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ABSTRACT
We consider a class of workflows, which we call generalized map
and reduce workflows (GMRWs), where input data sets are pro-
cessed by an acyclic graph of map and reduce functions to pro-
duce output results. We show how data provenance (also some-
times called lineage) can be captured for map and reduce functions
transparently. The captured provenance can then be used to sup-
port backward tracing (finding the input subsets that contributed to
a given output element) and forward tracing (determining which
output elements were derived from a particular input element). We
provide formal underpinnings for provenance in GMRWs, and we
identify properties that are guaranteed to hold when provenance is
applied recursively. We have built a prototype system that supports
provenance capture and tracing as an extension to Hadoop. Our
system uses a wrapper-based approach, requiring little if any user
intervention in most cases, and retaining Hadoop’s parallel execu-
tion and fault tolerance. Performance numbers from our system are
reported.

1. INTRODUCTION
Data-oriented workflows are graphs where nodes denote data-

set transformations, and edges denote the flow of data input to and
output from the transformations. Such workflows are common in,
e.g., scientific data processing [8, 14, 23] and information extrac-
tion [22]. A special case of such workflows is what we refer to
as generalized map and reduce workflows (GMRWs), in which all
transformations are either map or reduce functions [3, 15]. Our
setting is more general than conventional MapReduce jobs, which
have just one map function followed by one reduce function; rather
we consider any acyclic graph of map and reduce functions.

In data-oriented workflows, it can be useful to track data prove-
nance (also sometimes called lineage), capturing how data ele-
ments are processed through the workflow [1, 8, 11, 23]. Prove-
nance supports backward tracing (finding the input subsets that
contributed to a given output element) and forward tracing (deter-
mining which output elements were derived from a particular input
element). Backward tracing can be useful for, e.g., debugging and
drilling-down, while forward tracing can be useful for, e.g., track-
ing error propagation. In addition, provenance can form the basis
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for incremental maintenance [16] and selective refresh [18].
In this paper, we explore data provenance for forward and back-

ward tracing in GMRWs. In particular, we will see that the spe-
cial case of workflows where all transformations are map or reduce
functions allows us to define, capture, and exploit provenance more
easily and efficiently than for general data-oriented workflows. We
will also see that provenance can be captured for both map and
reduce functions transparently using wrappers in Hadoop [3].

There has been a large body of work in provenance, including for
general workflows (Section 1.1). Although map and reduce func-
tions as data transformations have become increasingly popular, we
are unaware of any work that focuses specifically on provenance for
GMRWs. Provenance can be defined naturally for individual map
and reduce functions, but it turns out to be a challenge to iden-
tify properties that hold when one-level provenance is applied re-
cursively through a workflow. Also, we explore the overhead of
provenance capture and the cost of provenance tracing. Our goal
is to enable efficient provenance tracing in GMRWs while keeping
the capture overhead low. Overall, our contributions are as follows:
• After establishing foundations in Section 2, in Section 3 we

define provenance for individual map and reduce functions. We
then identify properties that hold when one-level provenance is
applied recursively through a GMRW.
• Section 4 describes how provenance can be captured and stored

during workflow execution, and it specifies backward and for-
ward tracing procedures using provenance.
• We have built a system called RAMP (Reduce And Map Prove-

nance) that implements the concepts in this paper. Section 5
describes the implementation of RAMP as an extension to
Hadoop. RAMP wraps Hadoop components automatically, re-
quiring little if any user intervention, and retaining Hadoop’s
parallel execution and fault tolerance.
• Section 6 reports performance results using RAMP on the time

and space overhead of capturing provenance, and discusses the
cost of provenance tracing in our current system.

In Section 7, we conclude and discuss future work, including how
we can incorporate SQL processing into GMRWs with provenance.

1.1 Related Work
Obviously there has been tremendous interest recently in high-

performance parallel data processing specified via map and reduce
functions, e.g., [3, 15, 27]. In addition, higher-level platforms have
been built on top of these systems to make data-parallel program-
ming easier, e.g., [9, 20, 24]. Regardless of which level they op-
erate on, none of these systems or frameworks provides explicit
functionality or even formal underpinnings for provenance.

At the same time, there has been a large body of work in lineage
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Figure 1: Movie sentiment workflow example.

and provenance over the past two decades, surveyed in, e.g., [8,
11, 23]. Provenance specifically in the data-oriented workflow set-
ting is considered by [1, 2, 7, 10, 12, 17, 18, 19, 26], among others.
However, none of this work considers the specific case of GMRWs,
whose special properties and opportunities in the context of prove-
nance are the focus of this paper.

Reference [12]—our own work from the distant past—is per-
haps most related. It provides a hierarchy of transformation types
relevant to provenance; each transformation is placed in the hierar-
chy by its creator to make provenance tracing as efficient as possi-
ble. Our map and reduce functions fall into the hierarchy, but they
are specific enough that we can capture provenance automatically
using a wrapper-based approach. Also, while [12] allows acyclic
graphs of transformations, it does not investigate behavioral proper-
ties when provenance is traced recursively through them. We show
in this paper that recursive provenance tracing can yield ill-behaved
results in certain subtle cases. Finally, in this paper we consider
the overhead incurred gathering extra information during workflow
execution to facilitate provenance tracing, a topic not considered
in [12].

1.2 Running Example
As a simplified example GMRW that serves primarily to illus-

trate our definitions and techniques, consider the workflow shown
in Figure 1, used to gauge public opinion on movies. The inputs
to the workflow are data sets Tweets and Diggs, containing user
postings collected from Twitter and Digg, respectively. (Note we
consider batch processing of data sets, not continuous stream pro-
cessing.) The workflow involves the following transformations:
• Map functions TweetScan and DiggScan analyze the postings

in data sets Tweets and Diggs, looking for postings that con-
tain a single movie title and one or more positive or negative
adjectives. For each such posting, a key-value pair is emitted
to TwitterMovies (TM) or DiggMovies (DM), where the key is
the title of the movie, and the value is a rating between 1 and
10 based on the combination of adjectives appearing.
• Reduce function Aggregate computes the number of ratings

and the median rating for each movie title, producing data set
AggMovies (AM).
• Map function Filter copies to GoodMovies those movies with

at least 1000 ratings and a median rating of 6 or higher, and
copies to BadMovies those movies with at least 1000 ratings
and a median rating of 5 or lower.

As a simple example of how provenance might be useful in this
workflow, suppose we are surprised to see that Twilight is in Good-
Movies. Tracing provenance back one level to AggMovies, we see
that Twilight has a median rating of 9, with over 1000 ratings. Fur-
ther tracing provenance all the way back to the original postings,
we sample usernames of Twilight fans. By reading other postings
by these fans, we infer that teenage girls in particular have been
flooding social media sites with raves for Twilight.

2. TRANSFORMATIONS & WORKFLOWS
Let a data set be any set of data elements. We assume every

element has a unique identifier (discussed later). Thus, there are

no duplicates in any data set. A transformation T is any procedure
that takes one or more data sets as input and produces one or more
data sets as output. A workflow is a directed acyclic graph, where
nodes are transformations, and each edge is annotated with a data
set.

In generalized map and reduce workflows, the two types of trans-
formations are map functions and reduce functions. For now, we
consider map and reduce functions with just one input set and one
output set; Section 2.2 explains how multiple input and output sets
are handled.

Map Functions. As in the MapReduce framework, a map function
M produces zero or more output elements independently for each
element in its input set I: M(I) =

S
i∈I M({i}). In practice,

programmers in the MapReduce framework are not prevented from
writing map functions that buffer the input or otherwise use “side-
effect” temporary storage, resulting in behavior that violates this
pure definition of a map function. In this paper, we assume pure
map functions.

Reduce Functions. A reduce function R takes an input data set I
in which each element is a key-value pair, and returns zero or more
output elements independently for each group of elements in I with
the same key: Let k1, . . . , kn be all of the distinct keys in I . Then
R(I) =

S
1≤j≤n R(Gj), where each Gj consists of all key-value

pairs in I with key kj . Similar to map functions, we consider only
pure reduce functions, i.e., those satisfying this definition. In the
remainder of the paper, we use G1, .., Gn to denote the key-based
groups of a reduce function’s input set I .

2.1 Transformation Properties
We now list some properties that are relevant for provenance.

Deterministic Functions. We assume that all functions are deter-
ministic: Each map and reduce function returns the same output set
when given the same input set. Again, programmers in the MapRe-
duce framework are not prevented from creating nondeterministic
functions, but we assume determinism in this paper.

Multiplicity for Map Functions. We say that a map functionM is
one-one if for any input set I , each element in I produces at most
one output element: For all i ∈ I , |M({i})| ≤ 1. Otherwise, the
map function is one-many. In our running example, TweetScan,
DiggScan, and Filter are all one-one.

Multiplicity for Reduce Functions. We say that a reduce function
R is many-one if for any input set I , each key-based group Gj of I
returns at most one output element: |R(Gj)| ≤ 1. Otherwise, the
reduce function is many-many. In our running example, Aggregate
is many-one.

Monotonicity. We say that a transformation T is monotonic if for
any input sets I and I ′ with I ⊆ I ′, then T (I) ⊆ T (I ′). Note
that map functions are always monotonic, but some reduce func-
tions are nonmonotonic. In our running example, Aggregate is
nonmonotonic. An example of a monotonic reduce function is one
that simply returns the key for all groups above a certain size.

A thorough analysis of transformation properties in the context
of provenance was developed in [12]. When we place the map and
reduce functions we consider into the hierarchy of that paper, our
provenance definitions (Section 3) are consistent with the defini-
tions in [12].

2.2 Union and Split Transformations
So far we have assumed map and reduce functions have a single

input data set and single output data set. In practice, functions in
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Figure 2: Movie workflow example with union and split.
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Figure 3: Modified movie workflow example with ill-behaved provenance.

the MapReduce framework can have multiple input data sets, but
logically they union their input sets and then perform the function.
Similarly, a map or reduce function with multiple output sets is log-
ically equivalent to a function that outputs one large set, then splits
it into multiple separate output sets. For our analysis in Section 3, it
is preferable to model all map and reduce functions as single-input
and single-output. Thus, we logically add union and split transfor-
mations to GMRWs, without changing their behavior.

A union transformation takes input data sets I1, . . . , Im and cre-
ates output setO = I1∪. . .∪Im. A split transformation takes input
set I and creates output setsO1, .., Or , withO1∪. . .∪Or = I . For
split, we assume that output sets are both deterministic and context-
independent, i.e., each i ∈ I is in the same Ok regardless of other
elements in I .

Recall we assume all of our data sets have unique identifiers. We
further assume identifiers are made globally unique, so ∪ in the
above definitions is always disjoint union. Figure 2 adds union and
split transformations to our running example.

3. PROVENANCE
Given a transformation instance T (I) = O for a given input set

I , and an output element o ∈ O, provenance should identify the
input subset I∗ ⊆ I containing those elements that contributed to
o’s derivation. First we define provenance for each transformation
type, then we show how this “one-level” provenance is used to de-
rive workflow provenance.

Provenance for single transformations is straightforward and in-
tuitive:
• Map Provenance. Given a map function M , the provenance

of an output element o ∈ M(I) is the input element i that
produced o, i.e., o ∈M({i}).
• Reduce Provenance. Given a reduce function R, the prove-

nance of an output element o ∈ R(I) is the group Gj ⊆ I that
produced o, i.e., o ∈ R(Gj).
• Union Provenance. Given a union transformationU , the prove-

nance of an output element o ∈ U(I1, . . . , Im) = I1∪ . . .∪Im

is the corresponding input element i in some Ik, where i = o.
(Recall from Section 2.2 that ∪ is guaranteed to be a disjoint
union.)
• Split Provenance. Given a split transformation S where S(I) =

(O1, . . . , Or) and I = O1 ∪ . . . ∪ Or , the provenance of an
output element o ∈ Ok is the corresponding element i ∈ I ,
where i = o.

The provenance of an output subsetO∗ ⊆ O is simply the union of
the provenance for all elements o ∈ O∗.

Now suppose we have a GMRW, and we would like the prove-
nance of an output element in terms of the initial inputs to the work-
flow. For our recursive definition, we more generally define the

provenance of any data element involved in the workflow—input,
intermediate, or output.

DEFINITION 3.1 (GMRW PROVENANCE). Consider a GMRW
W with initial inputs I1, . . . , Im and any data element e. The
provenance of e inW , denotedPW (e), is anm-tuple (I∗1 , . . . , I

∗
m),

where I∗1 ⊆ I1, . . . , I
∗
m ⊆ Im. If e is an initial input element, i.e.,

e ∈ Ik, then PW (e) = {e}. Otherwise, let T be the transforma-
tion that output e. Let PT (e) be the one-level provenance of e with
respect to T as defined above. Then PW (e) =

S
e′∈PT (e) PW (e′).

2

Having defined GMRW provenance in the intuitive way, we would
like to make sure it gives us something meaningful. Specifically,
we desire the following “replay” property.

PROPERTY 3.1 (REPLAY PROPERTY). Consider an output
element o, and let PW (o) = (I∗1 , . . . , I

∗
m) be the provenance of

o in workflow W . If we run I∗1 , . . . , I
∗
m through W , denoted

W (I∗1 , . . . , I
∗
m), then o is part of the result: o ∈ W (I∗1 , . . . , I

∗
m).

2

The replay property holds for our running example and for a very
large class of GMRWs, but unfortunately it does not hold all the
time. Suppose our running example is changed in the following
two ways (shown in Figure 3):
• TweetScan may output more than one element when a tweet

discusses multiple movies, i.e., TweetScan is now one-many.
• Output GoodMovies (GM) is input to an additional reduce

function CountByRating, which emits the number of movies
for each good median rating 6–10.

Using the modified workflow, here is a scenario where the replay
property does not hold. Suppose Tweets consists of three tweets:
tweet t1 produces ratings (Inception,8) and (Twilight,8); tweet t2
produces rating (Twilight,2); tweet t3 produces rating (Twilight,5).
Let Diggs be empty. Dropping the 1000 ratings requirement, for
these input data sets, output RatingCount contains (rating:8,count:1)
based on Inception with median rating 8, while output BadMovies
contains (Twilight) with median rating 5.

Based on Definition 3.1, for the output element o = (rating:8,count:1)
in RatingCount, we get PW (o) = {t1}, which agrees with our
intuition since t1 contains all of the elements in Tweets related
to those movies with a median rating of 8 (just Inception). How-
ever, suppose we reran the workflow on o’s provenance, i.e., using
tweet t1 only. The result in output RatingCount is the “incorrect”
value (rating:8,count:2). Only one of the three ratings for Twilight
is used, therefore its median is also computed as 8. In terms of our
formalism, o /∈W (PW (o)).

Let us try to understand what characteristics of the example work-
flow caused the replay property to be violated. When TweetScan
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is rerun on PW (o) = {t1}, it produces an element e = (Twilight,8)
that is irrelevant to the provenance of the output element we’re in-
terested in. Such extraneous elements can be produced only by one-
many map or many-many reduce functions. When reduce function
Aggregate is run on the two elements produced by tweet t1, the
correct median (Inception,8) is produced, but so is incorrect me-
dian (Twilight,8), since not all data for Twilight is being processed
by the workflow. The incorrect median wouldn’t be harmful on its
own, but when it is combined with the correct median in the Count-
ByRating transformation, an incorrect output is produced. Note
that if either reduce function Aggregate or CountByRating were
monotonic, the problem would not have occurred: If Aggregate
were monotonic, it could not produce an incorrect output value,
since it is operating on a subset of the correct input. If Count-
ByRating were monotonic, then extra input could only create ad-
ditional output, not eliminate the correct output.

It turns out that the specific pattern of three (or more) transfor-
mations with certain properties, as exhibited by the above example,
is the only case in which rerunning a workflow on the provenance
of an output element o is not guaranteed to produce o. We prove
the following theorem in Appendix A.

THEOREM 3.1. Consider a GMRW W composed of transfor-
mations T1, . . . , Tn, with initial inputs I1, . . . , Im. Let o be any
output element, and consider PW (o) = (I∗1 , . . . , I

∗
m).

1. If all map and reduce functions in W are one-one or many-
one, respectively, then o = W (I∗1 , . . . , I

∗
m). (Note this result

is stronger than the general o ∈W (I∗1 , . . . , I
∗
m).)

2. If there is at most one nonmonotonic reduce function in W ,
then o ∈W (I∗1 , . . . , I

∗
m). 2

In fact, for the replay property o ∈ W (I∗1 , . . . , I
∗
m) to be violated,

the one-many map or many-many reduce function must precede the
two nonmonotonic reduce functions in the workflow.

For workflows not satisfying Theorem 3.1, the recursive defi-
nition of provenance still yields an intuitive result. However, we
believe it is important to be able to rerun a workflow on an output
element’s provenance—and get the output element in the result—as
part of the use of provenance for debugging purposes. (Provenance-
based selective refresh [18], comprised of backward tracing fol-
lowed by forward propagation, requires a similar property. Our ap-
proach to selective refresh for arbitrary workflows in [18] would
deem this example workflow “unsafe” and disallow it.) In the
GMRW context, we can automatically augment any ill-behaved
workflow W with extra filters that ensure o ∈ W (PW (o)) for any
output element o. This result is formalized in the following Corol-
lary, proved in Appendix B.

COROLLARY 3.1. Consider a GMRW W composed of trans-
formations T1, . . . , Tn, with initial inputs I1, . . . , Im. Let o be
any output element, and consider PW (o) = (I∗1 , . . . , I

∗
m). Let

W ∗ be constructed from W by replacing all nonmonotonic reduce
functions Tj with Tj ◦ σj , where σj is a filter that removes all ele-
ments from the output of Tj that were not in the output of Tj when
W (I1, . . . , Im) was run originally.1 Then o ∈W ∗(PW (o)). 2

4. PROVENANCE CAPTURE & TRACING
In this section we describe, at an abstract level, how provenance

according to our definitions can be captured and stored during work-
flow execution. We also give algorithms for forward and backward
1We assume all intermediate/output data sets have been stored for
provenance-tracing purposes; see Section 4.

tracing. The next section will give details of our actual implemen-
tation as an extension to Hadoop. For now let us assume that all
input, intermediate, and output data sets are persistent, although
we will see in Section 5 that our Hadoop implementation discards
certain intermediate data sets.

Capturing and storing provenance according to our definitions is
straightforward: For map functions, we extract the unique identi-
fier (ID) of each input element that produces one or more output
elements, and we add that ID to each of the output elements. For
reduce functions, we keep track of the grouping key for each in-
put group, and we add that key to each output element produced
by the group. In Section 5, we describe in more detail how our
Hadoop implementation wraps map and reduce functions automat-
ically to emit these extra fields during execution. Recall that we
introduced union and split operations in Section 2.2 for the pur-
poses of analysis. In reality, these operations are incorporated into
map and reduce functions and do not affect our capture and storage
scheme.

Now consider backward tracing. The following algorithm im-
plements the recursive definition of provenance given in Section 3.

ALGORITHM 4.1 (BACKWARD TRACING). Consider a GMRW
W with initial inputs I1, . . . , Im. Recursive function backward trace
returns the provenance of a set E of data elements from a single in-
put, intermediate, or output data set:

backward trace(E,W, {I1, . . . , Im}) :
if E ⊆ Ik for 1 ≤ k ≤ m then return E;
else { T ← transformation that output the set containing E;

if T is a map function
then E′ ← input elements to T with ID that annotates

an element in E;
if T is a reduce function

then E′ ← input elements to T with grouping key that
annotates an element in E;

E′1, . . . E
′
n ← E′ partitioned by input sets;

I∗ ← ∅;
for i = 1..n do
I∗ ← I∗∪ backward trace(E′i,W, {I1, . . . , Im});

return I∗; }}

For forward tracing, the overall algorithm is simply the converse
of backward tracing:

ALGORITHM 4.2 (FORWARD TRACING). Consider a GMRW
W with final outputs O1, . . . , Or , and any set E of data elements
from a single input, intermediate, or output data set. Algorithm for-
ward trace returns the output elements derived from any element in
E:

forward trace(E,W, {O1, . . . , Or}) :
if E ⊆ Ok for 1 ≤ k ≤ r then return E;
else { T ← transformation that processes E;

if T is a map function
then E′ ← output elements from T with ID

corresponding to an element in E;
if T is a reduce function

then E′ ← output elements from T with grouping key
corresponding to an element in E;

E′1, . . . E
′
n ← E′ partitioned by output sets;

O∗ ← ∅;
for i = 1..n do
O∗ ← O∗∪ forward trace(E′i,W, {O1, . . . , Or});

return O∗;}
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5. RAMP SYSTEM
We have built a system called RAMP (Reduce And Map Prove-

nance) implementing provenance for GMRWs as described in this
paper. RAMP is built as an extension to Hadoop [3]. Because the
basic execution unit in Hadoop is a MapReduce job consisting of
one map function followed by one reduce function, in the work-
flows supported by RAMP, each transformation is a MapReduce
job. Specifically, a GMRW is implemented as a MapReduce work-
flow in RAMP:
1. If the GMRW contains a map function followed by a re-

duce function, the two transformations are treated as a single
MapReduce job in RAMP. In particular, no intermediate data is
stored between the map and reduce functions.

2. Map functions in the GMRW that are not followed by a reduce
function are treated as a MapReduce job without a reduce func-
tion.

3. Reduce functions in the GMRW that are not preceded by a map
function are treated as a MapReduce job with the identity map
function.

In other respects, RAMP captures and traces provenance as dis-
cussed in Section 4.

RAMP’s approach to provenance capture is wrapper-based and
transparent to Hadoop, retaining Hadoop’s parallel execution and
fault tolerance. Furthermore, users need not be aware of prove-
nance capture while writing MapReduce jobs—wrapping is auto-
matic, and RAMP stores provenance separately from the input and
output data.

When input and output data sets are stored in files, RAMP pro-
vides efficient default schemes for assigning element IDs and stor-
ing provenance; these schemes are described in Section 5.3. For
other settings, RAMP allows users to define custom ID and storage
schemes.

We discuss how RAMP performs provenance capture and tracing
in Sections 5.1 and 5.2, respectively. These sections do not assume
RAMP’s default implementation for file input and output, which is
discussed in Section 5.3.

5.1 Provenance Capture
Recall from Section 4 that all intermediate data between transfor-

mations is stored, and provenance is captured one transformation
at a time. As described above, in the MapReduce workflows sup-
ported by RAMP, each transformation is a MapReduce job. Thus,
this section describes how provenance is captured for a single MapRe-
duce job. Section 5.2 explains how RAMP uses the captured prove-
nance to support provenance tracing through arbitrary workflows
comprised of multiple MapReduce jobs.

In Hadoop, all data elements are assumed to be key/value pairs.
When running a MapReduce job consisting of a map function and a
reduce function, the map output elements are grouped by their key
before being processed by the reduce function. Otherwise, keys are
simply part of the data.

Hadoop users supply the following five components to define a
MapReduce job [5]:
• Record-reader: Reads the input data and parses it into input

key/value pairs for the mapper.
• Mapper: Defines the map function.
• Combiner: Defines partial aggregation by key (optional).
• Reducer: Defines the reduce function.
• Record-writer: Writes output key/value pairs from the reducer

in a specified output format.

RAMP implements the provenance capture scheme from Section 4
by wrapping all of these components. For presentation purposes,
we consider MapReduce jobs without a combiner; the extension
for combiners is straightforward. We also assume all MapReduce
jobs do have a reducer; RAMP’s extension for map-only jobs is
similarly straightforward.

5.1.1 Map functions
For map functions, RAMP adds to each map output element a

unique ID for the input element that generated the output element.
Specifically, RAMP annotates the value part of the map output ele-
ment, allowing Hadoop to correctly group the map output elements
by key for the reduce function.

The following procedure specifies how RAMP wraps the record-
reader and mapper to perform ID annotation (Figure 4).

PROCEDURE 5.1 (WRAPPING A MAP FUNCTION).

1. The record-reader assigns a unique ID p to the input element
(ki, vi) that it emits.

2. The record-reader’s wrapper emits (ki, 〈vi, p〉).
3. The mapper’s wrapper takes (ki, 〈vi, p〉) as input and feeds

(ki, vi) to the mapper.
4. For each mapper output (km, vm), the mapper’s wrapper emits

(km, 〈vm, p〉). 2

No provenance is actually stored at this point; provenance storage is
performed by the wrapped reducer and record-writer, as explained
next.

5.1.2 Reduce functions
For reduce functions, RAMP stores the reduce provenance as a

mapping from a unique ID for each output element (ko, vo) to the
grouping key km that produced (ko, vo). It simultaneously stores
the map provenance as a mapping from the grouping key km to
the input element ID pj’s. By storing map provenance after the
map output elements have been grouped, RAMP allows all input
element IDs corresponding to the same grouping key to be stored
together. Since the grouping key km merely joins the map and
reduce provenance, km is replaced with an integer ID km

ID .
The following procedure describes how RAMP wraps the re-

ducer and record-writer (Figure 5).

PROCEDURE 5.2 (WRAPPING A REDUCE FUNCTION).

1. The reducer’s wrapper iterates over all annotated map output el-
ements (km, 〈vm

j , pj〉)’s with the same key km and feeds each
(km, vm

j ) to the reducer.
2. While feeding the reducer, the reducer’s wrapper stores the map

provenance (km
ID, pj)’s.

3. For each reducer output (ko, vo), the reducer’s wrapper emits
(ko, 〈vo, km

ID〉) to the record-writer’s wrapper.
4. The record-writer’s wrapper takes (ko, 〈vo, km

ID〉) as input and
feeds (ko, vo) to the record-writer.

5. The record-writer assigns a unique ID q to the output element
(ko, vo) that it writes.

6. The record-writer’s wrapper stores the reduce provenance
(q, km

ID). 2

An alternative scheme for provenance would be to store the in-
put element ID pj’s directly for each output element ID. However,
this scheme wastes space when the reduce function is many-many.
Moreover, we cannot implement this scheme efficiently in Hadoop:
we would need to collect all ID pj’s in advance by iterating over
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Figure 4: Wrapping a map function with RAMP.

all map output elements (km, 〈vm
j , pj〉)’s because the reducer can

produce an output element (ko, vo) before all ID pj’s are seen by
our wrapper. In contrast, RAMP stores the map and reduce prove-
nance independently, joining them later during provenance tracing.
One disadvantage of RAMP’s scheme is that extraneous prove-
nance data may be written if the reduce function does not produce
any output elements for a particular grouping key.

5.2 Provenance Tracing
Implementing the backward trace function of Algorithm 4.1 in

the RAMP system is fairly straightforward, although our tracing
scheme has not yet been made as efficient as possible.

Since each RAMP transformation is a MapReduce job as de-
scribed above, a single backward tracing step for one output ele-
ment proceeds as follows:
1. Given an output element ID q, RAMP accesses the reduce prove-

nance as specified in the previous section to determine the cor-
responding grouping key ID km

ID .
2. Using km

ID , RAMP accesses the map provenance as specified
in the previous section to retrieve all relevant input element ID
pj’s.

The IDs returned by step 2 can either be used to fetch actual data
elements, or they can be fed to recursive invocations of backward
tracing until the initial input data sets are reached. Our current
implementation traces recursively one element at a time, however
we would expect efficiency to improve in some cases by tracing
multiple elements together.

Notice that RAMP’s provenance capture scheme is biased to-
wards backward tracing, which we assume is a more frequent op-
eration than forward tracing. In the forward-tracing setting, we are
given a set of input element IDs, and we need to find all output ele-
ments that corresponds to these input element IDs. Without auxil-
iary structures, each forward-tracing step would require a complete
scan of the map provenance, which is not sorted on input element
IDs. Thus, as a first step to facilitate forward tracing, we certainly
need to build indexes on the input element ID field. As will be seen
in Section 6, our performance experiments have also focused on
backward tracing. Enabling efficient forward tracing and measur-
ing its performance is a next step in the RAMP system.
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Figure 5: Wrapping a reduce function with RAMP.

5.3 Data Sets in Files
Consider the specific workflow setting where all input, interme-

diate, and output data sets are stored in files, as is typical using
Hadoop. In this setting, RAMP uses (filename, offset) as a default
unique ID for each data element. For input element IDs, RAMP
maps each filename to an integer ID, maintaining a dictionary with
the actual filenames. For output element IDs, RAMP is able to
omit the filename and use the offset alone: each provenance data
file is associated with a particular output data file. Variable-length
encoding for integers allows RAMP to implement this element ID
scheme efficiently in terms of space overhead.

Notice that our scheme enables efficient backward tracing with-
out special indexes: Output element IDs, which are the element’s
offset in the output data file, increase as each output element is
appended. Thus, reduce provenance is automatically stored in as-
cending key order. Exploiting this order, RAMP performs binary
search on the provenance data during backward tracing.

6. EXPERIMENTAL EVALUATION
We present performance experiments conducted using RAMP on

two MapReduce workflows, each consisting of a single MapRe-
duce job. (Since our experiments are focused more on capture than
on tracing, a single MapReduce job is sufficient.) The two MapRe-
duce jobs in our experiments were Wordcount and Terasort [21],
included in the Hadoop distribution. Wordcount counts the number
of occurrences of each word in a set of input text files; we used
100, 300, and 500 GB of input text generated randomly from 8000
distinct English words. Terasort sorts 100-byte records stored in
files; we used 109, 3 × 109, and 5 × 109 random records as input
(93, 279, and 466 GB respectively).

Note that Wordcount and Terasort are very different in terms of
multiplicity. Wordcount is a many-one transformation, with a huge
fan-in for large input data sizes. On the other hand, Terasort is a
one-one transformation. We discuss how the multiplicity affects
the time and space overhead of provenance capture in Section 6.1.

The cluster we used for our experiments consisted of 51 large
Amazon Elastic Compute Cloud (EC2) instances, each with 7.5
GB memory, two virtual cores with 2 EC2 Compute Units each,
and 850 GB instance storage. We launched all instances with 64-bit

278



0

1000

2000

3000

4000

5000

6000

1
0

0
G

3
0

0
G

5
0

0
G

1
0

0
G

3
0

0
G

5
0

0
G

1
0

0
G

3
0

0
G

5
0

0
G

Execution time Map finish time Avg. reduce task
time

T
im

e 
(s

ec
o

n
d

s)
 

Time (no provenance) Time Overhead

(a) Time overhead

0

250

500

750

1000

1250

1500

1
0

0
G

3
0

0
G

5
0

0
G

1
0

0
G

3
0

0
G

5
0

0
G

1
0

0
G

3
0

0
G

5
0

0
G

Map output data
size

Intermediate
data size

Output data size

Si
ze

 (
G

B
) 

Space (no provenance) Space Overhead

(b) Space overhead

Figure 6: Overhead of provenance capture in Wordcount.
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Figure 7: Overhead of provenance capture in Terasort.

Amazon Linux AMI and installed Java 1.6.0 22 and the modified
version of Hadoop 0.21.0. One instance served as the master node
and acted as both name node and job tracker; the other 50 instances
served as slave nodes. Each slave node was allowed to run two
map tasks and two reduce tasks concurrently, and the number of
reduce tasks was set to 100. We configured Hadoop following the
guidelines for real-world cluster configurations [4]. The changes
from the default configuration included increasing the heap size for
task JVMs to 1 GB, compressing map output using LZO [25], and
allowing task JVMs to be reused. We also increased the sort buffer
size so that the entire output from each map task fit in the buffer
without spilling to disk. Finally, the replication factor for output
files was set to 1.

Our performance results are summarized as follows:
• We first measured time and space overhead of provenance cap-

ture. For our two experiments, provenance capture incurred
20-76% time overhead. For Terasort, the space overhead in-
curred by provenance capture was 21%; for Wordcount, the
space overhead can be made arbitrarily large. Details are re-
ported in Section 6.1.
• We then measured the time to backward-trace output elements

after provenance has been captured. Backward-tracing one el-
ement took as little as 1.5 seconds in Terasort, but again can
be made arbitrarily large in Wordcount. Details are reported in
Section 6.2.

6.1 Performance: Capture
We report the time and space overhead associated with capturing

provenance in our experiments. For each input data size, we ran
Wordcount five times and Terasort three times, with and without
capturing provenance; we report the average of the trials, which
had little variance.

Figures 6(a) and 7(a) report the time overhead by showing the
time taken without provenance capture (dark bar) and the additional
time with capture (light bar).
• Execution time: Time for the entire MapReduce job to com-

plete.
• Map finish time: Time until all map tasks are complete.
• Average reduce task time: Average time for an individual re-

duce task.
Figures 6(b) and 7(b) similarly report the space overhead of prove-
nance.
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• Map output data size: The size of the map output data (before
applying the combiner).
• Intermediate data size: The size of the intermediate data after

applying the combiner and LZO compression.
• Output data size: The size of the final output data.

Observe in Figures 6 and 7 that time and space overhead are
closely related. A larger output data size increases the average re-
duce task time, because the output data is written by the reduce
tasks. Similarly, a larger intermediate data size increases the map
finish time as well as the average reduce task time, because map
tasks store intermediate data temporarily in local disk, and reduce
tasks sort the intermediate data set. In our experiments, the map
output data size had little impact on the execution time, because
the entire map output data set fit in the sort buffer.

For Wordcount, provenance capture incurred 72-76% time over-
head (Figure 6(a)). Because Wordcount is a many-one transforma-
tion, each intermediate and output data element is annotated with
many input element IDs. Moreover, the number of annotations
per data element increases with input size, because we have the
same fixed number of words across all data sizes. As a result, the
space overhead percentage grows linearly with input size, and can
be made arbitrarily large. The significant increase in both interme-
diate and output data sizes (shown in Figure 6(b), where the dark
bars are not even visible) correlates with the large time overhead of
provenance capture.

For Terasort, provenance capture incurred 16-20% time overhead
and 19-21% space overhead (Figures 7(a) and 7(b), respectively).
Because Terasort is a one-one transformation, each intermediate
and output data element is annotated with exactly one input ele-
ment ID. The moderate increase in both intermediate and output
data sizes (shown in Figure 7(b)) is consistent with the small time
overhead.

6.2 Performance: Tracing
For both experiments, we measured the time to backward-trace

output elements after provenance has been captured, for varying
input data sizes. In our experiments we did not fetch the actual
input data elements as part of tracing; we just identified their ele-
ment IDs. Overall, we have not yet focused our work on making
backward tracing as efficient as possible; we report the tracing per-
formance based on our current implementation.

For Wordcount, tracing one element took approximately 1, 3,
and 5 minutes, for 100, 300, and 500 GB input data sizes respec-
tively. Note that even when we trace a single output element, the
data sizes processed become quite large: For 100 GB input data, the
average number of occurrences for each word is about 1,289,000.
As discussed in the previous section, because we have a fixed num-
ber of words across all input data sizes, the provenance of individ-
ual output elements grows linearly with input size. This behavior
explains the linear growth of tracing time.

For Terasort, tracing one element took approximately 1.5 sec-
onds for all input data sizes. Since the data sizes processed are very
small—each element traced produces one element as a result—the
binary search (Section 5.3) tends to dominate tracing time. We sus-
pect that deploying an appropriate index could improve backward
tracing time by at least factor of two. The use of indexes in general
is an immediate area of future work.

7. CONCLUSIONS AND FUTURE WORK
This paper defines provenance for map and reduce functions, and

it identifies properties that hold when one-level provenance is ap-
plied recursively in arbitrary GMRWs. We have built a prototype

system as an extension to Hadoop that supports provenance capture
and tracing; performance numbers are reported.

As described in Section 5, implementing efficient backward and
forward tracing is an important next step in the RAMP system.
For both types of tracing, building appropriate indexes will be a
key component of our approach. In addition, we plan to measure
the performance of provenance capture and tracing for MapRe-
duce workflows consisting of multiple jobs. We have thus far suc-
cessfully captured provenance for MapReduce workflows compiled
by Pig [20] using RAMP. For future experiments, the PigMix [6]
benchmarks seem like a good starting point.

One obvious general avenue for future work is to incorporate
SQL processing into our workflows. SQL nodes interspersed with
map and reduce functions can form a rich and interesting environ-
ment. Some SQL queries are map or reduce functions already, al-
lowing them to slot right into our framework. Other SQL queries
may not fit the map or reduce paradigm precisely, but do have
known, well-understood provenance [11, 13] that can be incorpo-
rated via extensions to our framework. Finally, several recent sys-
tems (e.g., Hive [24]) compile SQL queries into MapReduce jobs.
We intend to compare provenance captured and traced using pre-
vious methods for SQL against using our system on the compiled
GMRWs.
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APPENDIX
A. PROOF OF THEOREM 3.1
Theorem: Consider a GMRW W composed of transformations
T1, . . . , Tn, with initial inputs I1, . . . , Im. Let o be any output
element, and consider PW (o) = (I∗1 , . . . , I

∗
m).

1. If all map and reduce functions in W are one-one or many-
one, respectively, then o = W (I∗1 , . . . , I

∗
m). (Note this result

is stronger than the general o ∈W (I∗1 , . . . , I
∗
m).)

2. If there is at most one nonmonotonic reduce function in W ,
then o ∈W (I∗1 , . . . , I

∗
m). 2

A.1 Proof of Part 1
We prove a stronger property: Let O be the output of W and
let o1, . . . , on be elements of O. Then W (PW ({o1, ..., on})) =
{o1, ..., on}. The proof is by induction on the structure of W .

Base case W = M where M is a map function. By def-
inition, PM ({o1, ..., on}) =

Sn
j=1(PM (oj)). For j = 1..n,

PM (oj) = {ij} such that M({ij}) = {oj}. By the definition
of map functions, and since M is one-one, M({i1, ..., in}) =Sn

j=1(M(ij)) = {o1, ..., on}.
Base case W = R where R is a reduce function. By definition,

PR({o1, ..., on}) =
Sn

j=1(PR(oj)). For j = 1..n, PR(oj) = Gj

such that R(Gj) = {oj}. By the definition of reduce functions,
and since R is many-one, R(G1 ∪ . . . ∪Gn) =

Sn
j=1(R(Gj)) =

{o1, ..., on}.

Base case W = U where U is a union transformation. U
has input data sets I1, . . . , Im. By definition, PU ({o1, ..., on}) =Sn

j=1(PU (oj)). For j = 1..n, PU (oj) = {ij} where ij is the
element in some Ik that corresponds to oj . For any set I that
combines subsets of U ’s input sets I1, . . . , Im, let U(I) denote
U(I ′1, . . . , I

′
m), where each I ′k = I ∩ Ik. Then U({ij}) = {oj}.

By the definition of union transformations, U({i1, ..., in}) =Sn
j=1(U({ij})) = {o1, ..., on}.
Base case W = S where S is a split transformation. S

has output sets O1, . . . , Or . By definition, PS({o1, ..., on}) =Sn
j=1(PS(oj)). For j = 1..n, oj is in some Ok, and PS(oj) =

{ij} such that S({ij}) = O′1, . . . , O
′
r , where O′k = {oj} and

O′h = ∅ for h 6= k. Since split transformations are context-
independent on each element (Section 2.2), S({i1, ..., in}) =Sn

j=1(S({ij})) = {o1, ..., on}.

Now suppose workflows W ′1, . . . ,W
′
p satisfy the inductive

hypothesis: W ′(PW ′({o1, ..., on})) = {o1, ..., on} for any
o1, ..., on in the output of W ′. Consider an additional transfor-
mation T and the workflow W that is constructed by making the
outputs ofW ′1, . . . ,W ′p the inputs of T . (For all T other than union
transformations, p = 1.) We use ◦ for workflow composition.

Map: Suppose W = W ′ ◦ M . Let PM ({o1, ..., on}) =
{o′1, ..., o′n}. Since M is one-one, by the definitions of map prove-
nance and map functions, M({o′1, ..., o′n}) = {o1, ..., on}. By
the inductive hypothesis, W ′(PW ′({o′1, ..., o′n})) = {o′1, ..., o′n}.
Thus, W (PW ({o1, ..., on})) = {o1, ..., on}.

Reduce: Suppose W = W ′ ◦ R. Let PR({o1, ..., on}) =
(G1 ∪ ... ∪ Gn), where each group Gj produces oj . Since R
is many-one, by the definitions of reduce provenance and reduce
functions, R(G1 ∪ ... ∪ Gn) = {o1, ..., on}. By the inductive
hypothesis, W ′(PW ′(G1 ∪ . . . ∪ Gn)) = G1 ∪ . . . ∪ Gn. Thus
W (PW ({o1, ..., on})) = {o1, ..., on}.

Union: Suppose W is composed of W ′1, . . . ,W ′p followed by
U . U has input data sets IU

1 , . . . , I
U
p . Let PU ({o1, ..., on}) =

{o′1, ..., o′n}. For any set I that combines subsets of U ’s in-
put sets IU

1 , . . . , I
U
p , let U(I) denote U(I ′1, . . . , I

′
p), where each

I ′k = I ∩ IU
k . By the definitions of union provenance and union

transformations, U({o′1, ..., o′n}) = {o1, ..., on}. By the induc-
tive hypothesis, W ′(PW ′({o′1, ..., o′n})) = {o′1, ..., o′n}. Thus,
W (PW ({o1, ..., on})) = {o1, ..., on}.

Split: Suppose W = W ′ ◦ S. S has output sets O1, . . . , Or .
Let PS({o1, ..., on}) = {o′1, ..., o′n}. By the definitions of
split provenance and split transformations, S({o′1, ..., o′n}) =
O′1, . . . , O

′
r , where O′1 ∪ . . . ∪ O′r = {o1, ..., on}. By the in-

ductive hypothesis, W ′(PW ′({o′1, ..., o′n})) = {o′1, ..., o′n}. Thus,
W (PW ({o1, ..., on})) = {o1, ..., on}. 2

A.2 Proof of Part 2
Lemma 1: Consider a GMRW W with output O. Suppose there
are no nonmonotonic reduce functions in W . Let o1, . . . , on be
elements of O. Then W (PW ({o1, ..., on})) ⊇ {o1, ..., on}.

Proof: By induction on the structure of W .
Base case W = M where M is a map function. By definition,

PM ({o1, ..., on}) =
Sn

j=1(PM (oj)). For j = 1..n, PM (oj) =

{ij} such that oj ∈ M({ij}). By the definition of map functions,
M({i1, ..., in}) =

Sn
j=1(M(ij)) ⊇ {o1, ..., on}.

Base case W = R where R is a reduce function. By definition,
PR({o1, ..., on}) =

Sn
j=1(PR(oj)). For j = 1..n, PR(oj) =

Gj such that oj ∈ R(Gj). By the definition of reduce functions,
R(G1 ∪ . . . ∪Gn) =

Sn
j=1(R(Gj)) ⊇ {o1, ..., on}.

Base case W = U where U is a union transformation. U
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has input data sets I1, . . . , Im. By definition, PU ({o1, ..., on}) =Sn
j=1(PU (oj)). For j = 1..n, PU (oj) = {ij} where ij is the

element in some Ik that corresponds to oj . For any set I that
combines subsets of U ’s input sets I1, . . . , Im, let U(I) denote
U(I ′1, . . . , I

′
m), where each I ′k = I ∩ Ik. Then U({ij}) = {oj}.

By the definition of union transformations, U({i1, ..., in}) =Sn
j=1(U({ij})) = {o1, ..., on}.
Base case W = S where S is a split transformation. S

has output sets O1, . . . , Or . By definition, PS({o1, ..., on}) =Sn
j=1(PS(oj)). For j = 1..n, oj is in some Ok. PS(oj) = {ij}

such that S({ij}) = O′1, . . . , O
′
r , where O′k = {oj} and O′h = ∅

for h 6= k. Since split transformations are context-independent on
each element, S({i1, ..., in}) =

Sn
j=1(S({ij})) = {o1, ..., on}.

Now suppose workflows W ′1, . . . ,W
′
p satisfy the inductive

hypothesis: W ′(PW ′({o1, ..., on})) ⊇ {o1, ..., on} for any
o1, ..., on in the output of W ′. Consider an additional transfor-
mation T and the workflow W that is constructed by making the
outputs of W ′1, . . . ,W ′p the inputs of T .

Map: Suppose W = W ′ ◦ M . Let PM ({o1, ..., on}) =
{o′1, ..., o′n}. By the definitions of map provenance and map func-
tions, if I ′ ⊇ {o′1, ..., o′n}, then M(I ′) ⊇ {o1, ..., on}. By the in-
ductive hypothesis, W ′(PW ′({o′1, ..., o′n})) ⊇ {o′1, ..., o′n}. Thus,
W (PW ({o1, ..., on})) ⊇ {o1, ..., on}.

Reduce: Suppose W = W ′ ◦R. Let PR({o1, ..., on}) = (G1 ∪
...∪Gn), where each groupGj produces oj . SinceR is monotonic,
if I ′ ⊇ G1 ∪ ...∪Gn, then R(I ′) ⊇ {o1, ..., on}. By the inductive
hypothesis, W ′(PW ′(G1 ∪ . . . ∪ Gn)) ⊇ G1 ∪ . . . ∪ Gn. Thus
W (PW ({o1, ..., on})) ⊇ {o1, ..., on}.

Union: Suppose W is composed of W ′1, . . . ,W ′p followed by
U . U has input data sets IU

1 , . . . , I
U
p . Let PU ({o1, ..., on}) =

{o′1, ..., o′n}. For any set I that combines subsets of U ’s input
sets IU

1 , . . . , I
U
p , let U(I) denote U(I ′1, . . . , I

′
p), where each I ′k =

I ∩ IU
k . By the definitions of union provenance and union trans-

formations, if I ′ ⊇ {o′1, ..., o′n}, then U(I ′) ⊇ {o1, ..., on}. By
the inductive hypothesis, W ′(PW ′({o′1, ..., o′n})) ⊇ {o′1, ..., o′n}.
Thus, W (PW ({o1, ..., on})) ⊇ {o1, ..., on}.

Split: Suppose W = W ′ ◦ S. S has output sets O1, . . . , Or .
Let PS({o1, ..., on}) = {o′1, ..., o′n}. By the definitions of split
provenance and split transformations, if I ′ ⊇ {o′1, ..., o′n}, then
S(I ′) = O′1, . . . , O

′
r where O′1 ∪ . . . ∪ O′r ⊇ {o1, ..., on}. By

the inductive hypothesis, W ′(PW ′({o′1, ..., o′n})) ⊇ {o′1, ..., o′n}.
Thus, W (PW ({o1, ..., on})) ⊇ {o1, ..., on}. 2

Lemma 2: Consider a GMRW W with output O. Suppose there
are no nonmonotonic reduce functions in W . Let o1, . . . , on be
elements of O. Then W (PW ({o1, ..., on})) ⊆ O.

Proof: By induction on the structure of W .
Base case W = M where M is a map function. Let M

have input set I and output set O. Let PM ({o1, ..., on}) =
{i1, ..., in}. By the definition of map functions, {i1, ..., in} ⊆ I ,
and M({i1, ..., in}) ⊆M(I) = O.

Base case W = R where R is a reduce function. Let R have
input set I and output set O. By definition, PR({o1, ..., on}) =Sn

j=1(PR(oj)). For j = 1..n, PR(oj) = Gj such that Gj ⊆ I .
SinceR is monotonic andG1∪ . . .∪Gn ⊆ I ,R(G1∪ . . .∪Gn) ⊆
R(I) = O.

Base case W = U where U is a union transformation. U
has input data sets I1, . . . , Im. By definition, PU ({o1, ..., on}) =Sn

j=1(PU (oj)). For j = 1..n, PU (oj) = {ij} where ij is the
element in some Ik that corresponds to oj . For any set I that
combines subsets of U ’s input sets I1, . . . , Im, let U(I) denote

U(I ′1, . . . , I
′
m), where each I ′k = I ∩ Ik. Then U({ij}) = {oj}.

By the definition of union transformations, U({i1, ..., in}) =Sn
j=1(U({ij})) = {o1, ..., on} ⊆ O.
Base case W = S where S is a split transformation. S

has output sets O1, . . . , Or . By definition, PS({o1, ..., on}) =Sn
j=1(PS(oj)). For j = 1..n, oj is in some Ok. PS(oj) =

{ij} such that S({ij}) = O′1, . . . , O
′
r , where O′k = {oj}

and O′h = ∅ for h 6= k. Since split transformations
are context-independent on each element, S({i1, ..., in}) =Sn

j=1(S({ij})) = {o1, ..., on} ⊆ O.

Now suppose workflows W ′1, . . . ,W ′p satisfy the inductive hy-
pothesis: W ′(PW ′({o1, ..., on})) ⊆ O′ for any o1, ..., on in O′,
where O′ is the output of W ′. Consider an additional transfor-
mation T and the workflow W that is constructed by making the
outputs of W ′1, . . . ,W ′p the inputs of T .

Map: Suppose W = W ′ ◦ M . Let PM ({o1, ..., on}) =
{o′1, ..., o′n}. By the definition of map provenance, {o′1, ..., o′n} ⊆
O′. Let O∗ denote W ′(PW ′({o′1, ..., o′n})). By the inductive hy-
pothesis,O∗ ⊆ O′. By the definition of map functions, sinceO∗ ⊆
O′, M(O∗) ⊆M(O′) = O. Thus, W (PW ({o1, ..., on})) ⊆ O.

Reduce: Suppose W = W ′ ◦ R. Let PR({o1, ..., on}) =
(G1 ∪ ... ∪ Gn), where each group Gj produces oj . By the defi-
nition of reduce provenance, G1 ∪ . . . ∪Gn ⊆ O′. Let O∗ denote
W ′(PW ′(G1∪ . . .∪Gn)). By the inductive hypothesis,O∗ ⊆ O′.
SinceR is monotonic andO∗ ⊆ O′,R(O∗) ⊆ R(O′) = O. Thus,
W (PW ({o1, ..., on})) ⊆ O.

Union: Suppose W is composed of W ′1, . . . ,W ′p followed by
U . U has input data sets IU

1 , . . . , I
U
p . Let PU ({o1, ..., on}) =

{o′1, ..., o′n}. By the definition of union provenance, {o′1, ..., o′n} ⊆
O′. For any set I that combines subsets of U ’s input sets
IU
1 , . . . , I

U
p , let U(I) denote U(I ′1, . . . , I

′
p), where each I ′k =

I ∩ IU
k . Let O∗ denote W ′(PW ′({o′1, ..., o′n})). By the induc-

tive hypothesis, O∗ ⊆ O′. By the definition of union trans-
formations, since O∗ ⊆ O′, U(O∗) ⊆ U(O′) = O. Thus,
W (PW ({o1, ..., on})) ⊆ O.

Split: SupposeW = W ′ ◦S. S has output setsO1, . . . , Or . Let
PS({o1, ..., on}) = {o′1, ..., o′n}. By the definition of split prove-
nance, {o′1, ..., o′n} ⊆ O′. Let O∗ denote W ′(PW ′({o′1, ..., o′n})).
By the inductive hypothesis, O∗ ⊆ O′. By the definition of O′,
S(O′) = O1, . . . , Or . Let S(O∗) = O∗1 , . . . , O

∗
r . By the defi-

nition of split transformations, since O∗ ⊆ O′, each O∗j ⊆ Oj .
Thus, W (PW ({o1, ..., on})) ⊆ O. 2

Theorem: We prove a stronger property: Let o1, . . . , on be el-
ements of O. Then W (PW ({o1, ..., on})) ⊇ {o1, ..., on}. The
proof is by induction on the structure of W . The base case and
inductive step proofs are exactly the same as those for Lemma 1,
with the exception of the Reduce inductive step.

Inductive step for Reduce: Suppose W = W ′ ◦ R. If R is
monotonic, then the Reduce inductive step proof from Lemma 1
suffices. Suppose R is nonmonotonic. Then W ′ has no nonmono-
tonic reduce functions. Let PR({o1, ..., on}) = (G1 ∪ ... ∪ Gn),
where each group Gj produces oj . Let O∗ denote W ′(PW ′(G1 ∪
. . . ∪ Gn). Lemma 1 on W ′ tells us that O∗ ⊇ G1 ∪ . . . ∪ Gn.
Let O′ denote the output of W ′. Lemma 2 on W ′ tells us that
O∗ ⊆ O′. By the definition of reduce provenance, each group
Gj is equal to the set of all elements in O′ with Gj’s key. Since
Gj ⊆ O∗ ⊆ O′, there cannot be any element in O∗ − Gj that
has Gj’s key. Thus, each group Gj is equal to the set of all ele-
ments inO∗ withGj’s key. R(O∗) ⊇

Sn
j=1R(Gj), which implies

W (PW ({o1, ..., on})) ⊇ {o1, ..., on}. 2
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B. PROOF OF COROLLARY 3.1
Corollary: Consider a GMRW W composed of transformations
T1, . . . , Tn, with initial inputs I1, . . . , Im. Let o be any output
element, and consider PW (o) = (I∗1 , . . . , I

∗
m). Let W ∗ be con-

structed from W by replacing all nonmonotonic reduce functions
Tj with Tj ◦ σj , where σj is a filter that removes all elements from
the output of Tj that were not in the output of Tj whenW (I1, . . . , Im)
was run originally. Then o ∈W ∗(PW (o)).

Proof: We prove a stronger property: Let O be the out-
put of W and let o1, ..., on be elements of O. Then O ⊇
W ∗(PW ({o1, ..., on})) ⊇ {o1, ..., on}. This property clearly im-
plies the corollary. The proof is by induction on the structure of
W . The base case and inductive step proofs follow directly from
the analogous cases in Lemmas 1 and 2 of Appendix A, with the
exceptions of nonmonotonic reduce functions.

Base case W = R where R is a nonmonotonic reduce function.
By definition, PR({o1, ..., on}) =

Sn
j=1(PR(oj)). For j = 1..n,

PR(oj) = Gj such that oj ∈ R(Gj). By the definition of reduce
functions, R(G1 ∪ . . . ∪ Gn) =

Sn
j=1(R(Gj)) ⊇ {o1, ..., on}.

Let σR be the filter associated with R. Since {o1, . . . , on} ⊆ O,
no element in {o1, . . . , on} is removed by σR. Thus, σR(R(G1 ∪
. . . ∪ Gn)) ⊇ {o1, ..., on}. Since σR filters only elements not in
O, O ⊇ (R ◦ σR)(G1 ∪ . . . ∪Gn).

Inductive step for Reduce: Suppose W = W ′ ◦ R where R is
nonmonotonic. Let PR({o1, ..., on}) = (G1 ∪ ... ∪ Gn), where
each group Gj produces oj . Let O∗ denote W ′∗(PW ′(G1 ∪ . . . ∪
Gn). Let O′ be the output of W ′. By the inductive hypothesis,
O′ ⊇ O∗ ⊇ (G1 ∪ . . . ∪Gn).

By the definition of reduce provenance, each group Gj is equal
to the set of all elements in O′ with Gj’s key. Since Gj ⊆ O∗ ⊆
O′, there cannot be any element in O∗ − Gj that has Gj’s key.
Thus, each group Gj is equal to the set of all elements in O∗ with
Gj’s key. R(O∗) ⊇

Sn
j=1R(Gj) ⊇ {o1, . . . , on}. Let σR be the

filter associated with R. Since {o1, . . . , on} ⊆ O, no element in
{o1, . . . , on} is removed by σR. Thus, W ∗(PW ({o1, ..., on})) ⊇
{o1, ..., on}. Since σR is the final step of W ∗, and σR filters only
elements not in O, O ⊇W ∗(PW ({o1, ..., on})). 2
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