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ABSTRACT
End-to-end data processing environments are often com-
prised of several independently-developed (sub-)systems, e.g.
for engineering, organizational or historical reasons. Un-
fortunately this situation harms usability. For one thing,
systems created independently tend to have disparate capa-
bilities in terms of what metadata is retained and how it can
be queried. If something goes wrong it can be very difficult
to trace execution histories across the various sub-systems.

One solution is to ship each sub-system’s metadata to a
central metadata manager that integrates it and offers a
powerful and uniform query interface. This paper describes
a metadata manager we are building, called Ibis. Perhaps
the greatest challenge in this context is dealing with data
provenance queries in the presence of mixed granularities of
metadata—e.g. rows vs. column groups vs. tables; map-
reduce job slices vs. relational operators—supplied by dif-
ferent sub-systems. The central contribution of our work is a
formal model of multi-granularity data provenance relation-
ships, and a corresponding query language. We illustrate
the simplicity and power of our query language via several
real-world-inspired examples. We have implemented all of
the functionality described in this paper.

1. INTRODUCTION
Modern systems are often comprised of multiple semi-

independent sub-systems. Examples at Yahoo come in at
least three varieties:

• Stacked: systems with higher-level abstractions stacked
upon lower-level systems, e.g. Oozie [2] stacked on Pig [3]
stacked on Hadoop [1].

• Pipelined: data flows through a sequence of systems,
e.g. a system for ingesting RSS feeds, then a system
for processing the feeds, then a system for indexing and
serving the feeds via a search interface.

• Side-by-side: Two systems serving the same role might
operate side-by-side during a migration period, with re-
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sponsibility being transferred to a replacement system
gradually, to allow the new system to be vetted and fine-
tuned. In another scenario, redundant systems are de-
ployed in a permanent side-by-side configuration, with
each one targeting a different point in some performance
tradeoff space such as latency vs. throughput.1

Modularity in these forms facilitates the creation of com-
plex systems, but can complicate operational issues, includ-
ing monitoring and debugging of end-to-end data processing
flows. To follow a single RSS feed from beginning to end
may require interacting with half a dozen sub-systems, each
of which likely has different metadata and different ways of
querying it.

Yahoo architects would like to reduce the manual effort
required to track data across sub-systems. Solutions that
rely on standardization efforts or deep code modifications
are undesirable, and in fact unrealistic when using third-
party components, or even in-house ones that are already
mature and widely deployed.

Motivated by this challenge, we are creating Ibis, a service
that collects, integrates, and makes queryable the metadata
produced by different sub-systems in a data processing envi-
ronment. This approach has three main advantages:

• Users are provided with an integrated view of metadata,
via a uniform query interface.

• Boilerplate code for storing and accessing metadata is
factored out of n data processing sub-systems, into one
place (Ibis). Moreover, since Ibis specializes in metadata
management it will likely do a better job, versus the data
processing sub-systems for which metadata management
falls into the “bells and whistles” category.

• The lifespan of the metadata is decoupled from that of
the data to which it refers, and even from the lifespans
of the various data processing sub-systems.

1.1 Provenance Metadata Heterogeneity
Arguably the most complex type of metadata to manage is

data provenance, which is the focus of this paper. A system
that aims to integrate provenance metadata from multiple
sub-systems must deal with nonuniformity and incomplete-
ness.

1For example, one might find a low-latency/low-throughput
feed processing engine deployed side-by-side with a high-
latency/high-throughput engine, with time-sensitive feeds
(e.g. news) handled by the former and the majority of feeds
handled by the latter.
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To begin with, different sub-systems often represent data
and processing elements at different granularities. Data
granularities range from tables (coarse-grained) to individ-
ual cells of tables (fine-grained), with multiple possible mid-
granularity options, e.g. rows vs. columns vs. temporal ver-
sions. Process descriptions also run the gamut from coarse-
grained (e.g. a SQL query or Pig script) to fine-grained (e.g.
one Pig operator in one retry attempt of one map task), also
with multiple ways to sub-divide mid-granularity elements
(e.g. map and reduce phases vs. Pig operations (which may
span phases) vs. parallel partitions).

Moreover, links among processing and data elements some-
times span granularities. For example, one system at Yahoo
records a link from each (row, column group, version) com-
bination (e.g. latest release date and opening theater for the
movie “Inception”) to an external source feed (e.g. Rotten
Tomatoes).

Finally, one cannot assume that each sub-system gives a
complete view of its metadata. At Yahoo, and presumably
elsewhere, metadata recording is enhanced over time as new
monitoring and debugging needs emerge. Recording “all”
metadata at the finest possible granularity sometimes im-
poses unacceptable implementation and performance over-
heads on the system producing the metadata, as well as on
the system capturing and storing it.

Ibis accommodates these forms of diversity and incom-
pleteness with a multi-granularity provenance model coupled
with query semantics based on an open-world assumption [9].
This paper describes Ibis’s provenance model, query lan-
guage and semantics, and gives examples of their usage.
The model and language have been fully implemented on
top of an ordinary RDBMS, using simple query rewriting
techniques. Performance and scalability issues are subjects
of ongoing work, and are not the focus of the present paper.

1.2 Outline
The remainder of this paper is structured as follows. We

discuss related work in Section 2. Then we present Ibis’s
provenance data model in Section 3. The semantics and
syntax of Ibis’s query language are given in Sections 4–6.
We describe a prototype implementation of a storage and
query manager for Ibis in Section 7.

2. RELATED WORK
Provenance metadata management has been studied ex-

tensively in the database [5] and scientific workflow [7] liter-
ature, including the notion of offering provenance manage-
ment as a first-class service, distinct from data and process
management, e.g. [14]. Many aspects of our approach bor-
row from prior provenance work, and are somewhat stan-
dard at this point. For example, modeling provenance re-
lationships as (source data node, process node, target data
node) triples, use of free-form key/value attributes, and use
of a declarative SQL/datalog-style query language, are all
commonalities between Ibis and other approaches such as
Kepler’s COMAD provenance manager [4]. However, most
prior work on provenance has focused on tracking a single
system’s provenance metadata, and consequently has gener-
ally assumed that provenance metadata is rather uniform,
and/or can be tightly coupled to the data in one system.

We provide the first formal framework—data provenance
model, query language and semantics—for integrated man-
agement of provenance metadata that spans a rich, multi-

dimensional granularity hierarchy. The core contribution
of our work is a set of rules for inferring provenance re-
lationships across granularities. These inference rules have
carefully-chosen, precise semantics and have been embedded
in our query language and system.

Several prior projects offer (restricted) multi-granularity
models, but none of them focus on formal semantics for in-
ferring relationships when provenance is queried:

• Kepler’s COMAD model [4] and ZOOM user views [6]
deal with uni-dimensional granularity hierarchies in data
(COMAD’s nested collections) or process (ZOOM’s sub-
workflows), but neither supports multi-dimensional gran-
ularity hierarchies, a combination of data and process
hierarchies, or the ability for queries to infer provenance
relationships across granularities.

• The open provenance model [10] shares our goal of offer-
ing a generic framework for representing and accessing
provenance metadata from diverse sources. The open
provenance model aims to support multi-dimensional gran-
ularity hierarchies via the notion of “refinement,” but it
does not provide specific semantics for multi-granularity
refinement, or formal rules for carrying provenance rela-
tionships across granularities in the data model, query
language or system.

• References [8, 13] consider annotations on arbitrary two-
dimensional sub-regions of relational tables, but do not
deal with provenance linkage and inference.

One branch of the Harvard PASS project [11] shares our
goal of managing provenance that spans system layers. That
work restricts its attention to coarse-grained provenance,
and tackles numerous issues around capturing and cleaning
the provenance metadata (e.g. APIs, object naming schemes
and cycle detection). It is complementary to the work we
present in this paper, which considers multi-granularity prove-
nance and focuses on how to represent and query it. As our
project moves forward to tackle the capture and cleaning
issues, we hope to leverage the PASS work.

Lastly, Ibis supports relatively simple forms of provenance—
where-provenance and lineage (“flat” why-provenance)—which
suffice for most use-cases we have encountered at Yahoo.
More elaborate forms of provenance that associate logic ex-
pressions with provenance links (e.g. witness sets and how-
provenance; see [5]) are not our focus.

3. DATA PROVENANCE MODEL
This section introduces Ibis’s model of provenance graphs

that connect data and process elements at various granular-
ities.

3.1 Data and Process Granularities
An Ibis instance is configured with granularity sets (gsets)

that describe the possible granularities of data and process
elements and their containment relationships.

Definition 3.1 (gset). A gset is defined by a bounded
partially-ordered set (poset) G = (G,�, gmax, gmin), where
G gives the finite set of granularities, “�” denotes contain-
ment and defines a partial order over G, and there exist
unique maximal and minimal elements gmax, gmin ∈ G, i.e.,
∀g ∈ G : gmin � g � gmax.

Figure 1 gives example data and process gsets, which are
based on some of Yahoo’s web data management applica-
tions. The arrows denote containment relationships: an
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Figure 1: Example gsets.

arrow from X to Y denotes X � Y . Intuitively, X � Y
implies that each element at granularity Y must have an
element at finer-granularity X, but the converse may not
hold, i.e., each element at granularity X does not need to
have an element at coarser-granularity Y .

In our example, data is either part of a relational table or
a free-form web page. Relational tables are divided horizon-
tally into rows, and vertically into column groups, which are
further subdivided into columns. A row/column combina-
tion is a cell. A table cell can have multiple versions of data,
e.g. reflecting multiple conflicting possible data values, or
temporally changing values. Web pages also have versions,
corresponding to multiple crawled snapshots.

Processing, at the coarsest granularity, is driven by work-
flows whose steps are either map-reduce programs or pig
scripts. An execution of a program or script is called a job.
Pig jobs are comprised of a series of map-reduce jobs, which
are in turn broken into two phases (map and reduce). Each
phase is partitioned into map or reduce tasks, which un-
dergo one or more execution attempts. Syntactically, Pig
scripts consist of sequences of logical operations. Pig logical
operations are compiled into sequences of physical opera-
tions, which perform the work inside the map/reduce task
attempts.2

When a new Ibis instance is configured, one data gset and
one process gset must be supplied. If unique maximal and
minimal elements are absent from either gset, Ibis creates
them automatically (e.g. <Maximal Data Element> and
<Minimal Process Element> in Figure 1).

3.2 Data and Process Elements
We start by defining basic elements, the atomic unit of

a data or process item. Each basic element is specified
by a particular granularity, a unique identifier, and parent
(coarser-granularity) basic elements as defined below.

Definition 3.2 (basic element). A basic element b =
(g, id ,P) is defined by a granularity g in the data or process

2In general there is no containment relationship between
Pig operations and map/reduce tasks, or even map/reduce
phases (e.g. some join operations span phases).

gset, a globally unique3 id, and a set P of ids of basic ele-
ments that are direct parents in the containment hierarchy.

Our next definition formalizes the notion of containment
of basic elements:

Definition 3.3 (basic element containment). Given
two basic elements b1 = (g1, id1,P1) and b2 = (g2, id2,P2),
b1 contains b2 iff either id1 ∈ P2 or ∃b∗ ∈ P2 such that b1
contains b∗ (according to recursive application of this defi-
nition).

Intuitively, b2 is contained in b1 if b1 is a direct parent (i.e.,
coarser granularity element) or an ancestor in the granular-
ity hierarchy.

Next we define the notion of “granularizing” basic ele-
ments to the finest possible granularity, a concept that will
be used later to infer new relationships among elements.
Granularization simply consists of finding all basic elements
of the finest granularity contained in a given element:

Definition 3.4 (basic element granularization).
Given basic element b = (g, id ,P) and minimal element gmin

in the gset containing g, the granularization of b, written
G(b), is {b′ = (gmin, id ′,P ′) : b contains b′}.

Next we define the notions of complex element types and
complex elements, which allow us to compose elements from
multiple basic elements of different granularities.

Definition 3.5 (complex element type). A complex
element type T = {g1, g2, . . . , gn} is a set of granularities
such that all members are from the same gset (i.e. all data
granularities or all process granularities) and no two mem-
bers gi, gj ∈ T satisfy gi � gj.

An example complex element type is { row, column group
}, which denotes a data element defined by the intersection
of a particular row and a particular column group. Each
complex element type has an associated attribute set A =
{a1, a2, . . . , am}, m ≥ 0, e.g. { owner, storage location }.

Definition 3.6 (complex element). A complex ele-
ment E = (id , T = {g1, g2, . . . , gn}, {b1, b2, . . . , bn}) consists
of a globally unique id, a type T , and a basic element bi
corresponding to each granularity gi ∈ T .

An example complex element is (8, { row, column group },
{ row 5, column group 3 }).

Finally, we extend the definition of granularization to com-
plex elements, in the natural way:

Definition 3.7 (complex element granularization).
Given complex element E = (id , T, {b1, b2, . . . , bn}), the gran-
ularization of E is G(E) =

⋂
1≤i≤n G(bi).

3.3 Provenance Graph
Ibis manages a provenance graph that relates sets of com-

plex elements to one another via three-way relationships.
Figure 2 shows an example provenance graph from a simple
web information extraction scenario in which movie data

3Our model can be extended easily to accommodate scoped
ids, e.g. row ids that are unique within the scope of a table
would be identified via (table id, row id) pairs.
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Figure 2: Example provenance graph.

has been extracted from two web pages (IMDB and Ya-
hoo! Movies) and then merged. Inconsistencies have been
preserved, and stored as alternate versions of cells in the
merged table (the two web pages differed on the lead actor
for the film “Avatar”).

Formally, a graph vertex V =
(id , T, {e1, e2, . . . , ek}, {v1, v2, . . . , vm}) is defined by a
globally unique id, a type T , the ids of one or more complex
element ei of type T , and a value vj for each attribute in
T ’s attribute set. Each vertex represents the union of a
set of complex data or process elements of a given type.
A common case involves sets of size one (k = 1), e.g. (12,
{ row, column group }, { 8 }, { owner “Jeff”, location
“Singapore data center” }). Another example, with k = 2
(but no attribute values, also common), is (14, { MR task
}, { 9, 10 }, { }) where 9 and 10 refer to complex elements
(9, { map task }, { map task 1 }) and (10, { map task },
{ map task 2 }), respectively. Figure 2 has one vertex with
k = 2: the rectangle surrounding “map output 1” and “map
output 2.” Most vertices in Figure 2 have no attributes;
exceptions are: web pages (license and authority score);
extract pig jobs (version of extract script used, wrapper
parameter).

Connections among graph vertices take the form of three-
way (d1, p, d2) relationships, denoting that process element p
produced data element d2 by reading data element d1. More
particularly, part of p produced all of d2 by reading part of
d1. (These semantics stem from the fact that creation of

a data “touches” every byte of the data, whereas reading
data and executing code rarely touch all the data/code (e.g.
indexes and column stores; code branches).)4

In Figure 2, each provenance relationship (d1, p, d2) is
shown as a dark arrow (d1 to d2 link) combined with a
light dotted arrow (link to p). The provenance relation-
ships on the left-hand side of Figure 2 are coarse-grained in
terms of data links, and semi-coarse-grained in terms of pro-
cess links (pig jobs that ran a particular version of the pig
script called “extract,” with a particular web page wrapper).
The provenance relationships on the right-hand side occur
at two granularities: (1) fine-grained links from data cells
in the IMDB and Yahoo! Movies tables to cell versions in
the combined extracted table, with coarse-grained references
to the “merge” pig script; (2) coarse-grained links from the
IMDB and Yahoo! Movies tables to the combined extracted
table (via intermediate map output files), with fine-grained
references to the specific map and reduce task attempts that
handled the data.

4. OPEN-WORLD SEMANTICS
Recall from Section 1.1 that Ibis makes an open-world as-

sumption about the metadata it manages. Here we formally

4We have found these semantics to suffice for the applica-
tions we have considered, but of course if needed one could
always expose the control over the part/all semantics of each
provenance connection to users.
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define open-world semantics in the context of Ibis.
Let M denote the metadata currently registered with an

Ibis instance. M encodes a set F of facts, such as the known
set of data and process elements, their containment relation-
ships, and the known provenance linkages. Ibis assumes that
F is correct but (possibly) not complete, i.e. there exists

some true world of facts F̂ ⊇ F . Let the extension ext(F)
denote the set of all facts that can be derived from F and are
guaranteed to be part of any true world that is consistent
with F , i.e. F ⊆ ext(F) ⊆ F̂ . (ext(F) consists of all certain
facts, analogous to certain answers in standard open-world
semantics [9].)

Examples of facts in ext(F) that are not in F include in-
ferred containment relationships for complex elements, and
transitively inferred provenance links. As an example of a
fact that may be in F̂ but is not in ext(F), suppose F in-
cludes “process p emitted row r1,” “process p emitted row
r2,” and “r1 and r2 are part of table T”; even if F mentions
no rows in T other than r1 and r2, the assertion “process
p emitted the entire table T” cannot be included in ext(F)
because of the possibility that T contains additional rows in
the true world F̂ .

Ibis queries are answered with respect to ext(F). In other
words, the answer to query Q is equivalent to the one pro-
duced by the following two-step evaluation procedure: (1)
derive and materialize ext(F); (2) answer Q by perform-
ing “lookups” into ext(F). These steps are the subjects of
Sections 5 and 6, respectively.

Note that “positive queries” (which lookup facts that
are implied by ext(F)) yield certain-answers semantics, but
“negative queries” (which lookup facts that are not implied
by ext(F)) such as ones that use “NOT EXISTS” or “MAX”
do not, because some facts that cannot be derived based
on Ibis’s knowledge may be correct in the true state of the
world. For completeness, our query language described in
Section 6 does permit negative constructs. In practice they
should either be disallowed, or come with a disclaimer about
the deviation from certain-answers semantics. Another pos-
sibility is to record facts about completeness (i.e. the rela-

tionship between ext(F) and F̂) such as “all table/job-level
provenance links are being captured,” and use them to vet
negative queries; developing such an approach is left as fu-
ture work.

5. INFERRING RELATIONSHIPS
Ibis’s core strength is its ability to infer relationships

among components of the provenance graph that span gran-
ularities. This section gives formal definitions of predicates
that Ibis can infer with certainty (i.e. ext(F), defined in
Section 4). Let V denote the set of provenance graph ver-
tices currently registered with an Ibis instance. Under open-
world semantics (Section 4) we must assume the existence of
some vertex set V ′ ⊇ V (along with additional provenance
relationships) that captures the real situation. Ibis’s rela-
tionship inference semantics are defined in the context of
V ′.

5.1 Under
Central to reasoning about granularity-spanning meta-

data is the under predicate, which determines whether the
data or process element described by one vertex V1 is con-
tained in the element described by another vertex V2. For

example, in Figure 2 the cell containing Worthington is un-
der the IMDB extracted table’s lead actor column, which
in turn is under the IMDB extracted table.

Definition 5.1 (under). Given two provenance graph
vertices V1 and V2 with complex element sets E(V1)
and E(V2), V1 is under V2 iff @V ′ ⊇ V such that⋃

e1∈E(V1)
G(e1) *

⋃
e2∈E(V2)

G(e2)5.

Fortunately, there exists an efficient way of checking
whether a pair of vertices satisfies the under predicate using
just the known vertex set V, which is equivalent to the above
definition (a proof of equivalence is given in Appendix A):

Definition 5.2 (efficient under check). Given
two provenance graph vertices V1 and V2 with com-
plex element sets E(V1) and E(V2), V1 is under V2 iff
∀e1 ∈ E(V1), ∃e2 ∈ E(V2) such that e1 is under e2,
with the under predicate defined over complex elements
as follows: Given two complex elements e1 and e2 with
basic element sets B(e1) and B(e2), e1 is under e2 iff
∀b2 ∈ B(e2), ∃b1 ∈ B(e1) such that b2 contains6 b1.

5.2 Feeds, Emits and Influences
Recall the three-way provenance relationships introduced

in Section 3.3: a relationship (d1, p, d2) denotes that (part
of) processing element p produced (all of) data element d2
by reading (part of) data element d1. Ibis can answer three
types of predicates over the set of registered provenance re-
lationships:

• Data feeding a process: Given data element d and
process element p, does (part of) d feed (part of) p?

• A process emitting data: Given data element d and
process element p, does (part of) p emit (all of) d?

• Data influencing other data: Given two data el-
ements d1 and d2, does (part of) d1 influence (all
of) d2, either directly (influences(1)) or indirectly
(influences(k))?

Formal definitions and examples follow:

Definition 5.3 (feeds). Data vertex d feeds process
vertex p iff there exists a provenance relationship (d′, p′, d2)
such that d′ is under d and p′ is under p.

In our example provenance graph shown in Figure 2,
from the relationship (IMDB web page, pig job 1, IMDB

extracted table) we can infer that (part of) IMDB

web page feeds (part of) extract pig script. From
the relationship (Worthington, merge pig script, V1:

Worthington) we can infer that (part of) row(Avatar,

2009, Worthington) feeds (part of) merge pig script.

Definition 5.4 (emits). Process vertex p emits data
vertex d iff there exists a provenance relationship (d1, p

′, d′)
such that p′ is under p and d is under d′.

Again considering Figure 2, from the relationship (IMDB
web page, pig job 1, IMDB extracted table) we can in-
fer that (part of) extract pig script emits (all of) IMDB

extracted table, and also that (part of) pig job 1 emits
(all of) row(Avatar, 2009, Worthington).

Definition 5.5 (influences). Given two data ver-
tices d1 and d2: d1 influences(0) d2 iff d2 is under d1;

5Recall the definition of granularization (G(·)) from Sec-
tion 3.2.
6Recall the containment definition from Section 3.2.
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d1 influences(1) d2 iff d1 influences(0) d2 or there exists a
provenance relationship (d′1, p, d

′
2) such that d1 influences(0)

d′1 and d′2 influences(0) d2; for any integer k > 1, d1
influences(k) d2 iff there exists a vertex d∗ such that d1 in-
fluences(1) d∗ and d∗ influences(k − 1) d2.

The influence relationships in Figure 2 include:

• (part of) IMDB extracted table influences(0) (all of)
row(Avatar, 2009, Worthington)

• (part of) row(Avatar, 2009, Worthington) influ-
ences(1) (all of) V1: Worthington

• (part of) IMDB web page influences(1) (all of) lead

actor column of IMDB extracted table

• (part of) IMDB web page influences(2) (all of) V1:

Worthington

An example of an inference that cannot be made is: (part
of) IMDB extracted table influences(k) (all of) combined

extracted table (for any value of k).

6. QUERY LANGUAGE
We now turn to Ibis’s query language, called IQL. Given

the concepts introduced above and knowledge of SQL, the
query language itself is fairly straightforward. Therefore,
in lieu of a tedious exhaustive description of IQL, we give
an overview of the main language constructs and illustrate
their use via a number of examples.

IQL starts with SQL and makes the following modifica-
tions:

• The from clause references complex element types, e.g.
Row or (Row, Column). IQL also supports special wild-
cards: AnyData (any data type), AnyProcess (any pro-
cess type) and Any (any data or process type).

• The select and where clauses can reference a special
id field, as well as elements of each type’s attribute set
(for wildcards, no attributes are accessible).

• The union, feeds, emits and influences(k)7 predicates
(defined in Section 5) can be used in the where clause.

Table 1 gives some example query/answer pairs formu-
lated over the example provenance graph in Figure 2. The
first four queries in the table are inspired by data workflow
debugging scenarios encountered at Yahoo. The fifth query
corresponds to a Yahoo use-case involving content licens-
ing: each data source comes with a license that restricts the
contexts in which data derived from it can be displayed to
end-users, and provenance is used to perform last-mile fil-
tering for a given context. The final query is a somewhat
contrived variation of the license example, which instead fil-
ters by source authority score; it shows a more elaborate use
of our language.

Logically speaking, IQL queries are evaluated over the ex-
tended database ext(F), defined in Section 4. As with SQL,
IQL query semantics are equivalent to the following three-
step evaluation strategy (in IQL’s case, over ext(F)): (i)
evaluate the the from clause to construct the cross-product
of the sets of elements referenced; (ii) apply the filters given
in the where clause; and (iii) apply the projections specified
in the select clause.

7We do not currently support unbounded transitive closure
(k = ∞), but support for this feature could be added via
recursive query processing techniques.

7. PROTOTYPE IMPLEMENTATION
We have built a simple implementation of a storage and

query manager for Ibis, on top of a conventional relational
database system (SQLite [12]) using query rewriting from
IQL into SQL. The purpose of this implementation is to
test the applicability and ease-of-use of our model and query
language, not to serve as an efficient or scalable system for
managing provenance metadata—that is future work.

7.1 Relational Encoding
Our prototype uses a very simple encoding of Ibis’s infor-

mation into relational tables:

• Gsets: The gsets are stored using two tables:
gnodes(type, granularity) stores granularity nodes in
the attribute granularity, with type being ‘Data’ or ‘Pro-
cess’; each edge depicting a containment relationship be-
tween nodes of gsets are stored in table gcont(child,

parent) in the obvious way.

• Simple Elements: The simpleElements(seId,

granularity) table stores for every simple element
identified by seId, the granularity in the gset given by
granularity.

• Complex Elements: Table complexElements(ceId,

seId) stores the mapping from complex elements to sim-
ple elements: a complex element ceId comprised of n
simple elements is represented as n tuples (ceId, seIdi).

• Provenance Graph: Vertices of the provenance graph
(corresponding to sets of complex elements) are stored
in table vertices(vertexId, ceId), which associates a set
of complex ids with each vertex, analogous to the way
complexElements associates a set of simple ids with each
complex id.

Three-way provenance relationships are represented
in the table edges(src data, process, dst data), where
src data and dst data are the source and destination data
vertex identifiers and process gives the process vertex
identifier.

• Attributes: Every complex element type X has a sep-
arate table X attrs(nodeid, <attributes>) to store at-
tributes. For example, in our demo scenario we have a
table Webpage attrs(vertexId, license, authScore) that
maintains the attributes license and authScore for every
webpage identified by vertexId.

• Under: Under relationships for simple elements are
maintained using the under(src, dst) table in the ob-
vious way.

7.2 Query rewriting
The four Ibis-specific constructs used to augment SQL—

under, influences, feeds, emits—are automatically converted
to SQL as follows. The under construct for vertices in the
provenance graph (representing sets of complex elements) is
converted to a SQL query over the under table (over simple
elements) using the check from Definition 5.2. Feeds and
emits are easily converted based on a lookup of the prove-
nance tables. Note, however, that the translation of feeds
and emits also needs to add the under table: For example, re-
call from Definition 5.3 that data vertex d feeds process ver-
tex p when there is a provenance relationship (d′, p′, d2) such
that d′ is under d and p′ is under p. Finally, influences(k) is
translated to a chain of joins using under and edges.
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description query answer(s)

Find web pages that influ-
ence V1 of the Avatar lead
actor field in the combined
extracted table.

select p.id from WebPage p, Version v

where p influences(2) v and
v.id = (Avatar lead actor V1);

IMDB web page

Find data items that in-
fluence the combined ex-
tracted table.

select d.id from AnyData d, Table t

where d influences(2) t and
t.id = (combined extracted table);

{ map output file 1,

map output file 2 }

combined extracted

table

Suppose the first attempt
of the second map task of
the merge job experienced
a problem that is suspected
to stem from malformed in-
put data. Find the data ta-
ble it read.

select t.id from MRTaskAttempt a, Table t

where t feeds a and
a.id = (merge pig script map task 2 attempt 1);

Y!Movies extracted

table

Suppose version 3 of the
extract pig script is found
to have a bug. Find all
“contaminated” data ta-
bles, i.e. ones containing
data that stems from that
version of the script.

select t.id

from PigScript p, PigJob j,

AnyData d1, AnyData d2, Table t

where p.id = (extract pig script) and j under p

and j.version = 3 and j emits d1

and d1 influences(2) d2 and d2 under t;

Y!Movies extracted

table

combined extracted

table

Filter versions of com-
bined table cells—only re-
tain ones derived solely
from sources with the Ya-
hoo license.

select v.id from Version v, Table t

where t.id = (combined extracted table) and
v under t and
not exists (select * from WebPage source

where source influences(2) v

and source.license != ‘yahoo’);

Avatar lead actor V2

Resolve cell version ambi-
guity by selecting the one
that derives from the most
authoritative web page.

select v.id, source.authScore

from Version v, WebPage source

where source influences(2) v and source.authScore =

(select max(source2.authScore)

from Version v2, WebPage source2,

(Row,Column) commonParent

where source2 influences(2) v2 and
v under commonParent and
v2 under commonParent);

id = Avatar lead actor

V2; authScore = 5

Table 1: Example IQL queries, and the answers with respect to Figure 2.

8. CONCLUSION
Motivated by data processing systems comprised of mul-

tiple independently-developed sub-systems, we have devel-
oped a metadata and data provenance management service
called Ibis. Ibis handles provenance metadata that spans
multiple granularities of data and processing elements, and
Ibis’s query language is able to infer provenance relation-
ships across granularities. Ibis is fully implemented using
query rewriting on top of a conventional RDBMS. Future
work will focus on efficiency and scalability issues—in re-
gard to storing and querying provenance metadata, as well
as capturing and shipping it from various systems.
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APPENDIX
A. PROOF OF EQUIVALENCE OF UNDER

DEFINITIONS
Here we prove the equivalence of Definition 5.1 and Defi-

nition 5.2. We start by proving the equivalence for the case
when E(V1) and E(V2) each consists of a single complex ele-
ment (Section A.1), then extend the proof to sets of complex
elements (Section A.2).

A.1 Under for single complex elements
Let E(V1) and E(V2) contain single complex elements e1

and e2 respectively. From Definition 3.5, we know that there
exists some V ′ ⊇ V such that G(e1) 6= ∅. So we prove the
result when G(e1) 6= ∅. From Definition 5.2, for the basic
element sets B(e1) and B(e2), e1 is under e2 iff the following
condition is satisfied: ∀b2 ∈ B(e2),∃b1 ∈ B(e1) such that
b2 contains b1. We prove the sufficiency and necessity of
checking this condition:

Sufficient: For each bj ∈ B(e2), let bi(j) ∈ B(e1) satisfy
the condition: That is, bj is contained in bi(j). Therefore,
we have

G(bi(j)) ⊆ G(bj)

Therefore, we have:

G(e1) =
⋂

bi∈B(e1)

G(bi) ⊆
⋂

bi(j)∈B(e1)

G(bi(j)) ⊆
⋂

bj∈B(e2)

G(bj) = G(e2)

Necessary: We prove necessity by contradiction. Suppose
bj ∈ B(e2) such that ∀bi ∈ B(e1) we have that bi is not
contained in bj , i.e., G(bi) 6⊆ G(bj). We have two cases: (1)

Suppose bj is a basic element of the finest granularity, then
e1 cannot be under e2 since G(e1) 6= ∅, bj 6∈ G(e1), and
G(e2) ⊆ {bj}. (2) Suppose bj is a basic element of granu-
larity coarser than gmin. Then consider the completion V ′
of data obtained by adding distinct basic elements of gran-
ularity gmin under all basic elements of coarser granularity.
We shall then then have G(e1) 6⊆ G(e2), since G(bj) will not
contain G(e1).

A.2 Under for sets of complex elements
Next we show that the equivalence of Definitions 5.1 and

Definition 5.2 for sets of complex elements E(V1) and E(V2)
easily follows from the proof of the single-element case. Be-
low we show equivalence by proving the “if” and “only if”
portions of the condition in Definition 5.2 separately.

If: Clearly if ∀e1 ∈ E(V1),∃e2 ∈ E(V2) such that e1 is
under e2 (based on the condition for single elements), we
have

⋃
e1∈E(V1)

G(e1) ⊆
⋃

e2∈E(V2)
G(e2).

Only If: We prove by contradiction. Suppose ∃e1 ∈ E(V1)
such that ∀e2 ∈ E(V2) we have e1 is not under e2, i.e.,
G(e1) 6⊆ G(e2). We can therefore construct V ′ as follows.
We add a simple element X of the finest granularity under
e1 such that ∀e2 ∈ E(V2), we have X 6∈ G(e2). Therefore,
X ∈

⋃
e1∈E(V1)

G(e1) but X 6∈
⋃

e2∈E(V2)
G(e2). Therefore,⋃

e1∈E(V1)
G(e1) 6⊆

⋃
e2∈E(V2)

G(e2).
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