proposed new set of promises and current resource

availability.

Information about promises and resource availability are stored in

different places and controlled by different managers, but they are

both accessed as part of promise operations and have to be

consistent. For example, granting a promise request involves

examining the state of resources held in the RM and examining

the predicates held in the promise table, as well as inserting the

new promise into the promise table. Without taking special care

when coding the promise manager, we could have been vulnerable

to race conditions and other isolation failures resulting from

concurrent promise operations.

The solution we adopted here was to wrap each promise operation

in a transaction. This transaction is started when we begin

processing each client request and committed or rolled back just

before the result of the request is returned to the client. This

transaction covers all of the action code executed inside the

application as well as the subsequent promise checking code

(including modifications to the promise table). This means that all

accesses to the resource manager, as well as changes to the

promise table are transactional, and this gives us the required level

of isolation between concurrent activities. Note that the

transaction is local to a trust domain and short-duration. It does

not include any external messaging or code outside the scope of

the service and its associated promise manager.

9. RELATED WORK
One of our inspirations in this project was the early ConTract

work of Wachter and Reuter [11]. This introduced the importance

of expressing preconditions (‘entry invariants’) needed to allow

actions within a workflow to execute successfully. The authors

identified several different styles of ensuring that these

preconditions still hold at the time when applications rely on them

later in an execution. Among the styles proposed was the use of

semantic locks to preserve conditions and notifying the client

when a checked condition changes. Our work extends the

semantic lock ideas of ConTract to the services world with its

interacting autonomous participants. Our consideration of

atomically combining steps is also new. We provide a richer

analysis of the variety of resource and predicate types, and of the

ways to ensure that predicates remain true over an extended

period. We also support a variety of possible implementation

mechanisms, each tailored to the needs of specific ways of

viewing and accessing resources.

In previous work [7], one of us developed a transaction model for

spatial data which was based on explicit constraints that could be

set and unset to limit concurrent modification of properties of the

data. Our current paper extends this to a world of autonomous

services; as well we now offer an analysis of predicate types, and

a better mechanism to structure the operations by providing

atomicity between aspects of a single step of the promise

exchange.

Recently Dieter Gawlick and other members of the Grid

Computing community have suggested the ‘Option’ protocol [2]

for reserving access to resources. This has similarities to Promises

but our work deals with a wider class of conditions including

those on anonymous resources and property-based views of

resources, and supports a wider choice of implementation

mechanisms. Also, our use of atomicity allows us to unify

concepts such as securing, modifying, confirming, and dropping

which are represented as separate message types in [2]. The

“options” approach has been implemented inside an Oracle

database management system, using “data cartridges” to define

data types with appropriate indexing and triggers (D. Kossmann,

private communication).

The idea of an organisation making a promise about future

performance or behaviour is quite common in bricks-and-mortar

businesses, and most of the implementation mechanisms we

considered have long precedents in business practice. For digital

data, many implementation techniques have been proposed which

offer the effect of promise keeping. Conventional database

locking provides the semantic effect of ensuring that data is not

altered between the time a condition is checked and the time it is

needed, despite any concurrent activities, but the locking

mechanism assumes an environment where activities run very

quickly and all participants can be trusted to hold locks. These

assumptions are inflexible and not suited for data under high

contention or for today’s service-based applications. Alternative

mechanisms have been developed within database engines for

allowing higher concurrency based on knowledge of the semantics

of the data. For example, escrow locking [8] deals with numeric

data under operations that add or subtract, by recording high and

low limits for the possible values, while granular locks and

predicate locking have been proposed as a means of preventing

phantoms [1]. The implementation techniques available for

promises are similar to these, but there are significant differences.

Promises have a limited duration, so a promise maker is not

surrendering site autonomy to an extent that would be

unacceptable given the limited trust assumptions typical of

cooperating parties. Also, because unfulfillable promise requests

are rejected immediately rather than blocking, we do not have to

worry about the deadlock issues that plague lock-based

algorithms.

There are interesting parallels between promises and the IMS/VS

Fast Path mechanism [3]. In Fast Path, each operation is

structured as a predicate check and a transformation on the data.

The predicate is checked when the operation is submitted, and

then at commit-time, the check is repeated, and the transformation

is performed (provided the check succeeded). We can consider the

operation submission as like a promise request, and commit as

like the operation done under promise protection; however, in

Fast Path, other operations do not worry about outstanding

predicates, and so the commit check might fail because of

concurrent activity.

322

Promises are also analogous to integrity constraints, and many

researchers have considered how to enforce integrity in database

management systems. In seminal work, [10] showed how one

could enforce integrity by modifying update statements, and [9]

showed how compile-time checks could ensure that application

code preserved constraints. Techniques like these might be useful

in implementing a promise manager which needs to check each

client action for compatibility with previously granted promises.

However, there are important differences between integrity

constraints and promises. Most significantly, each integrity

constraint can be considered independently, while promises need

to be satisfiable by disjoint resources. For example, two integrity

constraints ‘balance>100’ and ‘balance>50’ are both met if the

balance is 120, but two promises for ‘balance>100’ and

‘balance>50’ imply that the balance must be kept over 150. With

property views, promise satisfiability can require a graph

matching algorithm, whereas integrity satisfiability is just logical

satisfiability.

Our Promises pattern unifies and abstracts over many possible

implementation mechanisms, including those that are based on

previous work mentioned above. The Promises approach offers a

common way for clients to work without knowledge of the

implementation technique used inside a service that can maintain

some property between the time it is checked and a later time

when the client relies on the property.

10. CONCLUSION
In this paper we propose a unified approach to describing the

interactions between a client and a service where the client can

make sure that some condition over resources will hold at a later

time, despite concurrent activities that occur between the check

and the use of the condition. We have analysed the variety of

resource types and conditions on those types, identifying an

important distinction between resources which are accessed

anonymously (where the key property is just whether a given

amount or volume is available), resources which are accessed by

name, and a wider class where access is based on values for some

subset of a collection of properties. We have identified important

cases where several promise-related activities need to be

combined into an atomic unit in order to support valuable use-

cases such as upgrading or weakening a previously obtained

promise.

In future work, we will implement support for Promise

interactions in several service-provision frameworks, including

our own GAT engine [5] and also some commercial approaches.

This will involve developing further implementations for checking

predicates against resources, as discussed in Section 5; as well as

providing simple heuristics to choose an appropriate

implementation technique for each class of resources. We also

will integrate the processing of promises with other frameworks

for service-oriented messaging, including the transaction support

found in standards like WS-BusinessActivity.

11. REFERENCES

[1] Eswaren K., Gray J., Lorie R. and Traiger I. The notions of

consistency and predicate locks in a database system.

Communications of the ACM, 19(11):624-633, 1976.

[2] Fletcher A. (ed). GRID Transaction Management Research

Group Report. http://www.ggf.org/mail_archive/tm-

rg/2006/06/doc00005.doc]

[3] Gawlick D. and Kinkade D. Varieties of Concurrency

Control in IMS/VS Fast path. IEEE Data Engineering

Bulletin, 8(2):3-10, 1985.

[4] Greenfield P., Kuo D., Nepal S. and Fekete A. Consistency

for Web Services Applications, Proceedings of VLDB2005,

pp 1199-1203, 2005.

[5] Jang J., Fekete A. Greenfield P. and Nepal S. An Event-

Driven Workflow Engine for Service-Based Business

Systems. In Proceedings of EDOC’06, pp 233-242, 2006

[6] Jang J., Fekete A. and Greenfield P. Delivering Promises for

Web Service Applications. Technical Report of University of

Sydney School of Information Technologies, TR-605

December 2006.

[7] Kuo D., Gaede V. and Taylor K. Using Constraints to

Manage Long Duration Interactions in Spatial Databases.

Proceedings of CoopIS’98, pp 383-395, 1998.

[8] O’Neil P. The Escrow Transactional Methods. ACM TODS.

11(4):405-430, 1986

[9] Sheard T. and Stemple D. Automatic Verification of

Database Transaction Safety. ACM TODS 14(3):322-368,

1989.

[10] Stonebraker M. Implementation of integrity constraints and

views by query modification. Proceedings of ACM SIGMOD

Conference, pp 65-78, 1975.

[11] Wachter H. and Reuter A. The ConTract Model, in Database

transaction Models for Advanced Application’ (edited by A.

Elmagarmid), pp. 219-263. Reprinted in Readings in

Database Systems, 3rd edition’ (edited by M. Stonebraker

and J. Hellerstein), 1992.

323

