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ABSTRACT
Cloud computing provides users near instant access to seem-
ingly unlimited resources, and provides service providers the
opportunity to deploy complex information technology in-
frastructure, as a service, to their customers. Providers ben-
e�t from economies of scale and multiplexing gains a�orded
by sharing of resources through virtualization of the under-
lying physical infrastructure. However, the scale and highly
dynamic nature of cloud platforms impose signi�cant new
challenges to cloud service providers. In particular, real-
izing sophisticated cloud services requires a cloud control
framework that can orchestrate cloud resource provisioning,
con�guration, utilization and decommissioning across a dis-
tributed set of physical resources. In this paper we advocate
a data-centric approach to cloud orchestration. Following
this approach, cloud resources are modeled as structured
data that can be queried by a declarative language, and up-
dated with well-de�ned transactional semantics. We exam-
ine the feasibility, bene�ts and challenges of the approach,
and present our design and prototype implementation of the
Data-centric Management Framework (DMF) as a solution,
with data models, query languages and semantics that are
speci�cally designed for cloud resource orchestration.

1. INTRODUCTION
The e�ciency and ubiquity of virtualization technologies

on modern computer architecture have enabled widespread
use of cloud computing. In particular, these Infrastructure-
as-a-Service (IaaS) platforms provide cloud computing re-
sources at the granularity of virtual machines (VMs) in both
public cloud o�erings, e.g., Amazon EC2 [1], and enterprise-
based private cloud instances. The latter is enabled by a
variety of vendor o�erings, or, indeed, an increasing array
of open source cloud e�orts.
While the basic IaaS model of providing VM instances
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on-demand, each with an operating system and set of ap-
plications of choice, remains the mainstay of cloud comput-
ing, more sophisticated cloud service abstractions are in-
creasingly being o�ered and discussed in the community.
Examples include combining cloud computing with virtual
private network (VPN) technology to realize virtual private
cloud instances [24], rapid cloning of VM instances to en-
able cloud bursting to deal with overload conditions [22, 18],
follow-the-sun cloud services whereby VMs are migrated to
be closer to where work is being performed [22] and using
the ease of rapidly instantiating new VMs to provide cloud-
based disaster-recovery services [23].
These more advanced cloud services share all the oper-

ational complexities associated with more basic cloud ser-
vices, including resource allocation and placement, fault man-
agement, resource and service guarantees, image manage-
ment, storage management etc. However, more sophisti-
cated cloud services require the dynamic orchestration of
resources to realize the service abstractions.
Cloud orchestration involves the creation, management

and manipulation of cloud resources, i.e., compute, storage
and network, in order to realize user requests in a cloud en-
vironment, or to realize operational objectives of the cloud
service provider. User requests are driven by the service
abstraction and service logic that the cloud environment
exposes to them. Examples of operational objectives that
require orchestration functions include decreasing costs by
consolidating physical resources and improving the ability
to ful�ll service level agreements (SLAs) by dynamically re-
allocating compute cycles and network bandwidth.
Cloud orchestration functions must be performed while

dealing with service and operational concerns such as ser-
vicing large numbers of simultaneous user requests, enforc-
ing policies that re�ect service and engineering rules, and
performing fault and error handling in a highly dynamic
environment. Recognizing that similar problems are ele-
gantly solved through well-known database methodologies
and techniques, i.e. concurrency control, integrity constraint
enforcement, and atomic transactions, we claim that an or-
chestration framework can and should incorporate database
features: a formal, uni�ed data model, a declarative query
and constraint language, transactional semantics that pro-
vide atomicity, consistency, isolation and durability (ACID)
properties, among others.
However, existing techniques for orchestration are rudi-

mentary and meet few of the requirements listed above.
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First, control interfaces to resources range from simply edit-
ing textual or XML con�guration �les, to low-level command-
line interfaces (CLIs), to procedure-oriented application pro-
gramming interfaces (APIs). None provides a high-level
data model for accessing or modifying resources in a con-
sistent, system-wide manner. Currently, orchestration tasks
are typically written as procedures in imperative program-
ming or scripting languages and interact directly with re-
sources via the myriad control interfaces. Consequently,
specifying and enforcing of policies on a particular class of
resources (e.g., physical compute servers) requires touching
all the procedures that modify that resource class, replicat-
ing the policy throughout the code base. Even worse, excep-
tion handling, whether unexpected errors from resources or
global constraint violations, is entirely ad hoc. For example,
in a multi-step orchestration task, if a resource unexpect-
edly throws an error in some step, a typical implementation
will fail-stop, leaving the system in an inconsistent state,
or worse, silently ignore the error and execute subsequent
steps, resulting in unde�ned behavior. Lastly, implementing
deadlock-free concurrency control over distributed resources
is challenging, especially in scripting languages, but is neces-
sary to avoid race conditions between concurrent tasks that
utilize shared resources.
The Data-centric Management Framework (DMF) is our

answer to cloud orchestration. DMF is a cloud orchestra-
tion programming and execution framework, in which cloud
operations can be easily speci�ed and executed while ensur-
ing that service and engineering constraints are satis�ed in
a system-wide manner. DMF models resources and their
state as structured data, and further separates this data
into logical and physical layers to avoid system miscon�g-
uration and illegal operations. Orchestration procedures in
DMF are transactional and provide well-de�ned semantics
for accessing and updating resource data and for handling
exceptions. In particular, DMF can atomically commit a
group of operations, maintain consistency between the log-
ical and physical layers, prevent miscon�guration and ille-
gal resource manipulations by evaluating constraints before
physical deployment, and provide race-free concurrent trans-
actions. Realizing the bene�ts of a data-centric approach
to cloud orchestration is, however, not a trivial task. In
particular, database semantics need to be maintained while
performing orchestration functions in a highly distributed
environment, applying operations to resources that are not
inherently atomic, and on a platform that is inherently much
more volatile than conventional database systems. We have
developed a prototype of DMF and performed initial exper-
iments in our emulated wide-area cloud computing testbed,
using Xen virtual machines [9], DRBD storage [21], and Ju-
niper routers [2].
To illustrate the value of DMF's data-centric approach

to orchestration we begin with an apparently simple cloud
feature�VM migration across the wide area network�and
show the complexity of its actual deployment. We then de-
scribe the unique challenges that a data-centric cloud or-
chestration approach poses outside the existing database re-
search literature, and how they are addressed in the design
of DMF. We conclude with a description of our prototype
system, and a discussion of how DMF may potentially in-
�uence the future design of resource controllers.

2. BACKGROUND AND CHALLENGES
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Figure 1: A multi data center, cross-domain cloud
orchestration example

Figure 1 depicts our motivating example�a multi data
center, cross-domain cloud orchestration scenario. The ex-
ample illustrates the live migration of a VM from one cloud
data center to another. This mechanism, for example, might
be a part of the realization of a follow-the-sun service [22].
Figure 1 (a) shows the initial setup with a VM and its

associated storage in Datacenter East and with clients ac-
cessing a service on the VM via the public Internet. The goal
of our example is to �live migrate� the VM from Datacenter
East to West to make it closer to the clients. Figures 1 (b)
and (c) depict how this can be achieved. First a layer-2 VPN
is established between the two data centers, and the storage
associated with the VM is replicated to Datacenter West. 1

Then the VM itself is migrated from East to West.
During live VM migration, the IP address of the VM

does not change, so existing application-level sessions are
not disrupted [13]. As shown by the lower dotted line in
Figure 1 (b), during migration, tra�c between the clients
and the VM follows a circuitous route via Datacenter East
and the inter-datacenter VPN. Figure 1 (c) shows the �-
nal state after routing is updated so that tra�c between
the clients and the VM takes the direct path to Datacenter
West.
Because routing in IP networks is asymmetric, there are

two steps to updating network routing. First, tra�c from

1In reality two separate VPNs might be used: A manage-
ment VPN on which the storage and VM data is transferred
between sites and a user VPN on which user tra�c is carried.
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the VM should use the router of its local data center for
outgoing tra�c, which can be readily achieved by changing
the default route on the VM. Second, tra�c from the clients
to the VM needs to similarly follow the more direct path
to Datacenter West. This can be achieved by advertising
a more speci�c route to the migrated VM from Datacenter
West.
The key point illustrated by this example is that realiz-

ing this dynamic service feature requires the orchestration
of resources across di�erent domains (compute, storage, and
network), in a sequenced manner, and across geographically
distributed data centers. Further, each of the operations
described above is in fact relatively complex and thus sus-
ceptible to failure. Finally, a cloud orchestration platform
would have to concurrently deal with potentially many sim-
ilar orchestration requests.
Interestingly, similar problems in databases, such as mak-

ing transactions atomic and controlling concurrent data ma-
nipulation have been solved through well-known methodolo-
gies and techniques. Solutions in the database literature,
ranging from general semantics to speci�c algorithms, if not
directly applicable, should at least inform solutions to re-
lated problems in cloud orchestration. To apply a data-
centric approach to resource orchestration, however, several
major di�erences from conventional data management must
be addressed.
First, in resource orchestration, the main goal of updating

data is to achieve a side e�ect of the state transition on
a resource. For example, after setting a con�guration of
a network interface on a router to �enabled�, one expects
to be able to use the interface to send and receive tra�c.
Changing a replica of the con�guration �le outside of the
router does not achieve the same result. The primary copy
of the data on the device is the only copy that matters.
In contrast, the purpose of writing data into a database is
to be able to read it later. As a result, the data can be
replicated to an arbitrary number of copies, on any media
with any data format to serve the purpose. Therefore, data
replication and caching must be used carefully in resource
orchestration.
Second, an orchestration system manages data in the phys-

ical devices. Compared with data in the disk-based storage
of databases, state in physical cloud resources is much more
volatile. Given the scale, dynamics, and complexity of the
cloud environment, crash or malfunction of a resource, such
that its state changes, is sometimes inevitable. In addition,
resource state may be tampered with, intentionally or even
maliciously, via an out-of-band channel, circumventing the
orchestration system.
Third, most state transitions in physical resources are ex-

pensive. For example, it takes from several seconds to min-
utes to commit a con�guration on certain Juniper router
models or perform a VM live migration, and not all state
transitions are reversible. The orchestration system must
take these factors into account when executing the orches-
tration procedures.
In the following sections, we will describe the design and

implementation of DMF to address these challenges.

3. DATA-CENTRIC APPROACH
In this section we describe the design of Data-centric Man-

agement Framework (DMF) for cloud resource orchestra-
tion. Figure 2 depicts the architecture of DMF. In a nutshell,
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Figure 2: DMF architecture

DMF maintains a conceptually centralized data repository
of all the resources being managed, which include compute,
storage and network devices, as shown at the bottom of the
�gure. For every resource object, there are two copies that
represent its state: the primary copy at the physical layer
and the secondary copy at the logical layer. The primary
copy is stored in the physical device such that read and
write operations to the copy are translated into correspond-
ing vendor-speci�c API calls. The secondary copy at the
logical layer is an in-memory replica of the primary copy.
DMF provides a weak, eventual data consistency between
the two layers. Later in Section 3.3 we will explain why the
separation of the two layers is necessary.
A user can specify views and integrity constraints in a

declarative query language on top of the global data model.
Views are used to reason about the current state in a system-
wide fashion at a high level of abstraction. Constraints spec-
ify the policies that re�ect service and engineering rules.
Views and constraints can be materialized and are main-
tained by the query processor. Actions are the atomic op-
erations that the resources provide, and are de�ned at both
the physical and logical layers. A user can invoke transac-
tions speci�ed in stored procedures composed with queries,
actions and other procedures to orchestrate cloud resources.
They are executed by the transaction manager that enforces
ACID properties.
We will now consider the DMF data model, language

abstraction, transaction processing and consistency main-
tenance in turn.

3.1 Data Model
In DMF all resources are modeled as structured data. In

this paper we only model non-volatile resource state, that
is, state that changes as an e�ect of invoking orchestration
operations on the devices, such as device con�gurations.
Volatile state, like a server's CPU load or the latency be-
tween two routers, is read only and changes continuously.
A data-centric approach to modeling volatile resource state
has been studied in stream query processing systems [8, 14],
and could be incorporated naturally into DMF, but is out
of scope for this paper.
We adopt a hierarchical data model in which data is or-

ganized into a tree-like structure, as illustrated in Figure 4.
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1 class LStorageRes(dmf.LogicalModel):
2 name = dmf.Attribute(str)
3 resRole = dmf.Attribute(StorageResRole)
4 @property # the primary key is attribute ‘name’
5 def id(self): return self.name
6 @dmf.action
7 def setResRole(self, ctxt, resRole):
8 assert resRole in [StorageResRole.Primary,
9 StorageResRole.Secondary]
10 origResRole = self.resRole
11 self.resRole = resRole
12 ctxt.appendlog(action="setResRole",
13 args=[resRole],
14 undo_action="setResRole",
15 undo_args=[origResRole])
16 ...
17 class LStorageHost(dmf.LogicalModel):
18 hostname = dmf.Attribute(str)
19 resources = dmf.Many(LStorageRes)
20 ...
21 class LStorageRoot(dmf.LogicalModel):
22 hosts = dmf.Many(LStorageHost)
23 @dmf.view
24 def allResources(self):
25 return [(h.hostname, r.name, r.resRole)
26 for h in self.hosts for r in h.resources]
27 ...
28 class LRoot(dmf.LogicalModel):
29 vmRoot = dmf.One(LVmRoot)
30 storageRoot = dmf.One(LStorageRoot)
31 @dmf.constraint
32 def vmAlwaysOnPrimary(self):
33 return [("VM not running on Primary Storage", vm)
34 for host in self.vmRoot.hosts
35 for vm in host.domains
36 if self.storageRoot.hosts[host] \
37 .resources[vm.storageRes].resRole
38 != StorageResRole.Primary ]
39 ...
40 @dmf.proc
41 def migrate(root, vmName, srcHost, destHost):
42 resName = root.vmRoot.hosts[srcHost]\
43 .domains[vmName].storageRes
44 srcRes = root.storageRoot.hosts[srcHost]\
45 .resources[resName]
46 destRes = root.storageRoot.hosts[destHost]\
47 .resources[resName]
48 destRes.setResRole(StorageResRole.Primary)
49 root.vmRoot.migrate(vmName, srcHost, destHost)
50 srcRes.setResRole(StorageResRole.Secondary)

Figure 3: Sample code listing

Each tree node is an object representing an instance of an
entity. An entity may have multiple attributes of primitive
type, and multiple one-to-many and one-to-one relations to
other entities, which occur as children nodes in the tree.
An entity must have a primary key de�ned as a function of
its attributes that uniquely identi�es an object among its
sibling objects in the tree.
The relational data model and SQL as the de facto stan-

dard in databases, are not entirely suitable for resource or-
chestration. For example, because resources are provided
by multiple vendors, it is desirable to encapsulate state and
provide modular interfaces in an object-oriented way. Het-
erogeneous data sources and limited APIs also favor the
semi-structured or hierarchical data models, as exempli�ed
in most integration middleware systems.
To illustrate the concepts of DMF, we use the example

code in Figure 3, which is in a Python-style language. Al-
though not complete, the code is very similar to the lan-
guage implemented by DMF. The de�nitions of objects in
the logical data model, in the classes LRoot, LStorageRoot,

LStorageHost, LStorageRes, form the root node and storage-
related branches. We will use this code sample throughout
the remaining sections.
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Figure 4: An example instance of the data model

3.2 Language
The programming language of DMF is a domain-speci�c

language for query processing and data manipulation of struc-
tured data. It supports the following major constructs,
views, constraints, actions, and stored procedures, which are
elaborated below.
Orchestration tasks often require de�ning and querying

views that, for example, inspect global network state, or
that specify integrity constraints across multiple resources.
Declarative query languages can express complex queries
and constraints concisely and are highly amenable to op-
timization. Due to the tree-like data model, our query
language syntax is similar to the FLWOR expressions in
XQuery [7] with a subset of the XPath query capability. Be-
cause graph reachability queries are common in networked
services, we also provide a transitive closure query operator
and a more general �xpoint query operator that implements
the semi-naïve evaluation algorithm [20]. A constraint in
DMF is de�ned as a special type of view. It is satis�ed if
and only if it evaluates to an empty list. Otherwise, the
list should contain information such as violation messages
to help pinpoint the reasons behind the violations.
For example, on line 23 in Figure 3, the view allResources

extracts attributes from nodes, returning a table of storage
host names, and storage resource names and their roles. A
more complicated constraint is de�ned on line 31, dictating
that each VM must be running on a storage resource with
primary role. 2

For data manipulation, DMF provides the new concept of
action, which models an atomic operation that is provided
by a resource. Actions generalize the myriad APIs, ranging
from �le-based con�gurations, CLIs, to RPC-like APIs, pro-
vided by vendors to control the physical resources. Due to
the varied semantics of these interfaces, DMF does not al-
low arbitrary insertions, deletions or updates to data, unless
they are supported by the resources.
Due to the separation of the two layers, each action must

be de�ned twice: one at the physical layer, which is trans-
formed to the underlying API calls provided by the vendors,
and the other at the logical layer, which describes the state

2A storage resource is usually a replicated data device that
stores a VM image, and the storage resource associated with
a running VM must have the resource role �primary�.
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transition in the data model. Preferably, an action is also
decorated with a corresponding undo action. Undo actions
are used to roll back transactions as described in Section 3.3.
For example, on line 6 in Figure 3, the action setResRole
is de�ned at the logical layer to change the resource role of
a storage device. On lines 12�15, its corresponding undo
action is written to the log: it is the same setResRole ac-
tion, except with a di�erent argument to set the resource
role back to the original one.

3.3 Orchestration as Transactions
Transaction is the basic unit of orchestration in DMF.

Transactions are atomic, consistent, isolated and durable
and are realized in DMF as stored procedures. We describe
how transactions are executed and how the separation of the
physical and logical layers impacts ACID properties. We use
the VM live migration procedure on lines 40�50 in Figure 3
as our example transaction. This corresponds to our pre-
vious cloud orchestration example in Section 2, with the
di�erence that routing updating is omitted here for simpli-
�cation.
A transaction is classi�ed by its execution target layer as

logical-only, physical-only, or synchronized, the latter mean-
ing it is executed at both layers. Most orchestration tasks
are synchronized transactions, because their purpose is both
to satisfy constraints de�ned in the logical layer and to e�ect
state change in the physical layer.
The execution of a synchronized transaction occurs in two

phases. In the �rst phase, all operations in the transaction
are executed at the logical layer, which include query evalu-
ation and other actions. During the execution, an execution
log is recorded.
In our example transaction, the queries on lines 42�47,

access the relevant resource objects, and on lines 48�50, the
3-step orchestration (the destination storage resource role
is set to primary, the VM is migrated to the destination,
and the source storage resource role is set to secondary)
is executed. The procedure is automatically enclosed in a
transaction context (code omitted). Table 1 contains the
execution log after the �rst phase.
At the end of the �rst phase, all integrity constraints are

checked on the logical model. If any constraint is unsatis-
�ed, the transaction is aborted, and the logical layer is rolled
back to its state where the transaction began. This execu-
tion semantics guarantees that before a transaction begins
and after it commits, the logical model is internally con-
sistent, meaning that all integrity constraints are satis�ed.
The approach has the additional bene�t that system mis-
con�guration and illegal operations are denied even before
the physical resources are touched, thus avoiding the over-
head of any unnecessary yet prohibitively expensive state
transitions of physical resources.
If the �rst phase of a transaction succeeds, DMF executes

the second phase at the physical layer. During this phase,
since all state changes have already been handled in the
logical model in previous phase, DMF simply re-plays all
the actions in the execution log, executing the physical vari-
ant of each action. If all the physical actions succeed, the
transaction returns as committed. This execution semantics
guarantees that the transaction is durable, which means that
the state of the physical resources have changed when the
orchestration transaction is completed as committed.
If any action fails during the second phase, the transac-

tion is aborted in both layers. At the logical layer, DMF
rolls back to the original state, as it would if the �rst phase
had aborted. At the physical layer, DMF selects all actions
that have successfully executed, identi�es the correspond-
ing undo actions, and executes the undo actions in reverse
chronological order. To achieve atomicity of transactions,
each action in a transaction must have a corresponding undo
action. If an action does not have an undo action, it can be
executed stand-alone, but not within a transaction.
In our example, DMF executes the physical actions on

the objects identi�ed by their paths in the log. Suppose the
�rst two actions succeed, but the third one fails. DMF ex-
ecutes the undo actions recorded in log, record #2 followed
by record #1, to roll back the transaction. As a result,
the VM is migrated back to the original location, and the
destination storage resource role is reverted to secondary.
Once all undo actions complete, the transaction is termi-

nated as aborted. If an error occurs during the undo phase,
the transaction is terminated as failed. In this case, the
logical layer is rolled back to an internally consistent state,
however, there may be inconsistency between the physical
and logical layers.
We note that in this execution model, all-or-nothing atom-

icity is always guaranteed at the logical layer. At the phys-
ical layer, it is enforceable if (1) each physical action is
atomic, (2) each physical action is reversible with an undo
action, (3) all undo actions succeed during rollback, (4) the
resources are not volatile during transaction execution.
The �rst two assumptions can be largely satis�ed at design

time. According to our experience, most actions, such as
resource allocation and con�guration are reversible. 3 For
(3), because an action and its undo action are symmetric,
the undo action usually has a high probability of success
given the fact that its action has been successfully executed
in the recent past during the transaction.

3.4 Cross-layer Consistency Maintenance
DMF provides a weak, eventual consistency model for

cross-layer consistency maintenance. A synchronized trans-
action maintains cross-layer consistency if the data is cross-
layer consistent before the transaction starts, and the trans-
action can be atomically committed or aborted, under the
assumptions described above.
However, in addition to failed undo actions, out-of-band

changes to physical devices may cause cross-layer inconsis-
tencies. For example, an operator may add or decommis-
sion a physical resource without making the change visible
to DMF. Or an operator may log in to a device directly
and change its state via the CLI. Furthermore, because re-
sources are complex physical devices, a crash or system mal-
function may change the resource's physical state without
DMF's knowledge. Whatever the causes, these out-of-band
changes occur in practice, and DMF must be able to grace-
fully handle inconsistencies.
Speci�cally, in DMF, inconsistency can be automatically

identi�ed when a physical undo action fails in a transaction,
or can be detected by periodically comparing the data be-
tween the two layers. Once an inconsistency is detected on
a node in the tree, no more synchronized transactions are
allowed at that node or its children until the inconsistency

3Although not all physical actions can be undone. E.g., after
a server reboots, there is no (easy) way to return the server
to its pre-reboot state.
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log record # resource object path action args undo action undo args
1 /storageRoot/dest/vmRes setResRole [primary] setResRole [secondary]
2 /vmRoot migrate [vmName,src,dest] migrate [vmName,dest,src]
3 /storageRoot/src/vmRes setResRole [secondary] setResRole [primary]

Table 1: An example of execution log for VM migration

is reconciled.
To reconcile inconsistencies, logical-only and physical-only

transactions are applied in a disciplined and reliable way. A
DMF user can invoke a logical-only transaction to �reload�
the logical model from the physical state, or invoke a physical-
only transaction to �repair� the resources by aligning them
with the logical model. Before a logical-only transaction
commits, DMF checks all integrity constraints. If any con-
straints are violated, DMF aborts the transaction. To exe-
cute a physical-only transaction, at the beginning DMF �rst
�reloads� the physical state into the logical layer, then exe-
cutes the rest of the transaction as if it were a synchronized
transaction.
DMF itself does not require a speci�c consistency main-

tenance schedule, leaving that schedule to the user. One
can periodically invoke repair procedures, or in the case of a
new device addition, for example, manually invoke a reload
procedure to add that device to the system.

3.5 Summary
To summarize, DMF provides a data-centric programming

and execution framework for transactional cloud resource
orchestration. DMF provides ACID properties that closely
resemble those of SQL databases at the logical layer with a
strong consistency guarantee, and �best-e�ort� transactional
semantics at the physical layer to cope with the limitations
of the physical devices. A weak, eventual consistency model
is used to reconcile the cross-layer di�erences.

4. PROTOTYPE

4.1 Implementation
We have implemented a prototype of DMF in Python.

The primary goal of the prototype is to validate our hypoth-
esis and explore the bene�ts of the data-centric approach.
The prototype system runs on a centralized server. The

resource models, views, constraints, actions and stored pro-
cedures are all speci�ed in corresponding Python programs
following the code style in Figure 3. Most of the queries are
expressed in the form of declarative list comprehensions and
string-based path queries, all embedded in Python. The re-
sults of a view or a constraint can be optionally materialized
to speed up subsequent queries.
We extensively use Python's meta programming and dec-

orator techniques to hide implementation details, like how
the model instances are stored, queried, and updated, how
the logical and physical layers are separated, and how to
execute, commit and abort transactions.
An obvious alternative to designing a new language would

be to use an existing query language, like XQuery, which
natively supports a tree-structured data model and a com-
pact syntax for querying XML. XQuery's syntax for up-
dates is cumbersome, however, and its XML-friendly syn-
tax is not easily extended to support the DMF constructs
described above. In addition, we wanted our network engi-

neers, the �rst DMF developers, to be able to learn DMF
easily. Python and its rich libraries are a familiar and expe-
dient choice. In the end, DMF provides many of the bene�ts
of XQuery, without burdening users with having to learn a
new language syntax and library.
We fully implemented the transaction execution model de-

scribed in Section 3.3. All transactions are serialized inter-
nally to provide isolation. A more sophisticated concurrency
control model is our future work.
Speci�cally, we have implemented models for DRBD stor-

age [21], Xen virtual machine hypervisor [9], and Juniper
routers [2] in DMF. The three classes of resources provide
very di�erent APIs for orchestration. DRBD relies on the
text based con�guration �les and a command-line interface
to update resource roles and other state in the kernel. Xen
provides its own APIs, but is also compatible with a more
generic set of virtualization APIs provided by the libvirt li-
brary [3] that works with a variety of virtualization technolo-
gies, including Xen, VMWare, KVM, etc. Juniper routers
use the NETCONF protocol [4] for router con�guration.
The con�guration format is in XML with a prede�ned XML
schema. Therefore, the process of building data models for
DRBD and libvirt on Xen are entirely manual, such as de-
signing entities and relationships, and wrapping their API
calls to actions in DMF. In contrast, because Juniper al-
ready provides the XML schema, we are able to automati-
cally generate models from the schema into the DMF mod-
eling language (3197 models imported in total). We still
have to manually write actions for operations like con�g-
uration commit, and constraints such as network protocol
dependencies.
DMF exports an XML-RPC interfaces so that cloud or-

chestration applications can invoke stored procedures to re-
alize cloud functions. We also have built an interactive
command-line shell for rapid testing, debugging and demon-
stration purposes.

4.2 Preliminary Evaluation
To evaluate the performance of DMF, we experiment with

a representative transaction�live virtual machine (VM) mi-
gration across a wide area network (WAN) as described in
Section 2 and depicted in Figure 1, and measure the trans-
action execution time for both logical and physical layers.
As mentioned above, this transaction consists of several ac-
tions, which include destination and source storage resource
role setting, live VM migrating, and route updating.
We emulate the cloud environment that DMF controls

and orchestrates on ShadowNet, our operational wide-area
testbed [12]. In particular we create a slice in ShadowNet
for DMF that consists of a server and a router in each of two
geographically distributed ShadowNet locations, i.e. in Illi-
nois (IL) and California (CA). The router in each location
provides access to the public Internet and is used to create
an inter-data center VPN for this slice. The physical servers
are con�gured so that DRBD storage replication can be per-
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data model average stdev
logical layer 0.069 0.026
physical layer 38.927 1.934

Table 2: Average and standard deviation of the
transaction execution time (in seconds) for VM live
migration.

formed between them and the to-be-migrated VM runs on
this storage. The VM is allocated with 512MB memory in
size, which is the dominant factor a�ecting the actual mi-
gration time.
To make the result more accurate, we in total migrate the

VM 10 times and compute the average transaction execu-
tion time, as well as the standard deviation. Table 2 lists
the experimental results. We note that, as expected, most
of the transaction time is spent in physical layer, where ac-
tual management operations are performed on the physical
devices, while the time for logical layer is negligible, demon-
strating the e�ciency of DMF implementation.

5. RELATED WORK
Database technologies are routinely used as part of sys-

tem management and operations. One notable class of ex-
isting work, e.g. NetDB [10] in network con�guration man-
agement, uses a relational database to store device con�gu-
ration snapshots, where one can write queries to audit and
perform static analysis of existing con�gurations in an of-
�ine fashion. However, NetDB is a data warehouse, not
designed for network resource orchestration. Transaction
processing [15] as another database technology also has re-
ceived more attentions recently as a programming paradigm
in system areas. Since Microsoft Windows Vista, the Ker-
nel Transaction Manager (KTM) [6] enables the develop-
ment of applications that use transactions, for instance, to
implement transactional �le system and transactional reg-
istry. When failure happens, transactions are rolled back
to restore system state. Transactional OS (TxOS) [19] ex-
plores adding transactions to the OS system calls. A system
transaction executes a series of system calls in isolation and
atomically publishes the e�ects to the rest of the OS.
There are several related frameworks proposed for man-

agement and orchestration for large-scale systems. Autopi-
lot [17] is a data center software management infrastructure
from Microsoft for automating software provisioning, mon-
itoring and deployment. Similar to DMF, it has repair ac-
tions to deal with faulty software and hardware. Its periodic
repair procedures maintain weak consistency between the
provisioning data repository and the deployed software code.
From the open-source community, Puppet [5] is a data center
automation and con�guration management framework using
a custom and user-friendly declarative language for server
con�guration speci�cation. In contrast to DMF, other than
having di�erent scopes, Autopilot does not provide a trans-
actional programming interface. Puppet has a transactional
layer, but not in the sense of enforcing ACID properties.
Instead it allows user to visually examine the detailed oper-
ations before a transaction is submitted as a dry run. Once
executed, a transaction is not guaranteed to be atomically
committed.
Finally, in our earlier work, COOLAID [11] proposes a

similar vision of data-centric network con�guration manage-

ment. COOLAID manages router con�gurations and adopts
the relational data model and Datalog-style query language.
In contrast, DMF has the signi�cantly expanded scope of
cloud resource orchestration where a diverse set of devices
are managed. Facing several new challenges, DMF not only
utilizes a di�erent data model and query language to im-
prove usability, but also re-architect the system to provide
well-de�ned transaction executions on top of the separated
logical and physical layers, in re�ned transactional seman-
tics.

6. CONCLUSIONS
We presented DMF as the �rst attempt in adopting a

data-centric approach that combines the uses of structured
data models, a declarative query language and transactional
ACID semantics to support cloud resource orchestration.
We argue that these methodologies, mature and well-understood
in databases, address many challenges imposed by emerging
cloud computing services. Speci�cally, DMF o�ers transac-
tional orchestration to atomically commit a group of orches-
tration tasks and provides well-de�ned semantics for unex-
pected error handling. Separating the resource data model
into logical and physical layers, DMF maintains cross-layer
consistency between the two, and further prevents the sys-
tem from misbehaving by enforcing integrity constraints as
policies. Ultimately only operational experience will tell
how successful our approach is. However, we expect that,
compared to conventional systems built in imperative lan-
guages, DMF's uniform declarative language for query and
constraint speci�cation will result in better code scalability
and maintainability as the number and heterogeneity of re-
sources increases. We have implemented a preliminary pro-
totype of DMF and evaluated it within an emulated wide-
area cloud environment that involves compute, storage, and
network devices. The prototype demonstrates the feasibility
of DMF design and its practical aspects.
Our future work includes: (1) exploring concurrency con-

trol algorithms to improve parallelism under simultaneous
transactions from multiple clients; (2) decentralizing DMF
architecture to realize high system scalability, reliability and
availability; (3) deploying and evaluating DMF in geographi-
cally distributed large-scale data centers; (4) adopting query
optimization techniques and incremental view maintenance [16]
to improve performance; (5) and building more sophisticated
cloud services in the framework to further validate our hy-
pothesis and explore new opportunities.

7. APPENDIX: DEMONSTRATION
At the conference we will demonstrate live virtual ma-

chine (VM) migration across a wide area network (WAN) as
described in Section 2, depicted in Figure 1 and evaluated
in Section 4.2.
To demonstrate DMF's capability of orchestrating live

VM migration, we run a game server in the VM which starts
o� in the Illinois (IL) data center. All game clients connects
to this server via the IL router. For the demonstration pur-
pose we assume that as more gaming clients connect to the
server it becomes apparent that the data center in Califor-
nia (CA) would be more optimally positioned to serve them.
As such we migrate the game server from IL to CA. This
migration simulates a type of follow-the-sun cloud service in
which the server migrates to the time zone where the major-
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ity of clients are located, to reduce latency and improve their
gaming experience. We run two processes to emulate game
clients connecting respectively from IL and CA. A third pro-
cess runs as DMF administrator and executes the migration
transaction.
For the demonstration, the DMF control interface is a

simple visualization tool, which displays the cloud resources
and their state. The orchestration process proceeds as a
transactional execution of (i) setting up the inter-data cen-
ter VPN, (ii) establishing storage replication between the
two data centers, (iii) performing VM migration, (iv) up-
dating routing so that tra�c to/from game clients follow
the most direct path to the gaming server. As the migra-
tion transaction progresses, the visualization is updated to
illustrate state change.
To demonstrate DMF transactional semantics, we emulate

the failure of route re-con�guration. Because route changing
is the last step of the migration transaction, all previous
steps are rolled back. The rollback operations are reported
by the administration process.
If time permits, we will demonstrate another feature of

DMF: consistency maintenance between logical and physical
layers (described in Section 3.4) after the host machines have
crashed and reset their state.
If there is a problem with the Internet connection at the

venue, we will play a pre-recorded video for the demo.
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