
Impliance: A Next Generation Information Management 
Appliance 

Bishwaranjan Bhattacharjee
2
       Vuk Ercegovac

1
                Joseph Glider

1
                Richard Golding

1
     

Guy Lohman
1
                               Volker Markl

1
                    Hamid Pirahesh

1
            Jun Rao

1
   

Robert Rees
1
                               Frederick Reiss

1                          
Eugene Shekita

1
             Garret Swart

1
 

{bhatta,vercego,gliderj,rgolding,lohman,marklv,pirahesh,junrao,rees,freiss,shekita, gswart}@us.ibm.com 

            
1
IBM Almaden Research Center                                          

2
IBM Watson Research Center 

 

ABSTRACT 
Though database technology has been remarkably 
successful in building a large market and adapting to the 
changes of the last three decades, its impact on the broader 
market of information management is surprisingly limited. 
If we were to design an information management system 
from scratch, based upon today’s requirements and 
hardware capabilities, would it look anything like today’s 
database systems? In this paper, we introduce Impliance, a 
next-generation information management system consisting 
of hardware and software components integrated to form an 
easy-to-administer appliance that can store, retrieve, and 
analyze all types of structured, semi-structured, and 
unstructured information. We first summarize the trends 
that will shape information management for the foreseeable 
future. Those trends imply three major requirements for 
Impliance: (1) to be able to store, manage, and uniformly 
query and transform all data, not just structured records; (2) 
to be able to scale out as the volume of this data grows; and 
(3) to be simple and robust in operation. We then describe 
four key ideas that are uniquely combined in Impliance to 
address these requirements, namely the ideas of: (a) 
integrating software and off-the-shelf hardware into a 
generic information appliance; (b) automatically 
discovering,  organizing, and managing all data – 
unstructured as well as structured – in a uniform way; (c) 
achieving scale-out by exploiting simple, massive parallel 
processing, and (d) virtualizing compute and storage 
resources to unify, simplify, and streamline the management 
of Impliance.  Impliance is an ambitious, long-term effort to 
define simpler, more robust, and more scalable information 
systems for tomorrow’s enterprises.  

1. Introduction 
While the relational database industry is 

unquestionably a business success  – generating 
revenues of over $14 billion in 2005 and managing 
the mission-critical data of virtually every Fortune 
1000 enterprise – its impact on information 
management as a whole remains remarkably 
disappointing.  Despite concerted efforts in the late 
1980s to build “extensible databases”, most of the 
world’s data – 80% and growing – is not stored in 
databases [39].  Though the standardization of SQL 
spurred a whole new industry of applications based 
upon its interface, keyword search is today a far more 
popular retrieval paradigm than SQL.  While the last 
decade has seen tremendous advances in making 
databases more self-managing and easier to use, users 
still complain that databases take too long and too 
much expertise to set up, configure, tune, test, deploy, 
maintain, and enhance.  While databases are arguably 
the most successful exploiter of parallel architectures, 
today even the largest deployments rarely exceed a 
few hundred nodes.  And though database 
architectures have endured several orders of 
magnitude changes in the relative speeds of hardware 
over the last 30 years, the many tiers and layers of 
components in today’s information management 
systems are exceedingly complicated, containing 
redundant and competing components.  It is time to 
re-examine not only the architecture of database 
systems as we know them today, but also their place 
in the overall stack of software employed in modern 
data-intensive applications.  If we were to design an 
information management system from scratch based 
upon the anticipated requirements and hardware 
trends we know now, how would it differ from the 
products and research prototypes available today? 

This paper describes an effort to do just that – to 
design and build a comprehensive “next-generation” 
information management system “outside-in”, starting 
with the top-level requirements of enterprise 
information management, and working backward to 
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define the software and hardware needed to meet 
those requirements. This process has resulted in a 
radical new architecture that integrates software and 
hardware into a high-function and easy-to-manage 
information management appliance that we call 
Impliance, currently being designed and prototyped at 
the IBM Almaden Research Center. Impliance will be 
capable of storing, retrieving, and analyzing all types 
of structured, semi-structured, and unstructured 
information, with low total cost of ownership (TCO), 
and supporting the needs of small businesses to those 
of the largest global enterprises. 

The requirements of Impliance are motivated by 
the confluence of several major trends in information 
management: 
 All data types – not just structured homogeneous 
tables – need to be managed uniformly by tomorrow’s 
information management systems. The requirements 
for structured, semi-structured, and unstructured 
information are converging, requiring databases to 
manage huge amounts of information of various data 
types (PDF, XML, Text, Audio, and Video) that do 
not adhere to predefined schemas.  Customers 
increasingly want to search, classify, aggregate, and 
analyze the content of semi-structured and 
unstructured data in new ways, and find today’s 
distinct systems for database, content, and files too 
complicated and non-uniform in such functionality. 
 Data volume growth is accelerating. Content data 
such as documents and digital media, as well as more 
structured information generated by sensors in large 
volumes (e.g., RFID streams), are contributing to this 
trend.  Additionally, enterprises are retaining their 
data on-line longer, to comply with records retention 
requirements and perform longer-term analysis of 
business trends.  Customers want systems that can 
seamlessly and scalably expand as an enterprise and 
its systems’ needs grow. 
 Total cost of ownership (TCO) is increasingly 
dominated by labor costs. Hardware and software 
costs already represent less than half of the cost of 
most IT systems, and are decreasing rapidly, while 
labor-related costs such as deployment, maintenance, 
and problem determination are increasing.  Customers 
want systems that are easy to install, deploy, use, and 
manage, and that minimize the need for human 
intervention.  Retrofitting layers of autonomic 
management can lead to increased complexity and 
difficulty of problem determination.  True simplicity, 

modularity, and low TCO can best be achieved by 
designing it into the system from inception. 
 Enterprises increasingly need to integrate and 
analyze information from independent “silos” serving 
different applications, organizations, or geographies 
in order to support regulatory compliance, mergers 
and acquisitions, and other business imperatives. The 
current generation of information integration products 
gives access to the data but rarely provide a means of 
querying across silos based on the semantics of the 
data; instead cross silo analysis requires that the data 
be transformed into a single preferred schema/format. 
These deficiencies increase the cost of developing 
new applications and of maintaining the data; 
integrating systems ex post facto is human-intensive 
and thus prohibitively expensive. 
 Hardware architectures have changed and scaled far 
more dramatically than software architectures. 
Current information management software products 
are largely based on the hardware architectures of 
several decades ago.  While those products have 
shown remarkable resiliency to order-of-magnitude 
changes in hardware speeds and capacities, re-
examining the software architecture in light of 
tomorrow’s hardware seems overdue. Drastic 
improvements in hardware – including low-power 
multi-core blade servers, large memories (but with 
relatively higher latency to get to), layers of large on-
chip caches (with low latency), ultra-dense storage 
systems, and commodity low-latency networks – 
provide novel system building blocks that can be 
exploited better with new software architectures. 

Based on the above trends, we identify three 
important requirements for the next generation 
information management system: (1) the ability to 
store and manage all types of data and to perform 
advanced business analytics and information retrieval 
on that information; (2) scalability at least an order of 
magnitude higher than today’s database management 
systems; and (3) extremely low TCO by shifting 
human brain cycles to machine cycles. Such a system 
exists neither in the market nor the research lab today, 
which motivates our vision for Impliance. 

Impliance is designed either to be installed at a 
customer site, or to be run by a third party service 
provider as a component of an online service.  It will 
be the repository of operational, warehouse, and 
archival data. While Impliance will support 
transactions and will be a component in a distributed 
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system, the primary focus of our research is providing 
analysis and integration of information stored within 
a single scalable appliance, rather than high volume 
OLTP or global scaling across a WAN. 

We first paint an overall picture of Impliance in 
Section 2.  Then, in Section 3, we describe a few of 
the key ideas we are applying to address the 
requirements identified above. Other important issues 
to be solved are identified in Section 4. We 
summarize some of the related work in Section 5, and 
conclude in Section 6.  

2. The Big Picture 
In this section, we give some example use cases 
indicative of the type of problem Impliance is trying 
to solve, and a broad overview of the functionality 
that Impliance provides to satisfy those use cases. 

2.1 Use Cases 
We first illustrate the necessity for Impliance with 
real business use cases whose requirements are 
difficult or impossible for today’s software products 
to satisfy.   This will serve to motivate the remainder 
of the paper. 

2.1.1 Exploiting Customer Relationship Management 
Virtually every modern company has at least one 
center for handling customer phone calls, e-mails, 
and/or web-page comments, questions, and 
complaints.  Besides maintaining customer 
satisfaction, these touch points with customers 
provide an excellent opportunity for selling more 
products to existing and prospective customers.  An 
alert call center operator may recognize that the 
solution to a customer problem might be another 
product the company offers, or might even sense that 
the caller is open to buying additional products.  
Today this requires either highly trained and 
motivated (and hence expensive) operators, or canned 
sales pitches that are scripted in advance and often 
not appropriate for that customer.  Ideally, the 
company would capture the customers’ words and 
extract from them what products they know about, 
might be interested in, and even their opinion of the 
company’s products. By correlating the information 
extracted from the text of the conversation transcripts 
with the profile of similar customers who are happy 
with what they bought, one can provide a customized 
offer to a customer through a combination of services 
and products. 

2.1.2 Integrating Content and Data 
Today, enterprises typically manage semi-structured 
or unstructured information such as text, images, 
forms, and video using content management products.  
These products have very limited awareness of the 
semantics of the content or capabilities to search it, 
usually restricting search to the content’s metadata.   
Enterprises need the ability to search the actual 
content and relate it to structured information from 
other sources.  For example, insurance companies 
looking for fraudulent claims need to find the names 
of procedures or pharmaceuticals within the text of 
claim forms or doctors’ statements, and relate that to 
known, structured information about the patient, the 
provider, the procedure, and/or the pharmaceutical. 
Forms filled in by claims adjustors with descriptions 
of vehicle damage and repairs need to be related to 
images of the damage and the police report of the 
accident, and compared with reference data from 
similar accidents to determine if the repair estimate is 
excessive. Today, the rules that relate the structured 
and unstructured data are diffused into the logic of 
dozens of applications and the results surfaced in 
hundreds of reports. By bringing the data together, the 
analysis can be systematized, executed more 
efficiently, and the results made available for use as 
the basis for further analysis and online retrieval. 

2.1.3 Legal Compliance 
Whenever an enterprise is involved in legal actions 
with another enterprise, the court-ordered discovery 
process often requires each litigant to locate and 
preserve broad classes of information that may be 
pertinent to the litigation. Much of the relevant 
information is semi-structured or unstructured – such 
as e-mail, contracts, meeting transcripts, spreadsheets, 
patents, SEC filings – and some of the information is 
highly structured. Just finding this information, much 
less ensuring its preservation, can be exceedingly 
expensive and error-prone when the data is in diverse 
types of repositories and in different formats.  
Furthermore, the relevance of data may be due to 
indirect contractual relationships such as partnerships 
with other enterprises and may require determining 
the transitive closure of relationships extracted from 
the content. Proactive auditing is essential to detect 
legally dubious behavior before it reaches the front 
page of the newspaper. 
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2.2 Functionality Overview 
The use cases above provide a small taste of a broad 
class of informational needs not adequately met by 
today’s diverse set of information management 
products, each with its own capabilities, data model, 
externalized APIs, management requirements, 
idiosyncrasies, and compatibilities.   Maintaining 
organizations with the requisite skills for each 
product is an expensive headache.  What customers 
want is greater integration of these diverse data 
sources, and that is the goal of Impliance.   

Specifically, we have identified four major areas of 
functionality that span information management and 
that Impliance needs to unify: 

1. Semantics.  What the data actually means is 
provided in databases by humans via its logical 
schema, but in other data repositories the 
semantics are unknown or implicitly contained in 
applications, and can only be discovered or 
inferred from the data automatically through text 
analytics and annotation, image recognition 
algorithms, etc.  Even tagged data such as XML 
may not have sufficient semantic information 
behind the tags to properly relate it, e.g. the units 
of measurement, how that data was collected, or 
what it includes and excludes. Having semantic 
information is a prerequisite to effectively 
performing the remaining three functions. 

2. Search/query.  In many cases the data is too 
voluminous or disparate to process in its entirety, 
so each use begins by obtaining a subset of the 
data that meets certain conditions on its content, 
context or metadata.  For structured data, this is 
done with SQL; for XML it is done with XQuery; 
and for other data types it is typically done with 
keyword search, naming conventions, or by 
providing a unique identifier that is magically 
known by the requestor. The more semantic 
information we can extract from the data, the 
more we can improve the utility of this search. 

3. Composition.  Relating objects to each other and 
composing them into new objects creates new 
information that is at the heart of the value 
proposition of information management.  In 
databases, this starts with joins relating objects, 
but it can involve much more.  Composition 
includes integrating items from heterogeneous 
data “silos” to form higher-level objects, or 

“quick and dirty” mash-ups that beneficially 
merge public web data sources with each other or 
with enterprise data sources.  Again, this 
integration can be done far more effectively (and 
correctly!) if the semantics of the inputs are more 
precisely defined. 

4. Aggregation.  To be consumable by humans, 
large bodies of data must be reduced through 
aggregation along various dimensions, to discover 
higher-level models, trends, and exceptions that 
facilitate business decisions. Aggregation is 
fundamental to today’s Business Intelligence and 
On-Line Analytic Processing (OLAP), data 
mining, and visualization. But aggregating 
entities embedded in unstructured information, 
such as text, is extremely hard to do today. As 
with composition and search, aggregation 
presupposes sufficient semantic information that 
we don’t aggregate oranges and orangutans.  It 
makes no sense to average phone numbers or 
salaries paid in different currencies, to double-
count revenues contained in diverse sources (e.g., 
e-mail and a spreadsheet), or to count the total 
number of completely unrelated entities. 

Impliance provides these four basic functionalities for 
all types of data.  Impliance functions as a stewing 
pot, a repository into which all of your favorite data 
can be thrown, with no preparation and in any type, 
schema, or format.  Although you can selectively 
ladle out the unchanged initial ingredients 
immediately, after simmering on low for a while, you 
can also fill your bowl with an information 
Jambalaya: data that has been extracted through an 
enhanced retrieval interface, spiced with additional 
semantics through the discovery processes, melded 
together into interesting new flavors through 
composition, and boiled down with aggregation to 
produce an enriched stew of information. 

As illustrated in Figure 1, the data infused into 
Impliance is mapped from its initial format to a 
uniform data model as described in Section 3.2. Once 
in this uniform format, the query processing engine 
can store it and execute queries over it as described in 
Section 3.3 and 3.4. The discovery process executes 
queries over the data and uses the results to derive 
annotations that are added to the data. The end user 
uses an interactive retrieval interface to find the 
desired information, optionally making use of the 
annotations added by the discovery process and 
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domain knowledge built into the repository or the 
retrieval interface. Note that the query processing 
engine does not “understand” the annotations; 
instead, it supports a mixed data/meta-data model that 
relies on smart query construction by the retrieval 
interface and discovery engine to decide how to make 
use of the annotations.  

3. Main Ideas 
This section summarizes the key new ideas in 
Impliance.  While each alone may not be totally new, 
together they constitute a revolutionary approach to 
information management. Each of the ideas addresses 
issues related to one or more of the requirements 
given in Section 1. 

3.1 The Appliance Model 
First and foremost, Impliance is an appliance that pre-
packages storage, servers, and software into a turn-
key information management system that is 
operational “out of the box”. Unlike traditional 
database machines [10], which advocated special-
purpose hardware that did not enjoy the economies of 
scale of general-purpose chips, Impliance exploits 
more cost-effective off-the-shelf, consumer-based 
storage, CPU, and inter-connect technologies 
configured specifically for information management 
tasks. This does not mean that one size fits all. To 
adapt to differing workload requirements and to “ride 
the technology wave” as component technologies 
improve at different rates, the number and type of 
nodes for storage, computation, and communication 
may differ and may evolve over time.  The necessary 
software is pre-installed, automatically detecting 
which hardware components are available and re-
configuring itself if there are changes. The pre-
installation and pre-configuration of the system 
significantly reduces the “time to value” (TTV), that 
is, the time between the decision to purchase a system 

and when its deployment actually realizes benefit for 
the enterprise, the top priority of data warehouse 
managers, according to a recent Winter Corp. survey 
[39]. Using technology widely employed today for 
user applications, Impliance software upgrades are 
automatically pushed to the nodes and installed 
automatically according to user-modifiable policies 
that balance the performance and availability impact 
of doing the upgrade with the hope for security and 
reliability gains. 

Another benefit of the appliance model is better 
integration of different software components. Such 
integration first enables better collaboration among 
those components. For example, today’s database 
systems still have difficulty communicating to the 
underlying operating system and storage units the 
context of their reference patterns, due to the absence 
of proper interfaces in general-purpose systems that 
support anything beyond generic requests to read and 
write pages.  As a result, operating systems and 
storage units end up trying to deduce the context of 
page requests by mining reference patterns, often pre-
fetching pages that go unreferenced and thrashing 
their hypothesized pattern when the database queries 
change subtly, even though the database knows full 
well from its access plan whether those references are 
due to a sequential table scan or an un-clustered index 
scan, and when it can pre-fetch to advantage. Because 
Impliance controls its entire software environment 
and exposes to the user only the top-most information 
management services, extensions to interfaces of 
operating and storage systems can be made without 
affecting user applications [36]. Tight integration 
among layers of software can also improve efficiency 
by moving functionality to the best component. For 
instance, higher-level functionality such as 
aggregation and predicate application can be more 
easily “pushed down” closer to the storage for early 
data reduction. Another good example for pushing 
down logic is compression and encryption. The 
former is crucial for dealing with large amounts of 
data, and the latter might be required for security 
reasons. In contrast to the approach used in [50], the 
push-down logic is implemented in the software 
component of a storage unit, and thus can be 
deployed on any type of commodity hardware. To 
significantly accelerate the development of Impliance, 
its implementation will draw code and algorithms 
from the abundance of mature open-source and 
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Figure 1: Impliance Overview 
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commercial software in operating systems, databases, 
full-text indexes, and content management systems, 
when appropriate, but modified to exploit the data-
friendly confines of the appliance environment to 
realize smoother integration among software 
components and more uniform systems management.  

3.2 Uniform Management of All Data 
Today’s systems manage different types of data in 
very different ways, with very different user 
interfaces, despite the common requirement to 
reliably store, accurately search the content of, and 
rapidly retrieve both data and metadata about that 
content.  Databases have typically been limited to 
managing highly-structured data with a common 
format and relatively small attributes, which 
conforms nicely to the tables of relational database 
systems.  Despite the best intentions of extensible 
object-relational [22][37] and object-oriented [38] 
databases, other types of data have been largely 
relegated to unsearchable binary large objects 
(BLOBs). Only in the last few years have database 
systems begun to treat XML as a native type, 
permitting declarative querying of the contents and 
structure of XML documents whose schemas may 
vary from one row to the next [8][30][34]. The 
repository of choice for most semi-structured 
“content” (documents, forms, images, video,…) in 
most enterprises is still content managers [44][42], 
which typically use BLOBs or a file system to store 
the content, and database systems to manage the 
metadata (catalog) of that content.  Hence searching 
and querying are limited to the metadata about that 
content, such as its source, date of entry, and a few 
other critical descriptors. A recent Java content 
repository standard (JSR 170) [48] allows querying of 
metadata. However, all metadata must match a 
predefined JSR schema; hence schema chaos 
(diversity) is not supported, as in a conventional 
content management system. Lastly, the ultra-simple 
“bag of bytes” model of file systems provides a 
“repository of last resort” that can manage 
unstructured as well as structured data, but without 
the powerful querying capability (e.g., joins and 
aggregations) we take for granted in databases. 

Impliance unifies the management of all data under 
one umbrella, providing interfaces to search 
structured and unstructured content and metadata 
alike.  Similar to traditional Information Retrieval 
(IR) systems, we view the input to Impliance as a 

collection of documents (or objects), each of which 
may have its own schema. This way, all types of data 
can be incorporated into Impliance.  When data is 
persisted, it is first persisted in Impliance’s native 
format. It may subsequently be transformed into 
different formats or combined with other documents, 
based on common contents or access patterns, and 
stored in one or more transformed states that are 
easier to process. Impliance treats each such new 
version of a data item as immutable. This versioning 
obviates the need to update all replicas of a document 
consistently and synchronously, reducing the problem 
to determining whether any replica has the most 
recent version, if that matters to the application. 

Impliance automatically indexes each document by its 
values as well as its structures (e.g., every path in the 
document) for efficient keyword and structural 
search. Unlike traditional database systems, this 
indexing need not take place as part of the same 
transaction that infused that document initially.  
Impliance even goes beyond a conventional IR 
system, however, by permitting automated 
information discovery at any time, not just at data 
loading time. All data entering into Impliance will 
also go through a number of asynchronous analysis 
phases. Impliance will optionally piggyback data 
mining algorithms on discovery passes, or perform 
both opportunistically on any page retrieved into the 
buffer for other reasons, to more proactively discover 
trends and exceptions in the data.  

Much of the previous research in information 
discovery can be applied here. First, additional 
metadata will be extracted for each document by 
running different kinds of annotators [40][53]. This 
will identify not only entities such as person names 
and locations, but also relationships among them. 
Second, using schema mapping technologies [9][31], 
structures from different sources can be consolidated. 
Thus, customer purchase orders can all be searched 
together, whether they are ingested into Impliance via 
e-mail, a spreadsheet, a Microsoft Word document, a 
relational row, or other formats. Finally, additional 
relationships across documents can be identified by 
running various analyses on all pairs of documents 
(conceptually). One such example is entity 
relationship resolution [28]. As another example, a 
purchase order can be identified to reference several 
master data records, including detailed information 
about a certain customer and product. Discovered 
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relationships can be stored as join indexes and 
utilized at query time. Such a process of self-
organizing heterogeneous data not only facilitates 
more accurate searching, but also meaningful 
aggregation, which is at the heart of business 
analytics.  Yet in Impliance the user need not specify 
this structure a priori through a lengthy – and 
limiting! – process to identify the best logical and 
physical schemas, thereby further reducing the time to 
value.  

Consider, for example, the insertion of a relational 
row into Impliance. The row is first mapped into the 
Impliance document model and persisted. The row 
can immediately be queried by SQL and retrieved 
without change. In the background, however, the row 
is annotated by annotators that have expressed an 
interest in this type of data and whose results are in 
demand by annotation consumers. The annotators 
create new annotation documents that refer to the 
initial row document, and contain information 
extracted from the row or additional references 
forming an association between this document and 
others already stored in Impliance.  At that point the 
new document and its annotations can be exploited by 
native Impliance IR-like search components. These 
derived annotations and associations may themselves 
be exposed to SQL applications through system-
supplied views that map the native data types back 
into relational rows. Exploiting views in this way 
(Figure 2) facilitates adding new functionality to 
existing applications without having to rewrite the 
entire application to use new APIs. 

3.2.1 Query Interfaces 
Impliance will support two query interfaces. The first 
one is keyword-driven search, and can immediately 
be used out of the box. The conventional keyword 
search interface is simple, but weak for business 

analytics. Multi-faceted search [27], or guided search, 
which has been leveraged by search engines such as 
Endeca [43], iPhrase [47] and Solr [35], provides 
more analytical functions such as drill-down and 
drill-across of the search results, while at the same 
time masking schema complexity from the user 
through interactive navigational links. We envision an 
interface for Impliance that extends the concept of 
faceted search by incorporating more sophisticated 
analytical capabilities than just counting entities in 
one dimension, via a sequence of processes that guide 
the user. For instance, such capabilities will include 
some flavor of joins and aggregates in traditional 
relational terms, as well as certain mining operations. 
Semantic information discovered since data loading 
time will be exploited for query answering as well. In 
essence, we are proposing a query interface that 
brings together keyword search, faceted search, and 
aspects from traditional OLAP in order to 
accommodate imprecise search and exploit rich 
structure that is discovered over time. 

The second, more powerful query interface supported 
by Impliance is intended for building applications that 
access information through more structured search. 
We are still in an early phase of understanding the 
requirements of such a query language. Our 
preliminary study suggests that it will be a graph-
based, web semantics-oriented query interface [6], 
and designed to facilitate application-level user 
interaction for query refinement. For example, given 
two pieces of data, we should be able to ask how they 
are connected. Traditional structured query languages 
such as SQL and XQuery can be mapped to this new 
query interface.  

3.3 Simple, Massive Parallelism for Query 
Processing 
A typical Impliance installation will consist of several 
instances of Impliance deployed in geographically 
separated locations for disaster recovery as well as 
load balancing.  Physically, Impliance consists of a 
set of devices deployed in one or more racks, 
connected to each other with a high capacity network 
and connected to external networks and power in 
many places.  However, its clients and administrator 
see a single system image.  We now focus on the 
internal design of a single Impliance instance. 

In order for a single instance of Impliance to be able 
to scale from a one-terabyte small business to a multi-
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petabyte enterprise, the storage and data processing 
capabilities must be scalable over three orders of 
magnitude and a wide variety of workloads. To do 
this while minimizing the resource and, more 
importantly, the administrative requirements, 
Impliance needs an efficient way of organizing the 
storage, computations, and the topology of the 
underlying hardware. We introduce a novel systems 
topology and processing architecture that scales in a 
way that is appropriate to the workload. Each 
Impliance instance consists of a number of nodes, 
topologically differentiated into three flavors, each 
optimized for a particular style of computation based 
on their connectivity, but each supporting the same 
execution environment (depicted in Figure 3).  These 
node types correspond to the most popular distributed 
computing paradigms in use today, but are novel in 
their use in tightly-coupled combination. 
• Data nodes have direct ownership of a subset of 

the persistent storage, and are the most efficient 
when performing operations on that storage. Data 
nodes are sized to balance their computing 
capability and their I/O bandwidth, but they can be 
a bottleneck if the data stored on a data node is 
heavily used. 

• Grid nodes perform analytic computations. They 
may be pulled into a “work crew” to perform long- 
or short-term operations, and have no long-term 
state.  Grid nodes may offer specialized computing 
capabilities, such as a hardware accelerator, and 
have the lowest cost per cycle. 

• Cluster nodes are responsible for making 
consistent locking and caching decisions on data 
within data consistency groups. Such nodes are 
good at scalably performing many small consistent 
updates over a large set of data, but being a part of 
a consistency group requires overhead for heart-
beats and for reacting to nodes joining or leaving 
the group. 

For example, a query can be parallelized by 
performing full-text index search on a set of data 
nodes, which then send the reduced data to a set of 
grid nodes for joining, sorting, and group-wise 
aggregation, the results of which are sent to a set of 
cluster nodes to drive a set of updates. For better 
resource utilization, each operation could be executed 
on any of the node types. However, the scheduler 
assigns operators to compute nodes based on which 
operators execute more efficiently – or with greater 

scalability – on a particular node type, the 
communication pattern of the operator and the 
availability of resources within the system. Because 
Impliance is an appliance, it knows about and can 
model all of its constituent operators and compute 
nodes, so it can make informed scheduling decisions.  
Compared with conventional massive parallel systems 
[16], this architecture makes it easy for Impliance to 
scale data and processing independently: Add more 
data nodes to provide additional data capacity or 
throughput; add more computing nodes to support 
additional users or applications [26]. As new special-
purpose blade hardware becomes available, it can be 
assigned to run software components that can exploit 
its capabilities. For example, Cell Blades [52] have 
excellent vector processing and capabilities and are 
promising for tasks like compression, encryption and 
image analysis. Note that both querying and proactive 
discovery share the same system infrastructure, but 
exploit it in different ways. 

Given a query, Impliance determines an execution 
plan to deploy in the above infrastructure. Instead of 
implementing a full-fledged cost-based optimizer as a 
conventional database system does, we propose to 
build a simple planner that allows only a few limited 
choices of the underlying physical operators. Such a 
planner is desirable because it offers predictable 
performance (as opposed to optimal performance) and 
obviates the need for maintaining complex statistics, 
both of which help reduce a significant amount of 
TCO present in managing a traditional database 
system. We believe that such a simple planner is 
feasible for several reasons. First, we are willing to 
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use more hardware resources to reduce the number of 
different physical operators that we have to 
implement and choose from. Second, we can take 
advantage of the characteristics of the retrieval 
interface and the underlying data. For instance, given 
a keyword-search interface that requires only the top-
k results, indexed nested-loop joins may always be 
the preferred join method. As another example, if 
data is imprecise by nature (e.g., because of fuzzy 
annotation), the process of summarizing query results 
can be simplified, since exact answers are not 
meaningful anyway. Third, the field of adaptive query 
processing [5][29][32] has advanced significantly 
over the past six years, and we can borrow and extend 
some of the techniques to make query operators self-
adaptable at runtime.  

In addition to interactive queries, an Impliance cluster 
will run a series of continuous background tasks, such 
as extracting structured annotations from existing 
documents. Annotation extraction requires the 
capabilities of all three node types. Data nodes 
perform intra-document analyses: tasks like entity 
extraction and sentiment detection within a single 
document. The output of intra-document analyses 
may be fed to grid nodes for inter-document analyses 
that identify relationships spanning multiple 
documents. Finally, cluster nodes are responsible for 
persisting newly extracted structures and 
relationships reliably and consistently. 

To speedup search queries, Impliance may embed a 
full-text indexer such as Lucene [24] and Indri [46]. 
However, we will need to extend those off-the-shelf 
libraries to meet new requirements in Impliance. For 
example, for certain kinds of documents, the text 
indexer has to support hierarchies natively. 
Techniques of indexing semi-structured data such as 
XML [18] can be adopted here. Also, for efficient 
multi-faceted search, it may be useful to extend the 
payload in the index with additional structured data. 
Finally, it is important to be able to incrementally 
maintain the index, especially when structured 
annotations are added continuously. 

3.4  Compute and Storage Resource 
Virtualization 
In order to achieve its scalability goals, enterprise 
deployments of Impliance will be organized as 
potentially thousands of interconnected nodes 
constructed from commodity hardware components. 

Realistically, we expect these nodes to be 
heterogeneous in composition over time, especially as 
hardware is upgraded over time.  Each node may 
consist of varying amounts of processing, memory, 
and disk storage capability. Nor do we assume 
uniform communication latency between any two 
nodes; rather, we assume that compute and storage 
resources are available as collections of smaller 
groups of tightly-coupled clusters.  

In order to unify and simplify its management, 
Impliance will virtualize this diverse set of compute 
and storage resources by introducing the notion of a 
resource group: a group of tightly-coupled nodes 
(together with their attached storage) that can be 
assigned the role of cluster, grid, or data storage 
service, as described in Section 3.3. In order to scale 
to very large numbers of nodes, we organize and 
manage these resource groups in a hierarchical 
fashion [1][20]. 

The cost-effective autonomic management of these 
resource groups is a key factor in meeting our goal of 
reducing both the TCO per byte of data stored, as 
well as the time-to-value. There are two aspects to 
this management: execution management and storage 
management. 

Execution management is the task of assigning parts 
of any task to resource groups, depending on the 
availability of those groups’ resources. For example, 
it may make sense to execute part of a query such as 
predicate application on the storage nodes, in order to 
obtain highest performance and avoid affecting grid 
nodes.  At other times, however, the storage nodes 
may be too busy serving data for many different 
analyses, and so moving more work to grid nodes will 
be preferred.  Execution management also includes 
scheduling prioritized tasks, i.e., managing queues of 
long-running analysis tasks and properly interleaving 
these analysis tasks with the execution of queries with 
more stringent response-time requirements.  

Storage management is the task of determining how 
and where to store the system’s data, including how 
much to replicate the data for reliability. Some data, 
especially data users have added, will require high 
reliability, and some will require the kind of 
regulatory protection mandated by Sarbanes-Oxley. 
Other data can be re-created with varying amounts of 
effort, such as data derived by analytics or redundant 
versions of base data to enhance access or reliability 
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(e.g., materialized views, indexes, and replicas). 
Some data requires extra protection, not because it is 
itself important, but because access to other important 
data relies on it.  

In today’s information systems, the administrator has 
plenty of knobs to turn, at the storage level (choosing 
the RAID level), in the file system (replication and 
data placement), information manager (caching and 
block size), and cluster manager (priority and 
resource assignment) to implement a desired service 
level. Our goal is for Impliance to tune all these 
resources autonomically, perhaps not as well as the 
best administrator can tune the most configurable 
products, but instead to utilize resources well enough 
to deliver cost-effective performance.   

For scalability, we envision a hierarchical treatment 
to both the execution and storage management tasks. 
At the bottom of the hierarchy are resource groups 
that provide a pool of compute and storage resources 
that meet a high-level specification of performance, 
capacity, and reliability, and act together in the role 
of cluster service, grid service, or data storage 
service. Each group manages itself autonomously by 
scheduling work locally with respect to these service 
levels and ensuring that the proper amount of 
resource is available.  

Higher in the hierarchy are components that perform 
macro-level scheduling of jobs to resources groups, as 
well as components that act as brokers for facilitating 
the transfer of resources between groups. For 
example, when a group reports the failure or loss of a 
resource, it can contact a broker to help it acquire 
resources from some other group that is willing to 
relinquish them. Similarly, when new compute or 
storage resources are added, brokers offer these 
resources to the groups that will make best use of 
them. 

4. Other Issues 
Security and versioning are important to Impliance, 
but are not the initial focus of our research. Since 
Impliance is designed for enterprise information 
management, it needs to support policy-driven access 
controls in such a way that information is provided to 
the right people, and only to the right people. Another 
aspect of security is monitoring and auditing. 
Impliance should be able to trace the lineage [13] of a 
piece of data as well as queries that have accessed it 

[2]. Security is the focus of recent enterprise search 
offerings from both Oracle [51] and IBM [45].  

Another important issue is versioning. Because of 
auditing requirements and the abundance of low-cost 
storage capacity [21], Impliance does not update data 
in-place. Instead, changes are implemented as the 
addition of a new version. We are still investigating 
whether we should only support a simple sequential 
versioning primitive and let various other versioning 
schemes be built on  top of it, or directly support 
more complex ones, allowing branching and merging 
of versions, as in typical source-code management 
systems. 

5. Related Work 
Because of its ambitious scope, Impliance builds on a 
wide base of published research literature. Integrating 
Information Retrieval (IR) and database systems is 
currently a hot topic. For example, [3] tries to 
incorporate keyword search into conventional 
relational database systems for simplified data 
exploration, while [12] outlines the benefits and 
challenges of integrating database and IR 
technologies. The main research topics identified 
include user-defined ranking functions and a rank-
aware optimizer and algebra. More recently, [25] 
proposes using “dataspace” to handle all types of 
data. The basic ideas include schema integration on 
demand, supporting multiple data models, and 
exploiting human attention. [4] advocates a tight 
integration of the functionality of databases and 
content management systems. The Infosphere project 
[9] aims to develop a next-generation integrated 
database management system that incorporates 
advanced techniques in information integration, 
content management, and data warehouse systems. 
While a lot of the ideas are complementary to 
Impliance, none of them uses the appliance model or 
shares the focus on the scalability and TCO issues 
that Impliance does. 

Internet information providers such as Google, Yahoo 
and MSN need to store, manage and retrieve all Web 
data, which has a size in the order of tens of terabytes 
in 2005. They have all chosen to build certain kinds 
of information management infrastructure in-house. 
For example, the Google File System [19] is a 
scalable distributed file system and provides fault 
tolerance while running on inexpensive commodity 
hardware. Sitting on top of Google File are a highly 
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scalable programming model, called MapReduce [15] 
and a programming language Sawzall [33]. Using 
MapReduce and Sawzall together, developers can 
write and schedule jobs that perform sophisticated 
analysis on a large data collection. The developers 
only need to design the logic of a job, and the 
infrastructure handles parallelism, fault tolerance, and 
workload balancing. More recently, Google 
implemented Big Table [11], a distributed storage 
system for managing structured data that scales to 
terabytes. Similar to the relational model, Big Table 
provides an abstraction that simplifies the logic 
design of a job. Such infrastructures exist in Yahoo 
and MSN as well. For example, Yahoo has been 
heavily involved in an open source project, Hadoop 
[23], which implements a distributed file system and 
MapReduce in Java. MSN uses Dryad [17], a 
programming model for a distributed environment 
(similar to MapReduce). We note that IBM also 
offers an information integration product DataStage 
[14], which supports a distributed programming 
model for ETL (Extract, Transform and Load).  

Industry has not been idle in the data appliance 
market. Netezza [50] and Datallegro [41] both offer 
appliances for business intelligence applications on 
relational data. Similar to Impliance, they integrate 
the hardware and software to reduce the time to 
value, and rely on simple, massive parallelism to 
reduce TCO. While Netezza adopts the idea of 
database machines [10] by using proprietary disk 
controllers for faster data access, Datallegro uses 
general purpose hardware, as does Impliance. 
However, Impliance is intended for managing all 
types of data, not just relational data, and is designed 
to scale larger. Google Base [7] provides a service 
that allows various types of data to be published in a 
simple way, and to be searchable using a keyword-
driven, facet-like interface. In comparison, Impliance 
focuses more on proactive information discovery, 
richer business analytics, and data management.  

Traditional middleware providers also recognize the 
need to support heterogeneous types of data within an 
enterprise. For example, both Oracle Secure 
Enterprise Search (OSES) [51] and IBM Websphere 
Information Integrator Omnifind Edition [45] enable 
many different types of data to be crawled and 
searched in a secure way. Again, the interfaces that 
they support are not as advanced as Impliance. In 
Figure 4 we summarize qualitatively the differences 

between Impliance and other systems, along the 
dimensions of scalability, TCO, and modeling and 
querying power. On the low side of the data richness 
axis, NetApp [49] provides file system appliances 
that scale up to 500 TB. 

6. Conclusions and Future Directions 
This paper described Impliance, a next-generation 
information management appliance that is currently 
under design at IBM Almaden Research Center. The 
goal for Impliance is to become a high-function, easy-
to-administer system that is capable of storing, 
retrieving, and analyzing all types of structured, semi-
structured, and unstructured information, has low 
total cost of ownership (TCO), and scales out from 
small businesses to the largest global enterprises. 
Impliance can be either delivered directly within an 
enterprise, or be used to build an online service 
serving multiple enterprises. To achieve our 
ambitious goal, we employ four key ideas in the 
design of Impliance: using the appliance model; 
managing all data using a single data model; simple, 
massive parallelism; and virtualized management of 
compute and storage resources. We plan to 
collaborate extensively with people both inside and 
outside of IBM to invent and incorporate the best 
technologies needed for Impliance’s data 
representation, discovery, retrieval, management, etc.  
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