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ABSTRACT
Databases that preserve a historical record of activities and
data offer the important benefit of system accountability:
past events can be analyzed to detect breaches and maintain
data quality. But the retention of history can also pose a
threat to privacy. System designers need to carefully balance
the need for privacy and accountability by controlling how
and when data is retained by the system and who will be able
to recover and analyze it. This paper describes the technical
challenges faced in enhancing database systems so that they
can securely manage history. These include: first, assessing
the unintended retention of data in existing database sys-
tems that can threaten privacy; second, redesigning system
components to avoid this unintended retention; and third,
developing new system features to support accountability
when it is desired.

1. INTRODUCTION
Because errors and malicious behavior can never be perfectly
avoided, many applications that manage sensitive data pre-
serve a historical record of activities and data. This provides
accountability because past events can be analyzed to detect
breaches, maintain data quality, and audit compliance with
security policies. For example, when managing medical in-
formation, accountability is crucial. If false information is
discovered in a patient’s medical record, it is important to
find out who is responsible for the error, when it occurred,
and how the erroneous data may have been used. Inex-
pensive storage makes the preservation of all past database
states feasible, and many have argued that versioning in
databases should be the rule and not the exception [48, 49,
2, 29].

Yet there are settings where retaining a history of past data
or operations poses a serious threat to privacy and confiden-
tiality. For example, in large institutions and enterprises,
systems that retain data for too long risk unwanted disclo-
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sure (either by security breach or forced by subpeona) and
may violate privacy regulations that mandate the timely
removal of data [32, 25, 23]. Similarly, without precise con-
trol over data destruction, unwelcome remnants of past data
can become a serious problem. For example, researchers re-
covered a wealth of sensitive data after inspecting a sam-
ple of decommissioned hard drives [27]. Digital documents
have been found to include sensitive content believed to be
deleted [24, 14]. Email was used in court cases against Enron
employees and released to the public [30, 47], some contained
in “deleted items” folders [33].

Systems that “forget history” can preserve privacy, and they
have real value in certain settings. Rosen [44] reports anec-
dotal evidence of this claim when he describes an antiquated
pharmacy in Washington, D.C. It keeps no computer records,
and has a booming business supplying antidepressants, Vi-
agra, and other sensitive medications to prominent political
figures. In addition, a Minnesota judge has argued that the
use of deleted but recoverable digital data should be out-
lawed [45].

The fact is, privacy and accountability are both legitimate
goals. But they are often at odds, and system designers need
to carefully manage the balance between them. The central
issues are how and when data is retained by the system and
who will be able to recover and analyze it. This paper argues
for enhancements to database systems that allow users to se-
curely manage history, balancing the needs for privacy
and accountability. In settings that require it, databases
should be configurable as “memoryless” systems that pro-
tect privacy by resisting unauthorized attempts to trace ac-
tivities or recover deleted data. In other settings, databases
should support accountability by efficiently retaining his-
tory, enabling its analysis, and controlling access to it. Un-
fortunately, as we describe below, existing databases are ill-
equipped for balancing privacy and accountability.

Threats to privacy
Existing database systems threaten user privacy and the
confidentiality of data by inadvertently retaining historical
traces of data and operations. A functioning database sys-
tem makes numerous redundant copies of sensitive data items
in table storage, indexes, logs, materialized views, and tem-
porary relations. The table storage manager makes copies
of database records within allocated space, and also pushes
copies of data records into general file system space. When
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data is deleted, it is not destroyed and may persist on disk.
Data owners currently have little or no control over these
operations, and cannot say with certainty where sensitive
data may end up, whether it is destroyed after deletion, or
how long it will persist.

The emerging field of computer forensics is concerned with
the analysis of systems in order to validate hypotheses about
past activities. A forensic analysis of a database system
can reproduce partial histories from the unintended traces
stored by the system. Typically, the forensic investigator
is a law enforcement professional who has seized a com-
puter and gained unrestricted access to the disk image. But
forensic analysis can be performed by a range of potential
adversaries: hackers, privileged insiders, or anyone who has
gained physical access to hardware through theft or loss.
While data encryption can help protect against unautho-
rized access, it may not deter insiders and is often an un-
enforced policy [54]. Individuals concerned about personal
privacy must consider threats that may result from forensic
analysis.

Insufficient accountability
The unintended retention of historical information is per-
vasive in databases but does more to weaken privacy than
strengthen accountability. First, there is no way to guar-
antee that needed information will be available, since data
retention is incidental (see Section 2). Second, there is a ba-
sic asymmetry between privacy and accountability. A single
sensitive data value retained and recovered in an inappropri-
ate context can violate privacy; e.g., a social security num-
ber or medical diagnosis. But individual retained values are
not sufficient for accountability, which often requires fairly
complete evidence of past events.

Existing database systems include a number of components
designed to intentionally retain history. Transaction logs
record all changes to the database, backups are retained, and
many systems include operational logs that record queries
issued, access control operations, and system monitoring
facts, among other items. In addition, researchers have pro-
posed a range of versioning and archiving mechanisms for
databases that retain complete histories and can offer query
capabilities over past states of the database [40, 51, 50, 11,
34, 35].

But these technologies have some severe limitations. Trans-
action logs and backups do not provide an efficient means of
querying past states of a database. Archiving and temporal
databases are not widely used in practice, and if versioning
is required it is often implemented in middleware. Further-
more, in all these systems, the mechanisms for controlling
access to logs and historical records maintained for account-
ability are extremely limited. Historical data and logs are
wholly outside traditional database access control mecha-
nisms. Overall, existing systems lack efficient and config-
urable means for retaining desired historical information,
analyzing that information to provide accountability, and
controlling access and retention of that information for pri-
vacy purposes.

Contributions
The remainder of the paper describes our current efforts in
engineering database systems capable of managing history
securely.

We begin by describing the threats to privacy that result
from the forensic analysis of database systems. Our initial
work [37] has investigated four popular database systems
and one embedded database library — Postgres, MySQL,
IBM DB2, and SQLite, respectively — demonstrating the
somewhat surprising persistence of data in table storage.
Expired tuples can often be recovered long after they have
been deleted. In addition, data values have a complex life-
time — not only within files allocated to the database, but
also in file system storage outside of database control. We
briefly summarize in Section 2 the main findings from our
preliminary work [37].

This forensic analysis shows that the standard interface to
the database (i.e., SQL) does not reliably represent the ac-
tual stored contents of the database. Such a disconnect
between the interface and actual system state is a serious
concern for data owners because it gives a false view of data
retention. To address this problem we describe in Section
3 a novel system design goal called transparency. In brief,
all data retained by the system should be accessible through
a legitimate interface, and it should not be possible to re-
cover hidden data through inspection of system state. In
cases where data is intentionally retained beyond its active
lifetime, its persistence in the system should be evident to
users and accurately configurable. We describe the technical
challenges in modifying system components (table storage,
indexes, and logging) for transparency. These challenges in-
clude implementing secure deletion and making data struc-
tures history-independent.

Finally, in Section 4, we describe key challenges of intention-
ally building accountability features into database systems.
The main goals are to collect appropriate data through per-
sistence mechanisms, to permit analysis of the data through
efficient query processing, and importantly, to protect the
data by controlling its periods of retention and the parties
that can access it. To enhance the protection of history, we
also describe a historical redaction operation which can be
used to remove all past versions of sensitive items from the
database.

We describe work related to each of these topics within the
relevant sections.

2. FORENSIC ANALYSIS OF DATABASES
Computer forensics is an emerging field [18] which has stud-
ied the recovery of data from file systems [17, 28, 26, 27],
and the unintended retention of data by applications like
web browsers and document files [26]. Forensic tools like
the Sleuth Toolkit [16] and EnCASE Forensic [22] are com-
monly used by investigators to recover data from computer
systems. These tools are sometimes able to interpret com-
mon file types but, to our knowledge, none provide support
for analysis of database files.

Forensic analysts typically have unrestricted access to stor-
age on disk. We consider as our threat model adversaries
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with such access, as this models the capabilities of system
administrators, a hacker who has gained privileges on the
system, or an adversary who has breached physical security.
We also note that database storage is increasingly embedded
into a wide range of common applications for persistence.
For example, embedded database libraries like BerkeleyDB
[5] and SQLite [46] are used as the underlying storage mech-
anisms for email clients, web browsers, LDAP implementa-
tions, and Google Desktop. For example, Apple Mail.app
uses an SQLite database file to support searches on subject,
recipient, and sender (stored as ∼/Library/Mail/Envelope
Index). Recently, Mozilla has adopted SQLite as a unified
storage model for all its applications. In Firefox 2.0, remote
sites can store data that persists across sessions in an SQLite
database as a sophisticated replacement of cookies. The
forensic analysis of such embedded storage is particularly
interesting because it impacts everyday users of desktop ap-
plications, and because embedded database storage is harder
to protect from such investigation.

Forensic analysis can be applied to various components of
a database system, and it reveals not only data currently
active in the database, but also previously deleted data and
historical information about operations performed on the
system. Record storage in databases contains data that has
been logically deleted, but not destroyed. Indexes also con-
tain such deleted values, and in addition may reveal, through
their structure, clues about the history of operations that led
to their current state. Naturally, the transaction log con-
tains a wealth of forensic information since it often includes
before- and after-images of each database update. Other
sources of forensic information include temporary relations
(often written to disk for large sort operations), the database
catalog, and even hidden tuple identifiers that may reveal
the order of creation of tuples in the database. The goal
here is to understand the magnitude of data retention, and
to measure (or bound) the expected lifetime of data.

We also note that encrypted storage is often not sufficient to
address these threats. As a practical matter encrypted stor-
age is not widely used. In databases, encryption often intro-
duces unacceptable performance costs. In addition, forensic
investigators or adversaries may recover cryptographic keys
because they are shared by many employees, easily subpoe-
naed, or stored on disk and recovered.

2.1 Forensic analysis of table storage
In initial work [37], we have studied the unintended reten-
tion of data in real database systems including PostgreSQL,
MySQL, IBM DB2, and a popular embedded database, SQLite.

Our first observation is that, in all systems studied, record
deletion is insecure. Deletion of records is accomplished by
setting a deletion bit — the data is not overwritten and is
fully recoverable. This recoverable data is expired (it cannot
be retrieved in query results) and we call it database slack,
abbreviated DB-slack.

The lifetime of database slack in record storage is difficult
to predict. After deletion, the space occupied by the record
is freed, and may be reused by records inserted in the fu-
ture. The reuse of freed space for a newly inserted record
depends on whether the new record fits in the free space

(since attributes of the record may be variable-length) and
whether a sort order is imposed on the table by clustering
constraints. In addition, because pages in record storage be-
come fragmented over time, there is a table reorganization
command (referred to here as vacuum), which is executed
periodically by the database administrator. When vacuum
executes, records are copied within and across pages, and
the size of the file used for table storage may be reduced,
thus returning space to the file system.

Vacuum has the potential to reduce recoverable data by
overwriting DB-slack data. But we have found the domi-
nant effect of vacuum is actually to increase forensically re-
coverable data. This is a consequence of our second finding,
which is that the vacuum operation is insecure. All sys-
tems we examined returned space to the file system without
overwriting data. This means copies of database records
are moved to unallocated file system space and remain re-
coverable. Data that persists in the filesystem after being
removed from database files is called file system slack,
abbreviated FS-slack.

The distinction between DB-slack and FS-slack is impor-
tant. DB-slack exists in files allocated to the database sys-
tem. It therefore cannot be removed by sanitization pro-
cedures implemented in the file system, and it cannot be
solved by using a file system with secure deletion [6]. We
discuss the removal of slack data in Section 3.

Tracing tuple lifetime in table storage
Understanding the lifetime of data values in a database sys-
tem is important for providing privacy guarantees. The state
diagram in Figure 1 illustrates the complex flow of data
in a database system during its lifetime. Data begins in
the Active state, upon insertion into the database. Ideally,
Active data would immediately become Lost upon deletion,
following the transition along the bottom of the diagram.
This does happen with some updates to tuples that imme-
diately overwrite data. But in most other cases, data fol-
lows a different path in the diagram. Deletions, as well as
updates that expand variable length fields, result in expired
data that is preserved as DB-slack, shown by the upward
arrow leaving the Active state in Figure 1.

Once data is preserved as DB-slack, it can later become
Lost under two conditions. First, insertions applied to the
database may overwrite DB-slack. Second, the vacuum pro-
cedure may reorganize records in the file, overwriting some
DB-slack. The vacuum procedure may also return allocated
file space to the file system, and in doing so DB-slack, in-
stead of becoming Lost, can become FS-slack data. In fact,
we have found that vacuum can push copies of Active records
becoming DB-slack or FS-slack. Thus, the states in Figure 1
are not mutually exclusive — data items can be Active and
in FS-slack simultaneously. Finally, FS-slack can become
Lost from normal operation in which it is allocated to a new
process (and overwritten with zeros) or as the result of file
system sanitization, if it is performed.

Workload experiments
To understand the impact of these findings, we monitored
DB-slack and FS-slack in real systems under a simulated
workload of tuple insertions, deletions, and updates. We
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Figure 1: A state diagram describing the flow of data during its lifetime. Data begins in an Active state.
Before it is removed and becomes Lost it will often be retained as DB-slack and/or FS-slack.
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Figure 2: Measures of recoverable data, for the MySQL system using the InnoDB table format, under a
synthetic workload of update, deletes, and inserts: (a) DB-slack with and without vacuum. (b) cummulative
measure of the lifetime of tuples in DB-slack.

built preliminary forensic recovery tools to parse database
files and recover DB-slack and used file system forensic tech-
niques to recover FS-slack.

Although all systems shared the same basic properties out-
lined above, we found some interesting differences using sim-
ulated workloads. PostgreSQL had the highest retention of
data in table storage. Tuples are never overwritten, except
during vacuum, which is a consequence of legacy persistence
features in the PostgreSQL storage manager (see Section
4.1). Both MySQL (using the MyISAM table format) and
DB2 had generally low retention of data in table storage at
default settings. However, in both cases we found that the
existence of clustered indexes can dramatically increase slack
data retained in table storage. This is because clustering im-
poses a constraint on the reuse of freed space in record stor-
age, reducing the likelihood that data in DB-slack is over-
written. In addition, DB2 has two configurable parameters1

intended to improve the performance inserts and updates by
leaving more space free on pages and leaving some entirely
free pages during VACUUM. These are effectively “knobs”
for the database system that enhance performance at the
cost of unintended data retention.

As one sample of our experimental results, we describe the
effect of vacuum on recoverable data in MySQL. Using the
InnoDB table format, we found that vacuum increased data

1These parameters are called FREEPAGE and PCTFREE.

in DB-slack because table reorganization was performed by
simply copying all active tuples to a new portion of the ta-
blespace. Figure 2(a) demonstrates this last result, show-
ing the growth of DB-slack in MySQL (InnoDB). The Ex-
pired Records line in the graph reflects the maximal recov-
erable data, while the other two lines show the number of
expired tuples recoverable with and without vacuum. Al-
though vacuum increases the number of tuples recoverable
from DB-slack, it does tend to decrease the expected lifetime
of tuples, as shown in Figure 2(b).

2.2 Forensic analysis of indexes
There are two sources of forensic recovery from B+tree in-
dexes. First, deletion in B+trees is logical — deleted sort
keys are not overwritten and can persist in the internal nodes
(much like table storage above). Second, B+trees have stan-
dard deterministic procedures for insertion and deletion. It
is therefore possible to infer, from the structure of a B+tree,
partial information about the sequence of insertions and
deletions that led to the current state of the database.

As an example, consider two tables with indexes which both
undergo insertions of the same 100 elements. Suppose the
insertions for the first table are ascending by sort key, but
for the second table are descending by sort key. Although
the contained sort keys are the same, the structure of the
resulting B+trees will be quite different, which is an indi-
cation that history is preserved by B+tree operations. In
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general, inspection of the B+tree structure may allow an in-
vestigator to infer that the record with key k1 was inserted
into the table before the record with k2. This is informa-
tion about records in the database that is outside the data
model, and cannot be collected through the query interface
to the database. There are cases where the order of events
is a crucial aspect to forensic analysis or auditing.

The degree to which data structures reveal information about
their past states has been considered before [38, 36], al-
though not specifically for B+trees in databases. The pre-
cise analysis of the information that can be gathered from
the structure of B+trees is an interesting open problem.
However, the practical impact of this analysis may be small.
First, we hypothesize that in relational databases, the in-
formation gathered would be subsumed by information that
could be collected from studying OIDs assigned to tuples,
or other artifacts in the database. Second, disclosures from
B+tree structures are likely to shrink as the order (the num-
ber of keys per internal node) increases, and B+trees are
typically high order.

Analyzing history from index structures may be most rele-
vant to embedded database tables, like BerkeleyDB [5] in-
dexes. These indexed tables are often used to store applica-
tion data, and are commonly replicated and shipped to un-
trusted environments where the presence of data remnants
and history is a serious threat. We briefly discuss some tech-
niques to address this disclosure in the next section.

2.3 Forensic analysis of the transaction log
Write-ahead logging is the most common logging strategy in
existing systems [43]. After each update to the database, a
log record will include before- and after-images of modified
data pages. Thus, for periods of time covered by the log,
all prior states of a database can be reconstructed, and a
wealth of data can be recovered.

While collecting data from the log is straightforward, it is
more difficult to derive a bound on the length of the reten-
tion period. Transaction logs are often implemented as cir-
cular files, and log records are written sequentially. As the
file grows, it wraps around, overwriting old records. The
amount of time data persists in the transaction log depends
on the space allocated to the log file, the rate of update
operations, the log space required per update, and the fre-
quency of checkpointing. An enterprise could cycle its log
in a few days, effectively bounding the amount of retained
data in the system. But other applications may generate
long histories that persist nearly indefinitely. In the next
section, we discuss techniques for removing log records that
are no longer needed for abort or recovery.

3. DESIGNING PRIVATE SYSTEMS
The problem exposed by forensic analysis is that the stan-
dard interface to the database (i.e., SQL) does not reliably
represent the actual stored contents of the database. Deleted
tuples are omitted from query results but remain in database
storage. Tuples do not have an “age” or order of creation
in the intended data model, yet such an order can be re-
covered from the physical representation. Such a disconnect
between the interface and actual system state is a serious

concern for data owners because it gives a false view of data
retention.

To address this problem we propose that systems be trans-
parent, so that they represent faithfully the data retained.
Ideally, data deleted by users should be destroyed, includ-
ing all copies of data. If data is retained beyond deletion for
a legitimate purpose, users should have clear and accurate
bounds on the lifetime of data, and they should be able to
tune these bounds whenever possible using system param-
eters. Transparency allows users to know if their system
satisfies privacy policies.

Note that our definition of a transparent system is not at
odds with various legitimate reasons to intentionally retain
data after deletion. These include: versioning databases,
which preserve past states of a database that can be queried;
database recovery mechanisms, which retain deleted data in
the transaction log to provide atomicity and durability; and
backups, taken for auditing and to recover from media fail-
ure. First of all, when backups and archiving are performed,
it is important to guarantee that only the intended valid
data is preserved in the backup, not unexpected remnants
of past states. Second, if handled appropriately, intentional
data retention can be exposed through a legitimate interface
and configured. In fact, a straightforward way of achiev-
ing transparency goals is to preserve historical versions of
the database and simply expose them faithfully through the
query interface. (This is the focus of Section 4.)

There will always be cases, however, where versioning is not
desired. In this case, the database must remove deleted data
securely, provide indexes that are history-independent, and
enable transparency in applications built using databases.
We describe these technical challenges next.

3.1 Secure deletion in databases
The security community has studied secure deletion for back-
up logs [9], traditional and versioning file systems [6, 42], and
for an email storage manager supporting timely message ex-
piration [41]. There are two basic techniques for the physical
removal of data: physical destruction by overwriting and en-
cryption followed by key disposal. The security of overwrit-
ing for data removal was first investigated by Guttman [31].
He argued that overwritten data could be recovered from
disk storage, though this is increasingly unlikely given the
density of modern disks [6, 26]. Nevertheless, overwriting
each deleted byte with zeroes may introduce a substantial
performance penalty for large blocks of data. A clever alter-
native, first proposed by Boneh and Lipton [9], stores data
in encrypted form and disposes of the encryption key (by
overwriting). While overwriting keys is efficient, the granu-
larity of the encryption must match the granularity of dele-
tion. For example, in table storage, secure deletion of tuples
would require one key per tuple. Key management overhead,
as well as the penalty of performing decryption/encryption
with each read/write is likely to make this an undesirable
strategy.

Database versus filesystem solutions
In addition to how secure deletion may be performed, we
must consider the part of the system responsible for imple-
menting deletion. Figure 3 summarizes a range of possi-
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Method:
FS secure 
deletion

FS lazy 
sanitization

DB secure 
vacuum

DB secure 
deletion

Results:
DB slack: Temp
FS slack: None

DB slack: None
FS slack: None

DB slack:Enduring 
FS slack:Temp 

DB slack:Enduring 
FS slack:Enduring 

Figure 3: A spectrum of solutions to forensic recoverability of data: from database to file system.

ble solutions for where to implement secure deletion. The
choice involves tradeoffs in performance, security, and the
complexity of engineering the solution. At one end of the
spectrum, secure deletion and update can be implemented
by the database. In this case, DB-slack and FS-slack are
completely eliminated because data is destroyed immedi-
ately. To get an upper bound on the performance impact of
secure deletion, we tested a naive secure deletion consisting
of an update (overwriting each attribute of a record with
zeros) followed by deletion. We used MySQL (MyISAM),
with random deletions on an indexed table of fixed-length
attributes. Simulating secure deletion decreased the execu-
tion rate of deletions by about half, from 13,175 per second
to 6,995 per second. This naive user-level implementation
is far from optimal, and it suggests that reasonable perfor-
mance could be achieved by integrating secure deletion into
the database system. Also, when deletion operations are
part of a larger workload of read and write queries, even the
witnessed overhead may not be unacceptable.

If temporary DB-slack is tolerable, secure deletion performed
lazily by the database will offer better performance. Al-
though a few applications may want a dedicated lazy dele-
tion procedure, it makes sense to combine secure deletion
with the vacuum procedure. Such a secure vacuum proce-
dure would reorganize records on the page, destroy any ex-
pired data in DB-slack, and remove slack data before space
is returned to the file system, thus avoiding FS-slack as well.

Modifications to the file system offer better performance,
but sacrifice security. Bauer et al. found synchronous secure
deletion in file systems unacceptably slow, but implemented
a research prototype of the ext2 [15] filesystem which per-
formed asynchronous secure deletion by overwriting. Using
this filesystem would eliminate FS-slack after a short pe-
riod of time — but would not remove DB-slack. An advan-
tage of file system improvements is generality: it avoids hav-
ing to modify each database system (and each application
that stores structured data) to obey forensic transparency
requirements.

Unfortunately we are not aware of any file systems in com-
mon use that offer secure deletion. Therefore, the final solu-
tion is lazy sanitization of the file system, at the discretion of
the user or database administrator. A number of tools exist
for disk sanitization, that can be configured to periodically
remove data from unallocated file system space. These tools
often lack privileges to perform secure deletion in a thorough
manner. Most try to fill the free space on the disk with a
large file, overwriting all bytes. This technique may leave
file metadata remnants recoverable.

Given these considerations, our view is that the database
storage manager should support secure deletion. We believe
that secure deletion can be implemented using overwriting
without an unreasonable performance penalty, especially if
a small bounded time lag is permitted.

Expunction from the transaction log
It is not hard to identify portions of the transaction log that
will never be used by the transaction manager for recov-
ery or abort and can freely be deleted. This is typically
any log entry recorded prior to the penultimate checkpoint.
In some settings, the timely removal of this data may be
desirable. Encryption with key disposal, while probably in-
appropriate for table storage, is a promising approach for
secure deletion in the transaction log. Encryption is particu-
larly appropriate in this case because log records are written
once, requiring only a single encryption operation. If sys-
tem failure or transaction abort does not occur, decryption
may never be necessary. Keys can be stored in the transac-
tion table and deleted in the course of standard transaction
table maintenance. We hypothesize that the penalty for
encryption/decryption of log records during normal trans-
action processing would be small, and that secure deletion
would be feasible.

3.2 History-independent indexes
As mentioned above, database indexes can reveal informa-
tion about past history through their structure and through
their internal representation. Formal definitions of so-called
“anti-persistence” have been developed in [36, 38]. An “obliv-
ious” 2-3 tree is proposed in [36], whose shape reveals noth-
ing about past operations applied to the tree. “History-
independent” data structures have been designed [38] that
avoid disclosures resulting from the shape and from the
memory representation of the data structure.

One technique for a perfectly secure B+tree index is to en-
force a canonical form after each update. This will be pro-
hibitively expensive. Another technique is to randomize op-
erations or interpose local rebalancing, which can obscure
disclosures. Designing B+tree indexes that bound historical
information disclosed without sacrificing performance is an
open challenge.

3.3 Advice for the practitioner
In the short-term, a costly and time-consuming redesign of
database and file system internals is not a feasible solution
to the threats to privacy present in database systems. We
therefore suggest some simple steps that will reduce unin-
tended data retention in current systems.
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• The transaction log should be a circular file. The max-
imum space allocated to the log file is a configuration
parameter that should be set in conjunction with the
checkpointing rate to insure that the log will cycle with
an acceptable frequency.

• For highly sensitive attributes (e.g., credit card and
social security numbers), it may be worth simulating
secure deletion at the user level, as noted in Sec. 3.1.
Replacing expired data values with NULL should be
avoided, since in many systems (PostgreSQL, MySQL
(InnoDB), and DB2) this leaves data recoverable.

• In most systems, vacuum will remove retained data
from DB-slack (MySQL (InnoDB) is the exception)
and generate FS-slack. Vacuum should be followed
immediately by file system sanitization.

3.4 Promoting transparency in DB
applications

Insecure deletion, and the unintended data retention it causes,
is a systemic problem. It has been studied in filesystems
[6], volatile memory [20, 19], and now database storage.
The fact is, whenever space is allocated for management
by a higher level component of the system, deletion may
be performed insecurely. In particular, this pattern may
be repeated whenever a database schema includes BLOB
or CLOB data types. In that case the database allocates
a large block of bytes, and it cannot securely delete the
data stored within the block when it expires without an ex-
plicit instruction from the application. BLOB/CLOBs are
commonly used to store complex objects, multimedia data,
and XML data, and retention of this data can pose a seri-
ous threat. The secure deletion techniques described above
should be implemented and exposed at the user level to al-
low application designers to remove slack data securely.

4. DESIGNING ACCOUNTABLE SYSTEMS
In the previous section, we discussed the challenge of design-
ing database systems that reliably represent to the user the
actual state of stored data, to align system behavior with
a desired privacy policy. In this section, we address the
complementary problem of designing accountable database
systems. Such systems require two key capabilities. First,
complete historical data must be efficiently collected and in-
tegrated to permit accountability inquiries. Second, histori-
cal data must be protected, which requires extending current
access control policies, and supporting redaction and ex-
punction operations, as described below. Before discussing
these challenges, we reviewing the capabilities of existing
systems.

4.1 Existing capabilities
Conventional database systems are designed for efficient ac-
cess to the current state of the database (often called a
snapshot). Using the transaction log, some past states of
the database can be recovered. For example, many systems
support “point in time recovery”, which will typically redo
transactions starting from a backup version, but may also
undo from a current version [39]. In either case, reinstating
a past version by repeating transactions is an expensive op-
eration that must be completed before any query on the past
state can be executed. If we wish to analyze, for example,

the evolution of a single tuple through states of the database,
these features are inadequate. Traditional databases also
support operational logging, which may preserve records of
the administrator’s actions, queries submitted, remote con-
nections, etc.

Preserving history in databases has received considerable
attention from the research community and goes by many
names: persistent databases, archiving databases [11], ver-
sioning databases [53], transaction-time databases [34, 35].
The Postgres system was originally designed to support ver-
sioning, in which expired versions of tuples are retained and
time stamped based on the commit time of the modifying
transaction. A deletion never destroys data, and an up-
date to a data item creates a new version. It is possible to
pose queries “as-of” any past point in time. Full version-
ing support has not been widely implemented in commer-
cial systems. Versioning capabilities were eliminated from
the PostgreSQL system as of version 6.3 (released in March
1998), apparently for performance reasons [1]. Techniques
from temporal databases are also closely related [40], and a
number of data models and query languages have been pro-
posed. Some research prototypes have attempted to build
temporal or transaction-time databases on top of existing
systems like MySQL [51], BerkeleyDB [50], and SQL Server
[35]. TSQL [52] is a well-known extension to SQL which
provides temporal capabilities.

Though there is a large body of existing work in this area,
a number of challenges remain for providing accountability.
We do not focus on the challenges of building a versioning
database — we assume that such a system is available, per-
haps modeled after recent work [51, 35].

4.2 Integrating and querying historical data
Accountability inquiries often involve the analysis of sequences
or time series of values in a database, as well as the users
who performed operations [18]. To support such inquiries
we propose to integrate base data with the history of user
operations involved in creating, updating or selecting data
records. Currently, some of this data is recorded only in
transaction or operational logs and is not typically part of
conventional or versioned data stores. We propose to have
an integrated data model with no logical distinction between
base data and operational history. Physically, the account-
ability metadata may be stored separately from base data,
but it should be managed by the database system.

This could be thought of as a versioning database system
that also maintains accountability provenance. Database
provenance is concerned with tracing and recording the ori-
gin of data and its movement through databases. There
has been substantial work on data provenance [21, 12, 13],
including two recent research prototypes [3, 10]. However
our focus is on maintaining security provenance of a sin-
gle database, as opposed to managing provenance in data
warehouses or integrated databases that have typically been
studied. Accountability inquiries require an emphasis on
who took what actions and when they were taken.

Managing accountability data will allow investigators to an-
alyze patterns of access and activity by users. But merely
posing “as-of” queries, which produce consistent answers
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as of a past moment in time, will not be sufficient. New
language features will be needed to express accountability
queries. A number of query languages have been developed
in the context of temporal databases [40]. They enable com-
parison across versions, but may need to be extended for
integrated accountability data.

4.3 Protecting history
Protecting history means defining and enforcing access rights
over historical retained data. Protection of history is par-
ticularly important since historical data is, by definition,
stored for long periods of time. Access control in traditional
databases regulates only the current snapshot. When ap-
plied to versioned tuples (typically represented in relational
tables with timestamp fields) SQL access control is insuffi-
cient because it does not support row-level policies. While
temporal access control models [8, 4, 7] have been proposed,
they emphasize access rights that change over time, which
is different than specifying stable access rights over time-
varying datasets. The design of an access control model to
support descriptive policies over historical data appears to
be an open problem. Access control rules must be capable
of stating expressive conditions about time, database opera-
tions, as well as data objects. In addition, audit and transac-
tion logs are not protected by classical database authoriza-
tion mechanisms. Most systems apply only coarse-grained
access controls to logs, implemented by the file system, in
which the privilege to access a log entails complete access.

Redaction and expunction in a versioning database
Even in a versioning system where explicit deletion does not
occur, there may be sensitive values that should be removed.
For example, an enterprise may wish to retain a history of
all past states of a customer’s account, but may at some
point wish to remove all records of that customer’s credit
card number. We believe that such an action should be a
basic capability of database systems that retain history, and
should be implemented as a redaction operation. Redac-
tion requires efficient identification of all stored copies of
a data value, which must be securely deleted and replaced
with special values to indicate that data has been removed.
This may be contrasted with an expunction operation that
would remove the records along with all evidence of their
existence. Note that while updates in a typical versioning
database change the current version only, these privileged
operations modify history. Thus there are challenges to
query consistency in this model: if historical redaction is
possible, queries over past states of the database must pro-
duce answers containing references to redacted values that
are still meaningful to users.

The desired access control model will allow the accurate de-
scription of policies over this extended data model and will
accommodate these novel privileges. Enforcement mech-
anisms for such policies are likely to rely on both active
access control enforcement (in which a conventional access
control monitor regulates access) as well as so-called passive
access control enforcement (in which cryptography is used
to regulate access). Passive access control seems particu-
larly appropriate to the efficient enforcement of redaction
and expunction.

5. CONCLUSION
We described the design criteria and technical challenges in
building a database system whose “historical memory” can
be safely and accurately managed. In settings where privacy
is critical, databases should delete expired data in a timely
manner and remove activity histories from storage. In set-
tings where accountability is a priority, a database system
should allow users to efficiently monitor systems and safely
protect the sensitive data that results from monitoring. We
believe managing history securely will grow to be a criti-
cal feature as systems are increasingly capable of retaining
all past states and as security concerns require controlled
accountability.
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