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ABSTRACT
This paper calls for a new breed of lightweight systems –
dynamic data management systems (DDMS). In a nutshell,
a DDMS manages large dynamic data structures with ag-
ile, frequently fresh views, and provides a facility for mon-
itoring these views and triggering application-level events.
We motivate DDMS with applications in large-scale data
analytics, database monitoring, and high-frequency algo-
rithmic trading. We compare DDMS to more traditional
data management systems architectures. We present the
DBToaster project, which is an ongoing effort to develop a
prototype DDMS system. We describe its architecture de-
sign, techniques for high-frequency incremental view mainte-
nance, storage, scaling up by parallelization, and the various
key challenges to overcome to make DDMS a reality.

1. INTRODUCTION
Dynamic, continuously evolving sets of records are a staple

of a wide variety of today’s data management applications.
Such applications range from large, social, content-driven
Internet applications, to highly focused data processing ver-
ticals like data intensive science, telecommunications and in-
telligence applications. There is no one brush with which we
can paint a picture of all dynamic data applications – they
face a broad spectrum of update volumes, of update impact
on the body of data present, and data freshness require-
ments. However, modern data management systems either
treat updates and their impact on datasets and queries as an
afterthought, by extending DBMS with triggers and heavy-
weight views [17, 33, 47, 48], or only handle small, recent
sets of records in data stream processing [12, 25, 34, 37].

We propose dynamic data management systems (DDMS)
that are capable of handling arbitrary, high-frequency or
high-impact updates on a general dataset, and any standing
queries (views) posed on the dataset by long-running appli-
cations and services. We base the design of DDMS on four
criteria:

1. The stored dataset is large and changes frequently.
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2. The maintenance of materialized views dominates ad-
hoc querying.

3. Access to the data is primarily by monitoring the views
and performing simple computations on top of them.
Some updates cause events, observable in the views,
that trigger subsequent computations, but it is rare
that the data store is accessed asynchronously by hu-
mans or applications.

4. Updates happen primarily through an update stream.
Computations triggered by view events typically do
not cause updates: there is usually no feedback loop.

A DDMS is a lightweight system that provides large dy-
namic data structures to support declarative views of data.
A DDMS is agile, keeping internally maintained views fresh
in the face of dynamic data. Client applications primar-
ily interact with a DDMS by registering callbacks for view
changes, rather than by accessing views directly. A DDMS
does not necessarily provide additional DBMS functionality
such as persistency, transactions, or recoverability.

Compared to a classical DBMS, a DDMS differs in its reac-
tion to updates. To minimize response times, updates must
be performed immediately upon arrival, precluding bulk pro-
cessing. This determines the programming model: com-
pared to a DBMS, control flow is reversed, and the DDMS
invokes application code, not vice versa.

An active DBMS [36] could simulate a DDMS through
triggers, but is not optimized for such workloads, and even
if support for state-of-the-art incremental view maintenance
is present, performs very poorly. Thus, DDMS differ from
active databases in their being optimized for different work-
loads. DDMS are optimized for event processing and mon-
itoring tasks, while active database systems are optimized
to support traditional DBMS functionality such as transac-
tions, which are not necessarily present in DDMS.

Compared to a data stream processing system and par-
ticularly an event processing system (such as Cayuga [25],
SASE+ [1]), DDMS have much larger states, which will usu-
ally have to be maintained in secondary storage, and re-
quire drastically different query processing techniques. In a
stream processor, the queries reside in the system while the
data streams by. In a DDMS on the other hand, the data
state is maintained in the system while a stream of updates
passes through (much more like an OLTP system).

Moreover, event and stream processors [12, 34, 37] support
drastically different query languages which are designed to
ensure that only very small state has to be maintained, us-
ing windows or constructs from formal language theory [44].
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DDMS views are often rather complex and expensive, in-
cluding large non-windowed joins and aggregation. In gen-
eral, we expect DDMS to support standard SQL. The query
processing techniques most suitable for such workloads come
from DBMS research – incremental view maintenance in par-
ticular – and update stream research [16] but do not scale
to high-frequency view maintenance.

We present two classes of applications motivating the de-
siderata and design choices of a DDMS, and then discuss
one application scenario in detail.

Large-scale data analytics, but not as a batch job.
Large-scale data analytics in the cloud are mostly performed
on massively parallel processing engines such as map/reduce.
These systems are not databases, as some strata of the sys-
tems, scientific computing, and large-scale Web applications
communities find important to emphasize. Nevertheless, our
research community can play an important role in making
such systems more useful and effective. Clearly, the last
word on posing queries in such systems has not been said.

Map/reduce-like systems achieve scalability at the cost
of response time and interactivity. However, there is an
increasing number of important applications of large-scale
analytics that call for more interactivity or better response
times that allow for online use. Among large Web applica-
tions, examples include (social or other) network monitoring
and statistics [31], search with interactive feedback [7], inter-
active recommendations, keeping personalized Web pages at
social networking sites up to date [46], and so forth. Many of
these applications are not yet mission-critical to Web appli-
cations companies, but are becoming increasingly necessary
for establishing and maintaining a competitive advantage.

Large-scale data analytics is equally present in more clas-
sical business applications such as data warehousing and sci-
entific applications. Take the case of data warehousing with
real-time updates: as data warehouses become increasingly
mission-critical to commercial and scientific enterprises, the
importance of up-to-date analyses increases. Traditionally,
OLAP systems are not optimized for frequent updating, and
may be considerably out-of-date. A DDMS could dramati-
cally improve the freshness of warehoused data.

A DDMS is well-suited for use in large-scale data analyt-
ics through its provision of large dynamic data structures as
views, instead of forcing programmers to re-implement view
computations manually on top of key-value stores, and its
emphasis on simple lightweight systems as opposed to the
use of monolithic DBMS. Continually fresh DDMS views at
first seem at odds with the bulk update processing dogma
of large scale analytics systems, but enable important appli-
cations that require interactivity or event processing.

Database monitoring. There is an ever-increasing set
of use cases in which aggregate views over large databases
need to be continuously maintained and monitored as the
database evolves. These queries can be thought of as contin-
uous queries on the stream of updates to a database. How-
ever, it is only moderately helpful to view this as a stream
processing scenario since the queries depend on very large
state (the database) rather than a small window of the up-
date stream, and cannot be handled by data stream process-
ing systems.

Examples include policy monitoring (e.g., to comply with
regulatory requirements to monitor databases of financial
institutions, say to detect money laundering schemes) [6],

network security monitoring, aiming to detect sophisticated
attacks that span extended time periods, and data-driven
simulations such as Markov-Chain Monte Carlo (MCMC).
MCMC is an extremely powerful paradigm for probabilis-
tic databases [15]. Query processing with MCMC involves
walking between database states, iteratively making local
alterations to the database. Each database state encoun-
tered while doing this is considered a sample; a view is re-
evaluated and statistics on its results are collected. The key
technical database problem is thus to compute the view for
as many samples as possible, as quickly as possible [45]. This
is precisely the kind of workload that DDMS are designed
for. Further examples of database monitoring can be found
in certain forms of automated trading. In the following, we
discuss one form of data-driven automated trading which
may well prove to be a killer application for DDMS.

Algorithmic trading with order books. In recent
years, algorithmic trading systems have come to account
for a majority of volume traded at the major US and Eu-
ropean financial markets (for instance, for 73% of all US
equity trading volume in the first quarter of 2009 [20]). The
success of automated trading systems depends critically on
strategy processing speeds: trading systems that react faster
to market events tend to make money at the cost of slower
systems. Unsurprisingly, algorithmic trading has become a
substantial source of business for the IT industry; for in-
stance, it is the leading vertical among the customer bases
for high-speed switch manufacturers (e.g., Arista [43]) and
data stream processing.

A typical algorithmic trading system is run by mathe-
maticians who develop trading strategies and by program-
mers and systems experts who implement these strategies to
perform fast enough, using mainly low-level programming
languages such as C. Developing trading strategies requires
a feedback loop of simulation, back-testing with historical
data, and strategy refinement based on the insights gained.
This loop, and the considerable amount of low-level pro-
gramming that it causes, is the root of a very costly pro-
ductivity bottleneck : in fact, the number of programmers
often exceeds the number of strategy designers by an order
of magnitude.

Trading algorithms often perform a considerable amount
of data crunching that could in principle be implemented
as SQL views, but cannot be achieved by DBMS or data
stream processing systems today: DBMS are not able to (1)
update their views at the required rates (for popular stocks,
hundreds of orders per second may be executed, even out-
side burst times) and stream engines are not able to (2)
maintain large enough data state and support suitable query
languages (non-windowed SQL aggregates) on this state. A
data management system fulfilling these two requirements
would yield a very substantial productivity increase that can
be directly monetized – the holy grail of algorithmic trading.

To understand the need to maintain and query a large
data state, note that many stock exchanges provide a de-
tailed view of the market microstructure through complete
bid and ask limit order books. The bid order book is a table
of purchase offers with their prices and volumes, and cor-
respondingly the ask order book indicates investors’ selling
orders. Exchanges execute trades by matching bids and asks
by price and favoring earlier timestamps. Investors contin-
ually add, modify or withdraw limit orders, thus one may
view order books as relational tables subject to high update
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volumes. The availability of order book data has provided
substantial opportunities for automatic algorithmic trading.

Example 1.1. To illustrate this, we describe the Static
Order Book Imbalance (SOBI) trading strategy. SOBI com-
putes a volume-weighted average price (VWAP) over those
orders whose volume makes up a fixed upper k-fraction of the
total stock volume in both bid and ask order books. SOBI
then compares the two VWAPs and, based on this, predicts
a future price drift (for example a bid VWAP larger than
an ask VWAP indicates demand exceeds supply, and prices
may rise). For simplicity, we present the VWAP for the bids
only:

select avg(b2.price * b2.volume) as bid_vwap

from bids b2

where k * (select sum(volume) from bids)

> (select sum(volume) from bids b1

where b1.price > b2.price);

Focusing on the k-fraction of the order book closest to
the current price makes the SOBI strategy less prone to
attacks known as axes (large tactical orders far from the
current price that will thus not be executed but may confuse
competing algorithms).

Given continuously maintained views for VWAP queries
on bid and ask order books, an implementation of the SOBI
strategy only takes a few lines of code that trigger a buy
or sell order whenever the ratio between the two VWAPs
exceeds a certain threshold. 2

We return to the two desiderata for query engines for algo-
rithmic trading pointed out above. For trading algorithms
to be successful, (1) views such as VWAP need to be main-
tained and monitored by the algorithms at or close to the
trading rate. However, (2) the views cannot be expressed
through time-, row- or punctuation-based window seman-
tics. This lends weight to the need for DDMS that support
agile views on large, long-lived state.

Structure of the paper. There are many technical
challenges in making a DDMS a reality. This paper initi-
ates a study of DDMS and presents DBToaster, a proto-
type developed by the authors. The contributions of this
paper are as follows: In Section 2, we further characterize
the notion of a DDMS and discuss a state machine abstrac-
tion of DDMS that further clarifies the programming model
and abstractions relevant to users of such systems. Section
3 presents the DBToaster view maintenance technique. It
demonstrates how the state machine abstraction, which calls
for the compilation and aggressive pre-computation of the
state transition function (viewed differently, this is the set
of update triggers that cause views to be refreshed), leads
to new incremental query evaluation techniques. Section 4
discusses storage management in DBToaster. Section 5 dis-
cusses scaling up through parallelization. We conclude in
Section 6.

2. DDMS ARCHITECTURE
We now examine the architecture of a DDMS, as illus-

trated in Figure 1. The core component of a DDMS is its
runtime engine. Unlike a traditional database system where
the same engine manages all database instances, each in-
dividual DDMS execution runtime is constructed around a
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Figure 1: Dynamic Data Management System
(DDMS) and Application Interface Architecture

specific set of queries provided by the client program (e.g.,
via SQL code embedded inline in the program), each defin-
ing an agile view.

2.1 Application Interfaces
The data that is processed by a DDMS arrives at the

system in the form of an update stream of tuple insertions,
deletions and modifications. The stream need not be ordered
in any shape or form, and deletions are assumed to apply to
tuples that have already been seen at some arbitrary prior
point on the stream. Updates are fully processed on-the-fly,
and their effects on agile views are realised in atomic fashion,
prior to working on any subsequent update. Depending on
the type of results requested by queries, any results arising
from updates will be directly forwarded to application code
as agile views are maintained.

DBToaster provides a wide variety of client interfaces to
issue queries and obtain results from the DDMS, to re-
flect the diverse needs of applications built on top of our
tool. Today’s stream processors tend to be black-box sys-
tems that run completely decoupled from the application.
Client libraries interact with stream processors through re-
mote procedure call abstractions, issuing queries and new
data through function calls, and either polling or being no-
tified whenever results appear on a queue that is associated
with a TCP socket connected to the stream processor.

In DBToaster, the set of agile views requested by clients,
the visible schema, forms the primary read interface between
client programs and the DDMS runtime. Clients can sub-
mit queries for which the DDMS materializes an agile view
through three methods: (1) an embedded language, whose
syntax and data model are natural fits to the host language
in which the client application is written. Examples include
embedded SQL, and collection comprehension oriented ap-
proaches such as LINQ, Links, and Ferry [11, 18, 29]. One
interesting challenge with the embedded language approach
is that of enabling asynchronous event-driven programming.
Whereas language embeddings are natural for ad-hoc query-
ing, we have yet to see these approaches for stream process-
ing. This is the main mode of specifying queries that we
focus on in this paper. (2) a continuous query client API,
as done with existing stream client libraries, which sends a
query string to the DDMS server for parsing, compilation,
and agile view construction. The query string may be spec-
ified in a standard streaming language such as StreamSQL
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or CCL [21]. The client may specify several ways to receive
results, as seen below. (3) an ad-hoc query client API, which
issues a one-time query to the DDMS, and returns the agile
view as a datastructure to be used by the remainder of the
client program. This API may be used in both synchronous
and asynchronous modes, as indicated by the type of result
requested. The query is specified in standard SQL.

Given these modes of issuing queries to the DDMS, our
client interface supports four methods of receiving results:
(1) callbacks, which can be specified as handlers as part
of the continuous query API. Callbacks receive a stream
of query results, and are the simplest form of result han-
dlers that run to completion on query result events. (2)
a DDMS event loop, which multiplexes result streams for
multiple queries. Applications may register callbacks to be
executed on any result observed on the event loop, allowing
complex application behavior through dynamic registration,
observation and processing of results on the event loop. (3)
dynamic datastructures, which are read-only from the appli-
cation perspective. The datastructure appears as a native
collection type in the host language, facilitating natural ac-
cess for the remainder of the program. Ad-hoc queries use
this method for results by default. Continuous queries may
also use this method in which case the datastructure acts
as a proxy with accessors that pull in any updates from the
DDMS when invoked. (4) promises and futures [26], which
provide a push-based proxy datastructure for the result. A
future is an object whose value is not initially known and is
provided at a later time. A program using a query returning
a future can use the future as a native datatype, in essence
constructing a client-side dataflow to be executed whenever
the future’s value is bound. In our case, this occurs whenever
query results arrive from the DDMS. Language embedded
stream processing can be supported by futures, or program
transformations to construct client side dataflow, such as
continuation passing style as found in the programming lan-
guages literature [40].

2.2 DDMS Internals
The internals of the runtime engine itself are best viewed

through the lens of a state machine. Compared to similar
abstractions for complex event processors [1, 25], the state
is substantially larger. Conceptually, the state represents an
entire relational database and transitions represent changes
in the base relations: events in the update stream.

Compiling transitions. Each transition causes mainte-
nance work for our agile views, and just as with incremental
view maintenance, this work can be expressed as queries.
Maintenance can be aided by dynamic data structures, that
is, additional agile views making up the auxiliary schema. A
DDMS is a long-running system, operating on a finite num-
ber of update streams. This combination of characteristics
naturally suggests compiling and specializing the runtime
for each transition and associated maintenance performed
by a DDMS. The transition compiler generates lightweight
transition programs that can be invoked by the runtime en-
gine with minimal overhead on the arrival of events. We
describe the compiler in further detail in Section 3.

Storage management and ad-hoc query processing.
Given the instantiation of an auxiliary schema and agile
views, a DDMS must intelligently manage memory utiliza-
tion, and the memory-disk boundary as needed. The storage
manager of a DDMS is responsible for the efficient repre-

sentation of both the agile views and any index structures
required on these views. Section 4 discusses the issue of
indexing, as well as how views are laid out onto disk. Sup-
porting ad-hoc query processing turns out to be relatively
straightforward given that the core of a DDMS continuously
maintains agile views. Ad-hoc queries can be rewritten to
use agile views in a similar fashion to the materialized view
usage problem in standard query optimization. A key chal-
lenge here is how to ensure consistency, such that ad- hoc
queries do not use inconsistent agile views as updates stream
in and the DDMS performs maintenance. On the other
hand, we do not want ad-hoc queries to block the DDMS’
maintenance process and incur result delivery latency for
continuous queries. One option here is to maintain a list
of undo actions for each ad-hoc query with respect to agile
view maintenance. This design is motivated by the fact that
continuous queries are the dominant mode of usage, and ad-
hoc queries are expected to occur infrequently, thus we bias
the concurrency control burden towards ad-hoc queries.

Runtime adaptivity. Significant improvements in just-
in-time (JIT) compilation techniques means that transition
programs need not be rigid throughout the system’s life-
time. A DDMS includes a compiler and optimizer working
in harmony, leveraging update stream statistics to guide the
decisions to be made across the database schema, state and
storage. For example, the compiler may choose to compute
one or more views on the fly, rather than maintaining it in or-
der to keep expected space usage within predefined bounds.
The optimizer’s decisions are made in terms of the space be-
ing used, the cost of applying transitions on updates, as well
as information from a storage manager that aids in physical
aspects of handling large states, including implementing a
variety of layouts and indexes to facilitate processing.

3. REALIZING AGILE VIEWS
Agile views are database views that are maintained as in-

crementally as possible. Despite more than three decades
of research into incremental view maintenance (IVM) tech-
niques [17, 35, 47, 48], agile views have not been realised,
and one of our key contributions in handling large dynamic
datasets is to exploit further opportunities for incremen-
tal computation during maintenance. Conceptually, current
IVM techniques use delta queries for maintenance. Our ob-
servation is that the delta query is itself a relational query
that is amenable to incremental computation. We can ma-
terialize delta queries as auxiliary views, and recursively de-
termine deltas of delta queries to maintain these auxiliary
views. Furthermore repeated delta transformations succes-
sively simplify queries.

3.1 View Maintenance in DBToaster
We present our observation in more detail and with an ex-

ample. Given a query q defining a view, IVM yields a pair
〈m, Q′〉, where m is the materialization of q, and Q′ is a set
of delta queries responsible for maintaining m (one for each
relation used in q that may be updated). DBToaster makes
the following insight regarding IVM: current IVM algorithms
evaluate a delta query entirely from scratch on every update
to any relation in q, using standard query processing tech-
niques. DBToaster exploits that a delta query q′ from set
Q′ can be incrementally computed using the same principles
as for the view query q, rather than evaluated in full.

To convey the essence of the concept, IVM takes q, pro-
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duces 〈m, Q′〉 and performs m += q′(u) at runtime, where
u is an update to a relation R and q′ is the delta query
for updates to R in Q′. We call this one step of delta
(query) compilation. This is the extent of query transfor-
mations applied by IVM for incremental processing of up-
dates. DBToaster applies this concept recursively, trans-
forming queries to higher-level deltas. DBToaster starts with
q, produces 〈m, Q′〉 and then recurs, taking each q′ to pro-
duce 〈m′, Q′′〉 and repeating. Here, each m′ is maintained
as m′ += q′′(v), where v is also an update, (possibly) differ-
ent from u above, and q′′ is the delta query from Q′′ for the
relation being updated. We refer to q′ and q′′ as first- and
second-level delta queries respectively. We again recur for
each q′′, materialize it as m′′, maintain it using third-level
queries Q′′′, and so forth.

While delta queries are relational queries, they have cer-
tain characteristics that facilitate recursive delta compila-
tion. First, DBToaster delta queries are parameterized SQL
queries (with the same notion of parameter as in, say, Em-
bedded SQL), with parameter values taken from updates.
Thus, in particular, higher-level deltas are just (parameter-
ized) SQL queries, but are not higher-order in the sense of
functional programming as some queries in complex-value
query languages are [8].

To illustrate parameters, we apply one step of delta com-
pilation on the following query q over a schema R(a int, b

int), S(b int, c int):
q = select sum(a*c) from R natural join S

For an update u that is an insertion of tuple 〈@a, @b〉 into
relation R, the delta for q is:

qR = ∆u(q) = select sum(@a*c) from values(@a,@b), S

where S.b = @b

= @a*(select sum(c) from S where S.b=@b)

The values (...) clause is PostgreSQL syntax for a single-
ton relation defined in the query. Transforming a query into
its delta form for an update u on R introduces parameters in
place of R’s attributes. We also apply a rewrite exploiting
distributivity of addition and multiplication to factor out
parameter @a from the query.

The second property that is key to making recursive delta
processing feasible is that, for a large class of queries, delta
queries are structurally strictly simpler than the queries that
the delta queries are taken off. This can be made precise as
follows. Consider SQL queries that are sum-aggregates over
positive relational algebra. Consider positive relational al-
gebra queries as unions of select-project-join (SPJ) queries.
The degree of an SPJ query is the number of relations joined
together in it. The degree of a positive relational algebra
query is the maximum of the degrees of its member SPJ
queries and the degree of an aggregate query is the degree
of its positive relational algebra component. The rationale
for such a formalization – based on viewing queries as poly-
nomials over relation variables – is discussed in detail in [23].
It is proven in that paper that the delta query of a query of
degree k is of degree max(k− 1, 0). A delta query of degree
0 only depends on the update but not on the database rela-
tions. So DBToaster guarantees that a k -th level delta query
q(k) has lower degree than a (k-1)-th level query q(k−1). Re-
cursive compilation terminates when all conjuncts have de-
gree zero.

Consider the delta query qR above, which is of degree 1
while q is of degree 2. Query qR is simpler than q since it

does not contain the relation R. We can further illustrate
the point by looking at a recursive compilation step on qR.
The second compilation step materializes qR as:

mR = select sum(c) from S where S.b=@b

omitting the parameter @a since it is independent of the
above view definition query. DBToaster can incrementally
maintain mR with the following delta query on an update v
that is an insertion of tuple 〈@c, @d〉 into relation S:

qRS = ∆v(qR) = select @c from values(@c,@d)

The delta query qRS above has degree zero since its con-
juncts contain no relations, indeed the query only consists
of parameters. Thus recursive delta compilation terminates
after two rounds on query q. In this compilation overview,
we have not discussed the maintenance code for views m,
mR, and mRS to allow the reader to focus on the core recur-
sive compilation and termination concepts. We now discuss
the data structures used to represent auxiliary materialized
views, and then provide an in-depth example of delta query
compilation including all auxiliary views created and the
code needed to maintain these views.

Agile Views. DBToaster materializes higher-level deltas as
agile views for high-frequency update applications with con-
tinuous group-by aggregate query workloads. Agile views
are represented as main memory (associative) map data
structures with two sets of keys (that is a doubly-indexed
map m[~x][~y]), where the keys can be explained in terms of
the delta query defining the map.

As we have mentioned, delta queries are parameterized
SQL queries. The first set of keys (the input keys) corre-
spond to the parameters, and the second set (the output
keys) to the select-list of the defining query. In the event
that a parameter appears in an equality predicate with a
regular attribute, we omit it from the input keys because we
can unify the parameter. We briefly describe other interest-
ing manipulations of parameterized queries in our framework
in the following section, however a formal description of our
framework is beyond the scope of this paper.

Example. Figure 2 shows the compilation of a query q:

select l.ordkey, o.sprior, sum(l.extprice)
from Customer c, Orders o, Lineitem l
where c.custkey = o.custkey and l.ordkey = o.ordkey
group by l.ordkey, o.sprior

inspired by TPC-H Query 3, with a simplified schema:

Customer(custkey,name,nationkey,acctbal)

Lineitem(ordkey,extprice)

Order(custkey,ordkey,sprior)

The first step of delta compilation on q produces a map m.
The aggregate for each group 〈ordkey, sprior〉 can be ac-
cessed as m[][ordkey, sprior]. We can answer query q by
iterating over all entries (groups) in map m, and yielding
the associated aggregate value. The first step also com-
putes a delta query qc by applying standard delta trans-
formations as defined in existing IVM literature [17, 35, 47,
48]. In summary, these approaches substitute a base rela-
tion in a query with the contents of an update, and rewrite
the query. For example, on an insertion to the Customer re-
lation, we can substitute this relation with an update tuple
〈@ck,@nm,@nk,@bal〉:
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Input (parent query) Update Output: auxiliary map, delta query
q = select l.ordkey, o.sprior, +Customer m[][ordkey, sprior] qc = select l.ordkey, o.sprior,

sum(l.extprice) from (ck,nm,nk,bal) sum(l.extprice)

Customer c, Orders o, Lineitem l from Orders o, Lineitem l

where c.custkey = o.custkey where @ck = o.custkey

and l.ordkey = o.ordkey and l.ordkey = o.ordkey

group by l.ordkey, o.sprior; group by l.ordkey, o.sprior;

qc: Recursive call, +Lineitem mc[][custkey, ordkey, sprior] qcl = select @ok, o.sprior,@ep*sum(1)

see previous output (ok,ep) from Orders o where

@ck = o.custkey and @ok = o.ordkey

qcl: Recursive call, +Order mcl[][custkey, ordkey, sprior] qclo = select @sp, count()

see previous output (ck2,ok2,sp) where @ck = @ck2 and @ok = @ok2;

Figure 2: Recursive query compilation in DBToaster. For query q, we produce a sequence of materializations
and delta queries for maintenance: 〈m, q′〉, 〈m′, q′′〉, 〈m′′, q′′′〉. This is a partial compilation trace, our algorithm
considers all permutations of updates.

select l.ordkey, o.sprior, sum(l.extprice)

from values (@ck,@nm,@nk,@bal)

as c(custkey,name,nationkey,acctbal),

Orders o, Lineitem l

where c.custkey = o.custkey and l.ordkey = o.ordkey

group by l.ordkey, o.sprior

Above the substitution replaces the Customer relation with
a singleton set consisting of an update tuple with its fields
as parameters. We can simplify qc as:

qc = select l.ordkey, o.sprior,sum(l.extprice)

from Orders o, Lineitem l

where @ck = o.custkey

and l.ordkey = o.ordkey

group by l.ordkey, o.sprior;

The query rewrite replaces instances of attributes with
parameters through variable substitution, as well as more
generally (albeit not seen in this example for simpler expo-
sition of the core concept of recursive delta compilation),
exploiting unification, and distributivity properties of joins
and sum aggregates to factorize queries [23].

This completes one step of delta compilation. Our com-
pilation algorithm also computes deltas to q for insertions
to Order or Lineitem (i.e. qo and ql). We list the full tran-
sition program for all insertions at the end of the exam-
ple (deletions are symmetric, and ommitted due to space
limitations). IVM techniques evaluate qc on every inser-
tion to Customer. To illustrate the recursive nature of our
technique, we walk through the recursive compilation of
qc to mc, qcl on an insertion to Lineitem (see the second
row of Figure 2). At this second step, DBToaster mate-
rializes qc with its parameter @ck and group-by fields as
mc[][custkey, ordkey, sprior], and uses this map mc to main-
tain the query view m:

on_insert_customer(ck,nm,nk,bal):
m[][ordkey,sprior] += m_c[][ck,ordkey,sprior];

As it turns out, all maps instantiated from simple equijoin
aggregate queries such as TPCH Query 3 have no input
keys. Maps with input keys only occur as a result of in-
equality predicates and correlated subqueries, for example
the VWAP query from Section 1.

Above, we have a trigger statement in a C-style language
firing on insertions to the Customer relation, describing the
maintainence of m by reading the entry mc[ck, ordkey, sprior]
instead of evaluating qc(ck, Orders, Lineitem). Notice that
the trigger arguments do not contain ordkey or sprior, so
where are these variables defined? In DBToaster, this state-
ment implicitly performs an iteration over the domain of

the map being updated. That is, map m is updated by
looping over all 〈ordkey, sprior〉 entries in its domain, in-
voking lookups on mc for each entry and the trigger argu-
ment ck. Map read and write locations are often (and for a
large class of queries, always) in one-to-one correspondence,
allowing for an embarrassingly parallel implementation (see
Section 5). For clarity, the verbose form of the statement is:

on_insert_customer(ck,nm,nk,bal):

for each ordkey,sprior in m:

m[][ordkey,sprior] += m_c[][ck,ordkey,sprior];

Throughout this document we use the implicit loop form.
Furthermore, this statement is never implemented as a loop,
but relies on a map data structure supporting partial key
access, or slicing. This is trivially implemented with sec-
ondary indexes for each partial access present in any main-
tenance statement, in this case a secondary index yielding
all 〈ordkey, sprior〉 pairs for a given ck. This form of main-
tenance statement is similar in structure to the concept of
marginalization in probability distributions, essentially the
map m is a marginalization of map mc over the attribute
ck, for each ck seen on the update stream.

Returning to the delta qcl produced by the second step of
compilation, we show its derivation and simplification below:
select l.ordkey, o.sprior,

sum(l.extprice)

from Orders o, values

(@ok,@ep) as

l(ordkey,extprice)

where @ck = o.custkey

and l.ordkey = o.ordkey

=>

select @ok, o.sprior,

@ep*sum(1)

from Orders o

where @ck = o.custkey

and @ok = o.ordkey

Notice that qcl has a parameter @ck in addition to the
substituted relation Lineitem. This parameter originates
from the attribute c.custkey in q, highlighting that map
parameters can be passed through multiple levels of com-
pilation. The delta qcl is used to maintain the map mc on
insertions to Lineitem, and is materialized in the third step
of compilation as mcl[][custkey, ordkey, sprior]. The result-
ing maintenance code for mc is (corresponding to Line 8 of
the full listing):

on_insert_lineitem(ok,ep) :
m_c[][custkey, ok, sprior] +=
ep * m_cl[][custkey, ok, sprior];

Above, we iterate over each 〈custkey, sprior〉 pair in the
map mc, for the given value of the trigger argument ok. Note
we have another slice access of mcl, of 〈custkey, sprior〉 pairs
for a given ok. The third step of recursion on insertion to
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Order is the terminal step, as can be seen on inspection of
the delta query qclo:

select o.sprior, count()

from values (@ck2,@ok2,@sp)

as o(custkey,ordkey,sprior)

where @ck = o.custkey

and @ok = o.ordkey

=>
select @sp, count()

where @ck = @ck2

and @ok = @ok2

In the result of the simplification, the delta qclo does not
depend on the database since it contains no relations, only
parameters. Thus the map mcl can be maintained entirely
in terms of trigger arguments and map keys alone. Note this
delta contains parameter equalities. These predicates con-
strain iterations over map domains, for example the main-
tenance code for qclo would be rewritten as:

on_insert_order(ck2,ok2,sp) :
m_cl[][ck, ok, sp] +=
if ck==ck2 && ok==ok2
then 1 else 0;

=>
m_cl[][ck2, ok2, sp]
+= 1;

where, rather than looping over map mcl’s domain and test-
ing the predicates, we only update the map entry corre-
sponding to ck2, ok2 from the trigger arguments.

We show the trigger functions generated by DBToaster
below, for all possible insertion orderings, including for ex-
ample deltas of q on insertions to Order and then Lineitem.
We express the path taken as part of the map name as seen
for mc and mcl in our walkthrough. Some paths produce
maps based on equivalent queries; DBToaster detects these
and reuses the same map. Due to limited space, we omit
the case for deletions, noting that these are symmetric to
insertions except that they decrement counts.

1. on_insert_customer(ck,nm,nk,bal) :
2. m[][ordkey, sprior] +=
3. m_c[][ck, ordkey, sprior];
4. m_l[][ordkey, sprior] +=
5. m_cl[][ck, ordkey, sprior];
6. m_o[][ck] += 1;
7.
8. on_insert_lineitem(ok,ep) :
9. m[][ok, sprior] += ep * m_l[][ok, sprior];
10. m_c[][custkey, ok, sprior] +=
11. ep * m_cl[][custkey, ok, sprior];
12. m_co[][ok] += ep;
13.
14. on_insert_order(ck,ok,sp) :
15. m[][ok, sp] += m_co[][ok] * m_o[][ck];
16. m_l[][ok, sp] += m_o[][ck];
17. m_c[][ck, ok, sp] += m_co[][ok];
18. m_cl[][ck, ok, sp] += 1;

We briefly comment on one powerful transformation that is
worth emphasizing in the above program, as seen on line 15.
Notice that the right-hand side of the statement consists of
two maps – all other statements are dependent on a single
map. This line is an example of factorization applied as part
of simplification. This statement is derived from the query
q given at the start of the example, when considering an
insertion to the Order relation with tuple 〈@ck,@ok,@sp〉:

qo = select @ok,@sp,sum(l.extprice)

from Customers c, Lineitem l

where c.custkey = @ck

and l.ordkey = @ok;

The group-by clause of q can be eliminated since all group-
by attributes are parameters. Note that the two relations
Customer, and Lineitem have no join predicate, thus the
query uses a cross product. By applying distributivity of

the sum aggregate, we can separate (factorize) the above
query into two scalar subqueries:

select @ok,@sp,

sum(l.extprice)

from

Customers c,

Lineitem l

where c.custkey = @ck

and l.ordkey = @ok;

=>

select @ok,@sp,

((select sum(l.extprice)

from Lineitem l

where l.ordkey = @ok)

*

(select sum(1)

from Customers c

where c.custkey = @ck));

DBToaster materializes the scalar subqueries above as
mco and mo in its program, and in particular note that prior
to factorization we had a single delta query of degree 2, and
after factorization we have two delta queries of 1. The latter
is clearly simpler and more efficient to maintain. Factoriza-
tion can be cast as the generalized distributive law (GDL) [3]
applied to query processing. GDL facilitates fast algorithms
for many applications including belief propagation and mes-
sage passing algorithms, and Viterbi’s algorithm. With this
analogy, we hope to leverage other techniques from this field,
for example approximation techniques.

Transition program properties. For many queries, com-
pilation yields simple code that has no joins and no nested
loops, only single-level loops that perform probing as in hash
joins. Simple code is beneficial for analysis and optimiza-
tions in machine compilation and code generation.

Transition programs leverage more space to trade off time
by materializing delta queries. These space requirements
are dependent on the active domain sizes of attributes, and
often attributes do not have many distinct values, for exam-
ple there are roughly 2800 unique stock ids on NASDAQ and
NYSE. Additionally pruning duplicate maps during compi-
lation facilitates much reuse of maps given recursion through
all permutations of updates. Finally, there are numerous op-
portunities to vary space-time requirements for transitions:
we need not materialize all higher-level deltas. For exam-
ple we could maintain q with m(i), a materialized i-th level
delta and perform more work during the update to evaluate
q(i−1), . . . , q(1). We could further amortize space by exploit-
ing commonality across multiple queries, merging maps to
service multiple delta queries.

Insights. Queries are closed under taking deltas, that is, a
delta query is of the same language as the parent query. This
allows for processing delta queries using classical relational
engines in IVM. However, the aggressive compilation scheme
presented above allows to innovate in the design of main-
memory query processors. In the above example, we have
materialized all deltas, thus the transition program consists
of simple arithmetics on parameters and map lookups.

Our concept of higher-level deltas draws natural analo-
gies to mathematics. Our framework, and the compilation
algorithm described here – but restricted to a smaller class
of queries without nested aggregates – was described and
proven correct in [23]. In this framework, queries are based
on polynomials in an algebraic structure – a polynomial ring
– of generalized relational databases. This quite directly
yields the two main properties that make recursive compila-
tion feasible – that the query language is closed under taking
deltas and that taking the delta of a query reduces its de-
gree, assuring termination of recursive compilation. Unfor-
tunately, the second property is not preserved if one extends
the framework of [23] by nested aggregates. We describe be-
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low how DBToaster handles this generalized scenario.

Discussion. To summarize, in contrast to today’s IVM,
DBToaster uses materialization of higher-level deltas for con-
tinuous query evaluation that is as incremental as possible.
DBToaster is capable of handling a wide range of queries, in-
cluding, as discussed next, nested queries. This has not been
addressed in the IVM literature, and lets our technique cover
complex, composed queries, where being as incremental as
possible is highly advantageous.

3.2 Compilation Enhancements
We briefly discuss further compilation issues and optimiza-
tions beyond the fairly simple query seen in Figure 2.

Nested queries. We can compile transitions for nested
queries, which has not been feasible in existing IVM tech-
niques. In particular nested scalar subqueries used in pred-
icates are problematic because taking deltas of such predi-
cates does not result in simpler expressions. Our algorithm
would not terminate if we did not handle this: we explicitly
find simpler terms and recur on them. VWAP in Section 1
exemplifies a nested query.

Nested subqueries contain correlated attributes (e.g. price
in VWAP) defined in an outer scope. We consider correlated
attributes as parameters, or, internally in our framework, as
binding patterns as seen in data integration. Nested queries
induce binding propagation, similar to sideways information
passing in Datalog. That is, we support the results of one
query being used (or propagated) as the parameters of a
correlated subquery, indicating an evaluation ordering. We
transform queries to use minimal propagation, which per-
forms additional aggregation of maps, over dimensions of
the map key that are not propagated. For example a map
m[x, y, z] would be aggregated (marginalized) to m′[x, y] if
x, y were the only correlated attributes.

Rethinking query compilation with programming lan-
guages and compiler techniques. Our current compila-
tion process involves implementing transition programs in a
variety of target languages, including OCaml and C++. We
currently rely on OCaml and C++ compilers to generate
machine code, and observe that there are a wide variety of
optimization techniques used by the programming languages
(PL) and compiler communities that could be applied to
query compilation. Compiling queries to machine code is
not a novel technique, and has been applied since the days
of System R [9]. However there have been many advances in
source code optimization since then, as evidenced by several
research projects aimed in this direction [4, 24].

We believe the advantage of incorporating methods from
the PL and compiler communities directly into our compiler
framework is that it facilitates whole-query optimizations,
programmatic representation and manipulation of physical
aspects of query plans such as pipelining and materializa-
tion (memoization), and opportunities to consider the in-
teraction of query processing and storage layouts via data
structure representations. Specifically, we have developed a
small functional programming (FP) language as our abstrac-
tion of a physical query plan, unlike the operator-centric low-
level physical plans found in modern database engines (e.g.
specific join implementations, scans, sorting operators that
make up LOLEPOPs in IBM’s Starburst and DB2 [28], and
similar concepts in Oracle, MS SQL Server amongst others).

The primary features of our FP language are its use of
nested collections (such as sets, bags and lists) during query

processing, its ability to perform structural recursion (SR) [8]
optimizations on nested collections, and its support for long-
lived persistent collections. Structural recursion transforma-
tions enable the elimination of intermediates when manipu-
lating collections, and when combined with primitive opera-
tions on functions, such as function composition, yields the
ability to adapt the granularity of data processing. Consider
a join-aggregate query

P
a∗f ((R ./ S) ./ T ) with schema

R(a, b), S(c, d), T (e, f), where the natural joins are Carte-
sian products. While such a query would not occur as a
delta query in DBToaster (it would be factorized as dis-
cussed above), it suffices to serve as a toy example. Our
functional representation is:

aggregate(fun < <t,u,v,w,x,y>, z>. (t*y)+z, 0,

flatten(

map(fun <w,x,y,z>.

map(fun <e,f>.<w,x,y,z,e,f>, T),

flatten(

map(fun <a,b>.

map(fun <c,d>.<a,b,c,d>, S),

R)))))

Above, fun is a lambda form, which defines a function pos-
sibly with multiple arguments as indicated by the tuple no-
tation. Next, map, and aggregate are the standard func-
tional programming primitives that apply a function to each
member of a collection, and fold or reduce a collection re-
spectively. For example, we can use map to add a constant
to every element of a list as:

map(fun x. x+5, [10;20;30;40]) => [15;25;35;45]

Similarly we can use aggregate to compute the sum of all
elements of a list, with initial value 0 as:

aggregate(fun <x,y>. x+y, 0, [10;20;30;40]) => 100

The flatten primitive applies to a collection of collections
(i.e. a nested collection), yielding a single-level collection.
For example:

flatten([[1;2]; [3]; [4;5;6]]) = [1;2;3;4;5;6]

Our functional representation first joins relations R and S,
before passing the temporary relation created to be joined
with T, again yielding an intermediate, that is finally aggre-
gated. Notice the intermediate flatten operations to yield a
first normal form.

A standard implementation of a join as a binary operation
forces the materialization of the intermediate result R ./θ S.
There are numerous scenarios where such materialization is
undesirable, and has led to the development of multiway
join algorithms such as XJoin [41] and MJoin [42]. With a
few simple transformation steps, we can rewrite the above
program to avoid this intermediate materialization as:

aggregate(fun < <t,u,v,w,x,y>, z>. (t*y)+z, 0,

flatten(flatten(

map(fun <a,b>. map(fun <c,d>. map(fun <e,f>.

<a,b,c,d,e,f>, T), S), R))))

This is a three-way nested loops join ./3 (R, S, T ) with
no intermediate materialization of a two-way join, that can
also be pipelined into the aggregation. In general, we can ap-
ply well-established folding [5], defunctionalization [13] and
deforestation [27] techniques from functional programming,
which when combined with data structures such as indexes
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and hash tables, can yield a rich space of evaluation strate-
gies that vary in their pipelining, materialization, ordering,
nesting structure and vectorization characteristics.

The last item, nesting structure and vectorization, refers
to concepts from nested relational algebra [38], whereby
query processing need not occur in terms of first normal form
relations. Our programs can use non-first normal forms in-
ternally, and can apply compression and vectorized process-
ing over the nested relation attributes, much in the vein of
column-oriented processing. Furthermore, we can directly
represent the aforementioned data structures, such as in-
dexes and DBToaster maps, in our language, yielding a
unified approach to representing both query processing and
storage layout. We know of no existing framework capable of
such a rich representation, and are excited by the potential
to apply program transformations to jointly optimize query
processing and storage.

4. MANAGING STORAGE IN DBTOASTER
We now examine two components of DBToaster’s solu-

tion to storage in a DDMS: (1) The DBToaster compiler
produces data structures designed specifically for the com-
piled DDMS’ target query workload. (2) By analyzing the
patterns with which data is accessed, DBToaster constructs
a data layout strategy (for pages on a disk, servers in a clus-
ter, etc.) that limits IO overhead.
Data structures. DBToaster uses multi-key (i.e., multi-
dimensional) maps to represent materialized views. The
generated code performs lookups of slices of the maps, using
partial keys, fixing some dimensions and iterating over the
others. Recall the right-hand side of line 2 in the code list-
ing in Section 3. This is a partial lookup on map m c with
only ck defined by the trigger arguments. In addition to
exact and partial lookups, DBToaster maps support range
lookups by inequality predicates.

In their simplest form, out-of-core maps are implemented
by a simple relational-style key-value store with secondary
indices [30]. Inequality predicates, and aggregations in-
cluding such predicates, are implemented efficiently using
maps that store cumulative sums [19]. Maps can apply com-
pression techniques to address frequently repeating data.
DBToaster customizes the data structures backing each ma-
terialized view based on statement-level information on ac-
cesses, applying static compile-time techniques to construct
specialized data structures.

With substantial specialization of data structures as part
of compiling transitions, DBToaster is free to consider a
range of runtime issues in data structure tuning and adapta-
tion, including how to best perform fine-grained operations
such as incremental and partial indexing [39]. The key chal-
lenge to be addressed is how to provide data structures with
a low practical update cost (avoiding expensive index rebal-
ancing and hash-table rebucketing) while gradually ensuring
the lookup requirements of our data structures are retained
over time, amortizing data structure construction with con-
tinuous query execution.
Partitioning and co-clustering by data flow analysis.
Database partitioning and co-clustering decisions are tradi-
tionally made based on a combination of (a) workload statis-
tics, (b) information on schema and integrity constraints
(such as key-foreign key constraints, a popular basis for
co-clustering decisions), and (c) a body of expert insights
into how databases execute queries. Ideally, such decisions

should be based on a combination of (a), (b), and a data flow
analysis of the system’s query execution code, instantiated
with the query plan, or view maintenance code. In classical
DBMS however, this is too difficult to be practical.

Fortunately, data flow analysis turns out to be feasible for
compiled DDMS transition programs: in fact, it is rather
easy. A transition program statement reads from several
maps and writes to one, prescribing dependencies between
those maps occurring on the right-hand side of the statement
(reading), and the one on the left-hand side (writing). As
pointed out in Section 3, transition program statements ad-
mit a perfectly data-parallel implementation: consequently,
a statement never imposes a dependency between two items
of the same map and any horizontal partitioning across the
involved maps map keeps updates strictly local. Using these
data flow dependencies, partitioning and co-clustering deci-
sions can be made by solving a straightforward min-cut style
optimization problem.

5. DBTOASTER IN THE CLOUD
Scaling up a DDMS requires not only storing progres-

sively more data, but also a dramatic increase in comput-
ing resources. As alluded to in Section 4, DDMS and their
corresponding transition programs are amenable to having
their data distributed across a cluster: (1) The only data
structures used by transition programs are maps, which are
amenable to horizontal partitioning. (2) At the granularity
of a single update, iterative computations are completely
data-parallel.

Update Processing Consistency and Isolation. In
DBToaster, transition functions are created under the as-
sumption that they are operating on a consistent snapshot of
the DDMS’s state. The entire sequence of statements com-
posing the trigger function must be executed atomically, to
ensure that each statement operates on maps resulting from
fully processing the update stream prior to the update that
fired the trigger. Thus the effects of updates should be fully
isolated from each other. Similar issues and requirements
have been raised before in the single-site context of view
maintenance with the “state bug” [10].

Our requirement of processing updates in such an order
is conservative, indeed we could apply standard serializable
order concurrency control here to simultaneously process up-
dates that do not interact with each other. The underlying
goal is to develop simple techniques that avoid heavyweight
locking and synchronization of entries in massively horizon-
tally partitioned maps. We start with a conservative goal
to focus on lightweight protocols. Ensuring this atomicity
property is the first of the two core challenges that we en-
countered while constructing a distributed DDMS runtime.

Distributed Execution. Each update in our distributed
DDMS runtime design employs three classes of actor:

• source nodes: Nodes hosting maps read by the up-
date’s trigger function (maps appearing on the right-
hand side of the function’s statements).

• computation nodes: The nodes where statements are
evaluated.

• destination nodes: Nodes hosting maps written to by
the update’s trigger function (maps appearing on the
left-hand side of the function’s statements).
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Note that these actors are logical entities; it is not necessary
(and in fact, typically detrimental) for the actors to be on
separate physical nodes within the cluster. Introducing a
distinction between the different tasks involved in update
processing allows us to better understand the tradeoffs in-
volved in the second core challenge: selecting an effective
partitioning scheme that intelligently determines placements
of logical entities in order to best utilize plentiful hardware
to handle a large update stream and DDMS state.

5.1 Execution Models
We first address the issue of atomicity by providing two

execution models: (1) A protocol that provides a serial ex-
ecution environment for transition programs, and (2) An
eventual consistency protocol that provides the illusion of
serial execution.

Serial Execution. The most straightforward way of achiev-
ing atomicity is to ensure serial trigger function execution.
However, requiring all nodes in the cluster to block on a bar-
rier after every update is not a scalable approach. A similar
effect can be achieved more efficiently by using fine-grained
barriers, where each update is processed by first notifying
all of the update’s destination nodes of an impending write.
Reads at the update’s source nodes are blocked while writes
from prior updates are pending.

Serial execution requires a global ordering of updates as
they arrive at the DDMS. Techniques to achieve this include:

• Updates arrive only from a single producer (e.g., the
cluster is maintaining a data warehouse that mirrors a
single OLTP database).

• A central coordinator generates a global ordering (as
in [32]).

• A distributed consensus protocol generates a global or-
dering (as in [22]).

• A deterministic scheme produces a global ordering.
For example, each update producer generates times-
tamps locally and identical timestamps in a global view
are settled with a deterministic tiebreaker like the pro-
ducer’s IP address.

We also need a mechanism to provide consistent deliv-
ery of updates from multiple producers. Before completing
a read, source nodes must not only ensure that all prior
pending writes have been completed, but also that all no-
tifications for prior updates have been received. A simple
solution is to channel all updates through a single server.
This has the advantage of also providing a global ordering
over all updates. However this solution creates a scalability
bottleneck. Alternative solutions like broadcasting updates
or periodic commits are possible, but introduce considerable
synchronization overheads.

Speculative Execution with Deltas. As an alternative,
we can favor the use of speculative and optimistic processing
techniques in designing our distributed execution protocol.
The key insight here is that our computation is based on in-
cremental processing, thereby unlike standard usage of spec-
ulative execution, any work done speculatively need not be
thrown away entirely, rather any work done can be revised
through increments or deltas, to the final desired outcome.

In particular, a node can optimistically perform reads im-
mediately (or at least, blocking only on pending write oper-
ations which the node is already aware of, and not the vague

<1> : mC[2] <4> : mR[6] <5> : mC[1]Read Log: 

<2> : +2 <7> : -1Map mC[1]: 

mC[2]: <2> : +2 <5> : +2 <6> : +2

...mC[...]: 

Write log for mC[1] Read on mC[1] at 
timestamp <5>

Write incrementing mC[2] 
by +2 at timestamp <6>...mR[...]: 

...... : 

Figure 3: Supplemental data structures used to
facilitate speculative execution in a distributed
DDMS.

possibility of potential future write operations). Although
avoiding blocking on potential future writes eliminates sig-
nificant synchronization overheads, out-of-order updates can
cause the atomicity and desired ordering properties of trig-
ger execution to be lost. We favor this point in the design
space since out-of-order events are expected to occur infre-
quently. Furthermore, such events are likely to interfere with
only a handful of prior updates, for example a write on one
map entry followed by an out-of-order read on a different
entry in the same map do not cause a problem. Finally, be-
cause write operations are limited to additive deltas, there
is a clear mechanism for composing out-of-order writes.

Out-of-Order Processing with Deltas as Revisions.
Two types of out-of-order operations can occur in the spec-
ulative execution model: write-before-read, and read-before-
write. We supplement maps with two additional data struc-
tures capturing timestamp information for operations, as
illustrated in Figure 3: (1) Source nodes maintain a log of
all read operations. (2) Destination nodes save all write op-
erations independently; map entries are saved as logs rather
than summed values. Each operation is tagged with and
sorted by the effecting update’s timestamp <t>.

In the case of an out-of-order read operation (i.e., one
that arrives after a write operation that logically precedes
it), the write log makes it possible to reconstruct the state
of the map at an earlier point in time. For example, given
the initial state in Figure 3, an update that requires a read
on entry mC[2] arrives with timestamp <3>. The value sent
to the computation nodes is not the latest value of the entry
(mC[2] = 6 for all timestamps after <6>), but rather the
sum of all values with lower timestamps (mC[2] = 2 for
timestamps <3>,<4>, and <5>).

In the case of an out-of-order write operation, the read log
allows us to send a revising update to each computation node
affected by the write. For example, given the initial state
in Figure 3, an update that requires a write on entry mR[6]

arrives with timestamp <3>. The value will be written as
normal (i.e., inserted into the write log for mR[6], in sorted
timestamp order). Additionally, because the read log shows
a read on the same entry with a later timestamp, a corrective
update will be sent to the computation node(s) to which the
entries were originally sent to.

Both data structures grow over time. To prevent un-
bounded memory usage, it is necessary to periodically trun-
cate, or garbage collect the entries in each. This in turn,
requires the runtime to periodically identify a cutoff point,
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the “last” update for which there are no operations pend-
ing within the cluster. The read history is truncated at this
point, and all writes before this point are coalesced into a sin-
gle entry. Though this process is slow, it does not interfere
with any node’s normal operations, and can be performed
infrequently, for example once every few seconds.

Hybrid Consistency. While the speculative execution
model and its eventually consistent results are advantageous
from a performance and scalability perspective, there may
not be a point at which the state of all maps in the system
corresponds to a consistent snapshot of our transition pro-
grams evaluated over any prefix of the update stream. That
is, there is no guarantee that the system has actually con-
verged to its eventually consistent state in the presence of
a highly dynamic update stream. However, a side effect of
the garbage collection process is that each garbage collection
run, in effect generates a consistent snapshot of the system.
As in other eventual consistency systems [14], this approach
offers a hybrid consistency model, specifically the same in-
frastructure produces both low-latency eventually consistent
results, as well as higher-latency consistent snapshots.

5.2 Partitioning Schemes
The second challenge associated with distributing a tran-

sition program across the cluster is the distribution of logical
nodes (source, computation, and destination) across physi-
cal hardware in the cluster. In addition to more complex,
min-cut based partitioning schemes for the data, DBToaster
considers two simple partitioning heuristics for distributing
computation: (1) data shipping: evaluate program state-
ments where their results will be stored, at destination nodes,
or (2) program shipping: evaluate program statements where
their input maps are stored, at source nodes.

Destination-Computation. Given the one-to-one cor-
respondence between computation nodes and destination
nodes, the simplest partitioning scheme is to perform com-
putations where the data will be stored – that is, the des-
tination and computation nodes are co-located. As part of
update evaluation, each source node transmits all relevant
map entries to the destination node. Upon arrival, the des-
tination node evaluates the statement and stores the result.

Source-Computation. Though simple, transmitting ev-
ery relevant map entry with every update can be waste-
ful, especially if the input map entries don’t change fre-
quently. An alternative approach is to co-locate all of the
source nodes and the computation node. When evaluat-
ing an update, the computation can be performed instanta-
neously, and the only overhead is transmitting the result(s)
to the destination node(s). This is particularly effective in
queries where update effects are small (e.g., queries consist-
ing mostly of equijoins on key columns).

However, this approach introduces an additional compli-
cation. It is typically not possible to generate a partitioning
of the data that ensures that for each statement in a trigger
program, all the source nodes will be co-located. In order to
achieve a partitioning, data must be replicated; each map is
stored on multiple physical nodes. While replication is typ-
ically a desirable characteristic, storage-constrained infras-
tructures may need to use complex partitioning schemes.

6. DISCUSSION AND CONCLUSIONS
We have proposed Dynamic Data Management Systems,

arguing for the need for a class of systems optimized for
keeping SQL aggregate views highly available and fresh un-
der high update rates. We have sketched some of the main
research challenges in making DDMS a reality, and have out-
lined key design decisions and first results and insights that
make us confident that the vision of DDMS can be realized.

We are currently developing a DDMS, DBToaster, in a
collaboration between EPFL and Johns Hopkins, which was
started while the authors worked at Cornell. So far, we
have developed an initial version of a transition compiler
which implements the recursive IVM technique sketched in
Section 3. The feasibility of keeping views fresh through
hundreds of updates per second using this approach in the
context of algorithmic trading was recently demonstrated
using an early DBToaster prototype [2]. An initial account
of the foundations and theory of recursive IVM was given
in [23]. Apart from substantially improving the compiler,
we are now working on the actual DBToaster DDMS. We
follow the strategy of developing two branches, one a main-
memory, moderate state-size, single-core ultra-high view re-
fresh rate system for applications such as algorithmic trading
and the other a cloud-based, persistent, eventual-consistency
system for very large scale interactive data analysis. We
will merge these two branches once the individual techni-
cal problems have been solved. Further details and an up-
date stream on the project can be found on our website at
http://www.dbtoaster.org.
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