
The Schema-Independent Database UI
A Proposed Holy Grail and Some Suggestions

Eirik Bakke
MIT CSAIL

ebakke@mit.edu

Edward Benson
MIT CSAIL

eob@mit.edu

ABSTRACT
If you have ever encountered a piece of highly domain-specific
business software, you may have noticed that it was largely
a graphical front-end to some relational database. You may
also, in fact, have avoided using the system at all—studies
show that information workers prefer to dump their data
into spreadsheets, a general and more familiar tool which,
unfortunately, is poorly suited for many standard database
tasks. It is time that we stop streamlining the process of
creating a new application for every schema, and that we
instead develop the visual query languages that will let end-
users access the full power of relational database manage-
ment systems from a simple and unified interface. Once
information workers can create, manage, and query real
databases with the same ease as they routinely manipulate
spreadsheets today, they will never return to their schema-
dependent, consultant-made, and oddly-colored Microsoft
Access applications.

1. A WAR STORY
In his younger days (well, before undergrad), one of the

authors worked as an administrative assistant for one of
Norway’s 400 public schools of music and arts. To keep track
of students, teachers, lessons, and rental instruments, the
school had licensed a special-purpose database application,
originally developed in FileMaker Pro1 and later rewritten
in 4th Dimension2. See Figure 1. The software was made
and sold by a six-person consulting firm started by a former
band director and FileMaker whiz on the other side of the
country, and was constantly under development. A couple
of times per year, the consultants would fly out to our in-
dividual schools to train us in the use of new features as
well as collect feedback for further development. A common
kind of request would be adding another field to an entity
type in the database; for instance, we might ask if we could
“get a checkbox in the ‘Student’ dialog to indicate whether
their parents had signed the audio recording release form

1http://www.filemaker.com
2http://www.4d.com

This article is published under a Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0/),
which permits distribution and reproduction in any medium as well allow-
ing derivative works, provided that you attribute the original work to the
author(s) and CIDR 2011.
5th Biennial Conference on Innovative Data Systems Research (CIDR ’11)
January 9-12, 2011, Asilomar, California, USA.

Figure 1: The stereotypical user interface of a
FileMaker-style database application. Screenshots
from an administration system for public Norwegian
music schools.

yet.” The consultants were generally very helpful, and sure
enough, three months later there would be a patch released
with the new field in the database. One day, however, they
balked. “Sorry. There is no more room in the dialog box.”

2. TAILORED DATABASE APPLICATIONS
The story above, which could be retold for thousands

of organizations worldwide, illustrates a number of points
about database applications “in the wild.” First, there is an
infinite number of database schemas which may seem per-
fectly obscure to the world at large, but which may be of
great value to a small number of people or organizations
(e.g. schemas that deal with the intricacies of running a
public Norwegian music school). Second, it takes a lot of ef-
fort, and a lot of attention to detail, to implement database
applications for production use in such environments. In
fact, it may take a small start-up—and we know of compa-
nies, such as Visma3, that make a living out of acquiring said
small start-ups after the they begin to reach market satura-
tion. Third, there inevitably ends up being a gap between
users and developers, and the schema of the database is hard
to change. Moreover, users are no longer fully in control of
their data; on one occasion, continuing the story above, we
paid the consultants NOK 10,000 (about $2,000) to migrate

3http://www.visma.com

219

a “record first created at [some date]” field from the old File-
Maker database to the newer 4th Dimension one on “only”
a week’s notice. Fourth, tailor-made database applications
require their users to undergo training and learning periods
which may be expensive in terms of both the consultants’
and the end-users’ time. Not to mention customer support:
software that is under constant development is unlikely to
be free of critical bugs, technical or usability-related. This is
true even, and maybe especially so, for large organizations;
while a larger number of potential target users may well de-
crease the marginal cost of custom software development,
total training and support costs increase all the more.

A few other things are worth mentioning. Tailor-made
database applications, like the one in the story, do very lit-
tle other than provide basic CRUD (Create, Read, Update,
Delete) facilities on their underlying relational databases.
While the applications often include certain special features
hard-coded for the schema in question (for instance, our sys-
tem could send text messages to students based on their“cell
phone number” field), these are typically not the main rea-
son for using the application. Rather, people use database
applications because they need to manage many different
entities (students, teachers, lessons, instruments... or parts,
suppliers, and plants for that matter) and the relationships
between them. In other words, these are exactly the kind of
tasks that relational databases were made for handling well.

Last, tailor-made applications seldom reach anywhere near
the same level of maturity as more general-purpose ones.
Features that are taken for granted in other applications
may never get implemented in a tailor-made application,
simply because the development time would not be justified
for the size of the user base. In the music school system
example, the developers found the table widget available in
4th Dimension inadequate for their needs, and decided to
roll their own (presumably due to the limitations inherent
in two-dimensional table views, see our later discussion). It
was only after two years that they released a patch to allow
the mouse wheel to be used to scroll the table up and down.

3. SPREADSHEETS
With all the problems associated with tailor-made

database applications, is there an alternative? Currently,
only “sort of.”

If given a choice, information workers would rather dump
their data into a spreadsheet than use some odd database ap-
plication, even at substantial pain. Spreadsheet users “shun
enterprise solutions” [7] and “do not appear inclined to use
other software packages for their tasks, even if these pack-
ages might be more suitable” [3]. One survey shows that
“sorting and database facilities”are the most commonly used
spreadsheet features, with 70% of business professionals us-
ing them on a frequent or occasional basis [6]. In contrast,
less than half use “tabulation and summary measures such
as averages/totals”—one of the original design goals of the
original VisiCalc spreadsheet. In fact, one of the most fre-
quent uses of spreadsheets may be as a pseudo-database.

Spreadsheets have some great properties. Their interfaces
are extremely mature and afford a large range of streamlined
facilities for working with any data that can be arranged
in a grid of cells, including multiple selection, copy/paste,
find/replace, undo/redo, inserting and deleting, extending
data values, sorting and filtering on arbitrary fields, nav-
igating and selecting cells with the keyboard, and so on.

They have hundreds of millions of users worldwide that are
already trained in their use, and a relatively large portion
of these are power users. And, of course, there are no devel-
opment costs.

Unfortunately, spreadsheets lack features essential to
database applications, including joins, views, forms, report
generation, multiple users, and so on. In effect, spreadsheets
are great for single-table databases shared between only a
few users, but become very painful to use as tasks scale out
in various dimensions.

4. THE HOLY GRAIL
Spreadsheet software is the quintessential example of a

general-purpose data manipulation tool, and the fact that
people use it for database tasks despite great pains should
be an indicator that such tools are the way to go. If we
could make a general-purpose data manipulation tool that
covers even, say, 80% of the functionality afforded by typ-
ical tailor-made database applications, information workers
would never look back.

We should give credit to others who have proposed similar
grails before. Quoting Yannis Ioannidis:

“Visual database query languages that can express the full
spectrum of complex queries desired and data visualization
mechanisms that can capture the essence of large and com-
plex data sets in ways that match users’ intuition are some-
what of a Holy Grail in database user interfaces. Unfortu-
nately, almost nobody seems to be looking for it!” [4]

Visual query languages are indeed central to the idea of
of making a general-purpose data manipulation tool. A
tool that is intended to replace the majority of tailor-made
database applications must certainly give the user the power
to express SQL-like queries from a graphical interface. In
fact, we need more than relational completeness, since many
of the views desired in a database front-end are hierarchical
rather than tabular; we discuss this below. Now quoting the
2005 The Lowell Database Research Self-Assessment:

“It is a long-standing lament that the database community
does too little about user interfaces. (...) A small number
of slick visualization systems oriented toward information
presentation were proposed during the 1980s, notably QBE
and VisiCalc. There have not been comparable advances in
the last 15 years, and there is a substantial need for better
ideas in this area.” [1]

It is interesting to note that one of the two notable visual
query languages cited is VisiCalc: the spreadsheet itself.
Keep in mind, spreadsheets are indeed one kind of visual
query language. We need better ones, so that they can re-
place our tailor-made database applications.

5. THE STATE OF THE ART
Since the stereotypical user interface design of a tailor-

made database application follows rather mechanically from
the underlying database schema (see again Figure 1), appli-
cation builders like FileMaker et al. provide plenty of short-
cuts and wizards to create them, as do development frame-
works such as Ruby on Rails4. Systems like AppForge [9]
and App2You [5] take these ideas further than their prede-
cessors, abstracting away much of the low-level form design

4http://guides.rubyonrails.org/getting_started.html#
getting-up-and-running-quickly-with-scaffolding

220

and data binding work required earlier, making the appli-
cation development process more WYSIWYG, and hiding
the technical details of relational schema design from the
user. Still, these systems are “application builders”—rather
than aiming to be general data management applications
that can be used with any schema, they aim to make it
easier for developers to churn out special-purpose ones at a
faster pace. The user interfaces produced are just as schema-
dependent as before, they lack good features for general-
purpose data management, and users have to learn to use
them from scratch.

Despite being in the application builder category, we con-
sider AppForge [9] to have made a major step in the right
direction, by creating a visual query language that allows
the user to retrieve joined hierarchical views of the data in
the database. We believe such a language must be a core
part of any general-purpose data manipulation tool that in-
tends to replace tailor-made database applications. Query-
by-Example was already mentioned as a visual query lan-
guage [10, 1]; however, it is only able to retrieve flat tables
similar to those returned by SQL queries, and is as such not
expressive enough for our purposes. A major and relatively
recent visual query language is that of Polaris/Tableau [8];
this system provides a very expressive user interface for
defining visualizations and aggregations on tabular or mul-
tidimensional data, based on the pivot table concept found
originally in Lotus Improv (1993). The output, however,
remains in flat table form, possibly rendered on screen us-
ing a selection of visualizations. Pivot table systems pro-
vide cross-tabulated, as opposed to hierarchical, views of
the user’s data.

6. SOME SUGGESTIONS
What would a universal tool for relational data look like?

It would likely be a blend of interface norms from the spread-
sheet world along with more powerful data management ca-
pabilities from the database world. In particular, we imag-
ine:

• The tool is not a builder for the interface. The tool is
the data interface. Users should be able to construct
the particular views they need as they go, at a small
enough cost that these views can be treated as dispos-
able objects.

• The tool should allow users to work with data as a set
of views. The underlying relational structure should
be available for power-users, but hidden by default.

• The tool can read and write both data and schemas.
A flexible, universal interface for existing relational
schemas would be an achievement in its own right,
but we believe such tools should be able to create and
modify schemas as well. Users, however, should not
need to be aware of these operations unless they want
to be.

• The tool should present data to the user as complex
structures where appropriate, even if the data is not
displayed as such relationally. One-to-many or many-
to-many relationships may, for instance, appear as a
bulleted list from the perspective of a particular object
of focus.

• The tool should contain a visual query language. That
is, it allows the user to construct and compose view
queries over the data using a graphical user interface.

• As a necessity, the tool must have features common to
spreadsheets (multiple selection, search/replace, etc)
and existing database applications (form-style brows-
ing, reports, etc).

• The tool errs on the side of off-the-shelf usability, re-
quiring technical input from users only when necessary
to resolve a potential ambiguity. Calendar applications
provide a good example of this: when an event in a re-
peated series is modified, the application provides the
user with several options: modify one item, modify the
entire series, or modify all future events. Relationships
between entities create many such ambiguous situa-
tions that should be handled as conversations between
the computer and the user rather than by requiring
the user to specify a priori how she intends to modify
information in the future.

We propose that a universal tool may be constructed by
relying on hierarchical views as the interface metaphor. The
key insight is that hierarchical views seem to describe the
set of structures that humans are interested in looking at.
Look at almost any user interface in a database-backed ap-
plication, and you will observe a hierarchy:

• Patient records in a medical database, with doctor vis-
its as an embedded table of each patient

• Course records in a school database, with required
readings and teaching staff as embedded tables

• Emails in an inbox, decorated with tags, subject, and
sender name

• Books in a bookstore, displayed by category

Given this observation, the role of the small-business in-
terface database consultant appears to be writing code to
translate a relational programming interface into a series of
hierarchical views. If what we want are hierarchical views,
then build databases that allow us to pretend the information
is hierarchical in the first place.

Building database tools which embrace the commonality
of hierarchical information browsing would enable the cre-
ation of databases that interact with casual users in the same
way as they think about their data. At any given time, most
users want to look at an entity, or a list of entities, along
with properties and possibly related other entities. SQL can
always be used in the exceptional cases.

7. RELATED WORKSHEETS
One of our own systems, Related Worksheets [2], attempts

to explore the spreadsheets-as-a-database concept by ex-
tending the spreadsheet paradigm to let the user establish
relationships between rows in related worksheets as well as
view and navigate the hierarchical cell structure that arises
as a result. A user study on 36 regular Excel users showed
that first-time users of our system were able to solve lookup-
style query tasks with the same or better accuracy than sub-
jects in a control group using Excel, in one case 40% faster
on average (p<0.05). See Figure 2.

221

Figure 2: Screenshot of our Related Worksheets application, showing a hierarchical view of entities related
through one-to-many and many-to-many relationships.

8. CONCLUSION
Since the early years of database management systems,

we have kept building a new database application for ev-
ery schema that came along. These resulting tailor-made
database applications are expensive to develop, hard to
maintain, hard to use, and hardly much more than graphical
front-ends to their underlying databases. By looking to the
success of spreadsheets as a general-purpose data manage-
ment tool, and by developing new visual query languages
to let end-users access the full power of relational database
management systems from a simple and unified interface,
we can eliminate the pains of using either spreadsheets or
tailor-made applications for database tasks, and get the best
of both worlds.

9. REFERENCES
[1] S. Abiteboul, R. Agrawal, P. Bernstein, M. Carey,

S. Ceri, B. Croft, D. DeWitt, M. Franklin, H. G.
Molina, D. Gawlick, J. Gray, L. Haas, A. Halevy,
J. Hellerstein, Y. Ioannidis, M. Kersten, M. Pazzani,
M. Lesk, D. Maier, J. Naughton, H. Schek, T. Sellis,
A. Silberschatz, M. Stonebraker, R. Snodgrass,
J. Ullman, G. Weikum, J. Widom, and S. Zdonik. The
Lowell database research self-assessment. Commun.
ACM, 48(5):111–118, 2005.

[2] E. Bakke, D. R. Karger, and R. C. Miller. A
spreadsheet-based user interface for managing plural
relationships in structured data. In CHI, 2011 (to
appear).

[3] Y. E. Chan and V. C. Storey. The use of spreadsheets
in organizations: determinants and consequences.

Information & Management, 31(3):119–134, 1996.

[4] Y. E. Ioannidis. Visual user interfaces for database
systems. ACM Comput. Surv., page 137, 1996.

[5] K. Kowalzcykowski, A. Deutsch, K. W. Ong,
Y. Papakonstantinou, K. K. Zhao, and
M. Petropoulos. Do-It-Yourself database-driven web
applications. In CIDR, 2009.

[6] J. D. Pemberton and A. J. Robson. Spreadsheets in
business. Industrial Management & Data Systems,
200(8):379–388, 2000.

[7] N. Raden. Shedding light on shadow IT: Is Excel
running your business? Technical report, Hired
Brains, Inc., January 2005.

[8] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A
system for query, analysis, and visualization of
multidimensional relational databases. IEEE
Transactions on Visualization and Computer
Graphics, 8(1):52–65, 2002.

[9] F. Yang, N. Gupta, C. Botev, E. F. Churchill,
G. Levchenko, and J. Shanmugasundaram.
WYSIWYG development of data driven web
applications. Proc. VLDB Endow., 1(1):163–175, 2008.

[10] M. M. Zloof. Query-by-Example: A data base
language. IBM Syst. J., 16(4):324–343, 1977.

222

