
IQ: The Case for Iterative Querying for Knowledge

Yosi Mass1,3 Maya Ramanath2 Yehoshua Sagiv3 Gerhard Weikum2

1IBM Haifa Research Lab
Haifa, Israel

yosimass@il.ibm.com

2Max-Planck Institute for
Informatics

Saarbrücken, Germany
{ramanath,weikum}@mpi-

inf.mpg.de

3The Hebrew University
Jerusalem, Israel

sagiv@cs.huji.ac.il

ABSTRACT
Large knowledge bases, the Linked Data cloud, and Web
2.0 communities open up new opportunities for deep ques-
tion answering to support the advanced information needs of
knowledge workers like students, journalists, or business an-
alysts. This calls for going beyond keyword search, towards
more expressive ways of entity-relationship-oriented query-
ing with graph constraints or even full-fledged languages like
SPARQL (over graph-structured, schema-less data). How-
ever, a neglected aspect of this active research direction is
the need to support also query refinements, relaxations, and
interactive exploration, as single-shot queries are often in-
sufficient for the users’ tasks. This paper addresses this is-
sue by discussing the paradigm of Iterative Querying, IQ
for short. We present two instantiations for IQ, one based
on keyword search over labeled graphs combined with struc-
tural constraints, and another one based on extensions of the
SPARQL language. We discuss the suitability of these ap-
proaches for knowledge-centric search tasks, and we identify
open research problems that deserve greater attention.

1. INTRODUCTION
Advanced users such as journalists or analysts have in-

formation needs which are often expressed (even in natural
language) as a mix of vague, precise, and implicit require-
ments. For example, consider the following queries: i) “I
want to know something about classical music composers
who have composed music for western movies.” ii) “Could
the H1N1 vaccine interfere with blood-pressure medications
such as Metolazone?” iii) “How are Israel and Italy related
to each other, for example, by some international organiza-
tions?”

Although Web search engines now have limited and spe-
cialized support for natural-language questions and are mov-
ing towards more expressive entity-oriented search (e.g., by
understanding product names or locations), the above ques-
tions cannot be answered easily. Recently emerging knowl-
edge engines [5, 4] or knowledge-base search services such

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2011.
5th Biennial Conference on Innovative Data Systems Research (CIDR ’11)
January 9-12, 2011, Asilomar, California, USA.
.

as WolframAlpha1, Google Squared2, or sig.ma cannot cope
with such complex queries either. Some of them seem to per-
form entity-oriented information extraction on-the-fly, while
others harness large knowledge bases such as DBPedia3,
Freebase4, True Knowledge5, or the CIA WorldFactbook6.
These contain billions of RDF triples about entities and re-
lationships, but cannot retrieve the necessary facts for an-
swering the above queries or lack inferencing capabilities
for composing proper answers. For example, trueknowledge
provides a browser plug-in that supplements keyword-search
results from Google or Bing with fact-retrieval answers from
their knowledge base. This is good enough for returning the
correct birth place of Barack Obama, but still far from han-
dling our examples.

So neither Web search engines nor knowledge-base en-
gines can directly answer such advanced questions. How-
ever, there is often a solution if the user is willing to engage
in an entire workflow of query refinement, query relaxation,
exploration of intermediate results, combining different re-
sults, etc. This is tedious but often works. The point is that,
instead of running a single-shot query, we need a process of
iterative querying, IQ for short. In fact, this is what search-
engine users often end up doing, but there is not much sup-
port by the engine. Moreover, while IR researchers are advo-
cating interactive retrieval for many years [13] (without com-
pelling impact), in the structured-data world of knowledge
bases and inference engines, the expectation by DB folks is
that everything can be expressed in a single query of some
super-powerful language (be it SQL, XQuery, SPARQL, or
whatever).

An IQ task with a Web search engine would involve the
following steps:
i) exploration: retrieving initial results by keyword search,
ii) filtering: refining the results with additional constraints,
iii) aggregation: combining results into a concise answer.

These steps may themselves have to be iterated. For ex-
ample, for the composer question, one could proceed as fol-
lows: i) find a list of classical music composers; again i) find
a list of composers for western movies; ii) pick out com-
posers of western movies who also compose classical music;
once more i) find biographies for each of the interesting com-
posers; ii) ensure that the biographies match the list of com-

1wolframalpha.com
2google.com/squared/
3dbpedia.org
4freebase.com
5trueknowledge.com
6www.cia.gov/library/publications/the-world-factbook/

38

posers (as keyword search can easily return wrong results);
iii) aggregate multiple pages about the same composer into
a compact summary.

For the world of structured knowledge bases, this kind of
IQ process seems totally neglected so far and widely open
for research. Knowledge portals such as dbpedia.org or free-
base.com offer APIs that support only single-shot querying,
by means of SPARQL calls; their UIs, on the other hand,
are merely Web-pages with fancy rendering but tedious nav-
igation for the user. The irony is that despite semantically
structured data, there is poor support for advanced ques-
tions about factual knowledge.

In this paper, we advocate the IQ paradigm for search
against semantic knowledge bases or the linked-data cloud
(linkeddata.org) [3] of structured data on the Web. We dis-
cuss the requirements for the exploration, filtering and ag-
gregation steps, describe the development of effective tools in
two case studies and identify challenges for future research.

2. DATA MODEL
The diversity of data available in different kinds of knowl-

edge bases, linked data on the Web, as well as text in the
form of contextual information, requires a very general and
flexible data model. The natural choice is to use a directed
graph where each node is allowed to have: a name (identifier
or short string describing, for example, an entity name or a
paper title), a type (the class to which the node belongs), and
a context (additional text that is associated with the node).
Similarly, each edge is allowed to have: a name (identifier),
a type (a label denoting, for example, a relationship type),
and a context (textual information, for example, denoting
the context in which the fact denoted by the edge and its
two end points was extracted from).

This unified model captures all the different approaches
to graph search. It can represent, for example, XML (nodes
labeled, edges unlabeled), RDF triples (nodes and edges la-
beled), relational databases (records as nodes, foreign-key
relationships as edges), etc. Note that in general, there is
no schema for these knowledge bases, apart from a generic
triple representing an edge in the data graph (referred to as
subject, predicate and object in RDF).

3. THE IQ PARADIGM
As in the case of current day Web search, we envision iter-

ative querying as being composed of a combination of three
steps: exploration, filtering and aggregation. However, un-
like Web search where there is no structure at all, and unlike
relational databases where the schema is fixed, in our data
model there are entities (nodes) and relationships (edges),
but there is no fixed schema. Therefore, the exploration, fil-
tering and aggregation steps of the IQ paradigm should allow
the user to work in two dimensions. First, the user should
be able to select desired structural patterns (i.e., schemas)
of answers and secondly, she should be able to select the
relevant instances of those patterns.

Figure 1 illustrates our framework. Users query data in
the underlying knowledge-bases through a UI. A system
built on the IQ framework and supporting the exploration,
filtering and aggregation steps interacts with the API and
returns results back to the user. The goal of an IQ sys-
tem should be to automate as many tasks as possible, and
to involve the user only at certain critical steps when her

Knowledge Bases & Linked Data

API
Web (HTML, JSON, etc.)

UI

IQ: Iterative Querying

Explore

Filter

Aggregate

Figure 1: The IQ Paradigm

feedback is essential.
Clearly, while the UI has to be simple and intuitive, the

API should ideally be expressive enough to handle com-
plex tasks, including aggregation. The IQ system provides
a bridge between the UI and API, and in certain cases may
have to extend the API to support the needed functionality.

In the rest of this section, we describe the key ideas of
each step, and defer technical details of how they could be
achieved to the case studies in Sections 4 and 5.

Exploration. The first step is to help the user express her
information need in a precise manner. A natural way to start
the exploratory step is for the user to enter some relevant
keywords, or phrases and for the system to return possible
connections between them. For example, for the query on
classical composers, a starting point is for the user to enter
“classical music”“composer” and “westerns” or for the query
on the relationship between Israel and Italy, to enter “Israel”
and “Italy”. It is now up to the system to search for possible
connections between these keyphrases.

Given a set of diverse connections from the underlying
data graph, the user would prioritize certain structural con-
straints while disallowing certain other kinds of connections.
The system repeats the query with these additional (posi-
tive and negative) constraints. At the end of this iterative
process, a precise query of the form “classical composer X
composed for western Y” is formulated, where X and Y have
to be substituted with a person and a movie, respectively.
This query could then be mapped onto the API for a struc-
tured query language.

However, this may not be the end of the exploration step.
Perhaps there are other closely related queries such as “clas-
sical musician X composed for western Y”or“classical music
conductor X directed music for western Y”, which can addi-
tionally be suggested to the user. Once the user converges
on a subset of precise queries as representative of her infor-
mation need, the system can now move on to the filtering
step.

Filter and Refine. While the exploratory step helps users
narrow in on possible interesting queries, the filtering step
allows users to specify exactly which items in a result set are
interesting. The system runs the queries formulated in the

39

previous step directly on the knowledge-base and returns a
set of qualifying results. The user now refines her query in
order to filter out the results of interest to her. The filtering
could be as straightforward as selecting certain interesting
results, or there may now be additional refinements (in the
form of constraints) to restrict the size of the result set.
For example, movies with a certain plot-line (say, involving
“soldiers”), or musicians born in a particular continent, etc.
Additionally, after seeing this set of results, the user may
also disallow certain queries formulated in the previous step
or give additional weight to certain other queries. Iteratively
processing these refined queries may finally lead to a satis-
factory result list. Alternatively, the user could repeat the
exploration step if the results are still unsatisfactory to her.

Aggregation. Our data model (Section 2) is general enough
to accommodate a wide variety of data including a combina-
tion of structured triples and unstructured text. Aggregat-
ing results can thus take on different meanings, ranging from
a simple ranking of results (famous composers first), group-
ing of results (composers grouped by their nationalities),
diversifying the top results, etc. to type-specific aggrega-
tions such as summarization of text (for example, biography
summarization for composers).

Aggregating results from a single knowledge-base is com-
plex enough by itself, but the situation becomes more com-
plicated if there are multiple knowledge-bases which need to
be queried. A likely scenario is that the local knowledge-base
has insufficient information to answer the query, but has
multiple pointers to other knowledge-bases (in the linked-
data spirit) which are likely to contain the missing informa-
tion. The system now has to decide whether and how the
query should be split (perhaps there is overlapping infor-
mation in the knowledge-bases which can be leveraged) and
subsequently, how to merge the (partial) results. Both tasks
are non-trivial because on-the-fly entity disambiguation [9]
may be required due to different vocabularies.

With this overview of the IQ paradigm, we now illustrate
two case studies of how a system built on these principles
would work. In the first case study, the user starts the ex-
ploration step with SPARQL queries, and refines queries by
adding keywords to the structured queries. In contrast, in
the second case study, the user initially does not have any
knowledge about the structure of the data graph. Hence, she
starts the exploration of the knowledge-base with keywords,
while the refinement step involves selecting and unselecting
suitable structures showing the interconnections between the
keywords. The selected interconnections can then be con-
verted to SPARQL to further the search. Finally, the ag-
gregation step for each case study highlights a different kind
of aggregation—ranking and grouping of results in the first
study, and merging results from multiple knowledge-bases in
the second. In principle, however, both types of aggregation
are applicable to either one of the two case studies.

4. CASE STUDY 1:
IQ WITH EXTENDED SPARQL

The W3C-endorsed query language SPARQL is a natural
starting point for searching knowledge bases or the world
of linked-data Web sources. SPARQL is designed for struc-

tured RDF data, but does not need a prescriptive schema for
its data, and can cope with high heterogeneity. The basic
building block in a SPARQL query is a triple pattern: es-
sentially an SPO triple with one or several of the S, P, and
O components replaced by variables. Multiple triple pat-
terns are combined in a conjunctive manner, thus support-
ing select-project-join queries. The key point, compared to
traditional database querying, is that even properties—the
counterparts of relation or attribute names—can be vari-
ables. For example, when searching for composers of film
music, we may not know how exactly the relationship be-
tween composer and movie is named, e.g., composed, isCom-

poserOf, wroteMusicFor, contributedToSoundtrack, etc. Or the
data may be so heterogeneous that no single property name
is suitable for high recall. With SPARQL, we could express
a sub-query for the composers question as follows:
SELECT ?c, ?m

WHERE {
?c hasType composer . ?m hasType movie .

?m hasGenre Western . ?c ?prop ?m . }
where variables start with a question mark and the appear-
ance of the same variable in different triple patterns denotes
a join condition.

Exploration. Despite the schema-agnostic option for query
formulation, users (or programmers on behalf of users) still
need some awareness of the underlying RDF structures. If
composers are first related to their compositions, say by a
property composedPieceOfMusic, and the compositions are in
turn related to movies by a property appearedInSoundtrackOf,
even the wildcard pattern ?c ?prop ?m would not return any
matches as all variable bindings need to come from a sin-
gle RDF triple. Fortunately, it is not too difficult to extend
SPARQL, to support these cases while preserving the gen-
eral flavor of SPARQL. Following the proposal by [2], we
could introduce variables that can be bound to entire paths
in the RDF triples graph. Moreover, as we do not simply
want connectivity but have semantic requirements, we would
combine this with filter conditions on the property names in
the qualifying paths. For our example, this could be phrased
as follows:
SELECT ?c, ?m

WHERE {
?c hasType composer . ?m hasType movie .

?m hasGenre Western . ?c ??prop ?m .

Filter regex(??prop, {”compose”}) .

Filter pathlength(??prop, 3) . }
where ??prop is a path variable (note the two question marks),
regex is a regular expression (simple substring matching in
our case) on the path of property names bound to ??prop, and
the last condition sets an upper bound on the path length.
The Filter construct is standard SPARQL, to include con-
ditions beyond exact-match on URIs or literals. Here we
deliberately use it for extensibility.

Further, the system could support query relaxation, and
suggest close-and-related queries. For example, for the swine-
flu vaccine question, a user formulation like
SELECT ?c, ?d

WHERE {
?c hasType H1N1vaccine .

?c interferesWith ?d.

?d hasType BPMedication . }
could be automatically relaxed into:

40

Figure 2: Western movies: i) filtered by “soldier”,
ii) unfiltered

SELECT ?c, ?d

WHERE {
?c hasType H1N1vaccine .

?c (interferesWith|notRecommendedWith|createsRiskWith) ?d .

?d hasType BPMedication . }

Filter and Refine. The exploratory step works reason-
ably well when everything the user wants can be expressed
in triple patterns, but is somewhat inflexible. It may not
be possible to express certain kinds of constraints using just
triple patterns, or the user may not know how to (for exam-
ple, Westerns with a particular plot line involving soldiers).
On the other hand, the knowledge base itself does not have
every conceivable property. For example, there may be a lot
of facts about compositions, but no predicates with classical
music.

The key to overcoming this obstacle is to extend the knowl-
edge base with textual contexts from the Web. For every
RDF triple in the database, we can reach out to the Web
and gather text snippets where the triple occurs.

Now we associate words and phrases from these textual
“witnesses” with each triple, and make them queryable as
if they were a fourth dimension added to the three SPO di-
mensions. Inspired by XQuery Full-Text, we have developed
such a SPARQL extension with the following specific syntax
[6, 7]:
SELECT ?c, ?m

WHERE {
. . . ?c composed ?m{”classical music”} . }

where “classical music” is a phrase to be matched in one or
more of the witnesses for the triples that qualify for the triple
pattern. Similarly, filtering Westerns with a particular plot
line involves adding the appropriate keywords. An exam-
ple from our system [7] is shown in Figure 2—the order in
which results are shown differs on whether a filter condition
(“soldier”) has been added to the triple pattern or not.

However, it now seems that the user must be familiar with
the specific terminology “classical music” in the witnesses.
But, the query relaxation for SPO patterns introduced pre-
viously, can naturally be extended to keyphrases as well if
the user wishes to explore this. First, we could offer a dialog
to the user with suggestions on related words and phrases
such as“operas”,“symphonies”,“cantatas”,“string quartets”,
etc. In IR this is known as query expansion; it can be done
with explicit user involvement, or transparently to the user.
The semantics for a qualifying triple is that its witnesses

should contain at least one of the text terms, not necessar-
ily all. We can plug in a suitable ranking model based on
IR principles.

Aggregate. The results of the previous steps may over-
whelm the user with too many answers (especially if query
relaxation is used). Therefore, it is crucial to aggregate the
results into an easily digestible form. Grouping and ranking
are obvious ideas, and can even be utilized together.

Different groups (clusters) have different statistical evi-
dence for their validity and informativeness. In the example
question about swine-flu vaccines, there are definitely many
conflicting sources, and a good answer needs to be backed
by statistical mass and/or authoritative sources. This issue
is important for aggregation into groups, but also shows up
for ranking individual answers. A good answer needs to re-
flect salient entities and properties rather than exotic facts
about long-tail entities. Estimating salience is non-trivial,
especially if the corpus does not have redundancy—that is,
confidence in a fact can no longer be estimated using fre-
quency measures on the corpus.

Moreover, if the system has to handle “close-but-related”
queries as well as textual conditions (both of which users
can specify in the filter-and-refine step), developing an effi-
cient ranking mechanism which integrates all these features
becomes challenging. Recent efforts in this direction include
[6, 7].

5. CASE STUDY 2: IQ WITH
GRAPH-BASED KEYWORD SEARCH

In the previous case study, the user needs to have some
knowledge about the structure of the data graph. For in-
stance, in the composer example above, the user needs to
know that there are triples matching the pattern ?c ?prop

?m. Even with the extension ?c ??prop ?m that supports path
variables, it is still assumed that the path is from a composer
(which is bound to ?c) to a movie (which is bound to ?m).
It is possible, however, that the data graph is heterogeneous
and in some cases, the edges are reversed, namely, there are
triples matching ?m ?prop ?c. In such cases, the path vari-
able will not assist in finding existing answers (unless more
patterns are added). In summary, it is rather hard to start
a search with the approach of the previous case study, when
the user lacks any knowledge about the structure of the data
graph.

In this case study, we assume that the user has either no
knowledge or a very limited one about the underlying data
graph. Thus, the query is just a set of keywords. The API
may include, in addition to those keywords, some control
characters for advanced search. From the user point of view,
the search is carried out in two dimensions, namely, the types
(i.e., schemas) of answers and their particular instantiations.
For example, for the keywords “Italy” and “Israel,” there are
several types of answers. One is that the two countries are
members in some organization. Another type is that the two
countries are located on the shores of the same sea.

The data model is a directed graph, as described in Sec-
tion 2. An answer is a non-redundant subtree t of the graph,
such that t contains all the keywords of the given query.
Containment means that each keyword may appear any-
where in the tree, that is, in the name, type or context of a
node (or an edge). Non-redundancy means that an answer
does not have a proper subtree that also contains all the

41

keywords of the query. Note that non-redundancy does not
imply minimality, and a query could have a large number
of answers. The schema of an answer is the tree obtained
by ignoring the names and contexts, that is, each node (and
edge) has only a type.

In this section, we consider the system demonstrated in [1],
which is based on [8]. There are other systems for keywords
search over data graph [11], but only [1] facilitates search in
both dimensions, namely, answers and their schemas.

Exploration. A major problem with typical keyword search
over data graphs is that the user may be inundated with too
many answers that have the same “flavor” (i.e., schema).
For example, both Italy and Israel are members in many
international organizations. Hence, for the query “Italy Is-
rael,” there are going to be many answers—one for each
organization. The user might have to browse through many
pages until she gets something different. In [1], there are
search options that enable the user to zoom in on the “fla-
vors” of her choice. In particular, the user can choose an
answer and specify that either she does not want to see
more similar answers or all she needs are additional simi-
lar answers (“similar” means “with the same schema”). She
can also specify that subsequent answers should not include
particular names or types (i.e., labels). Figure 3(a) shows
an answer for the query “Italy Israel.” Note that names
are capitalized, whereas labels (identifying types) are not;
in addition, a label is shown inside parentheses when there
is also a name. The schema of the answer, in Figure 3(a),
connects two countries through membership in some orga-
nization. (In the data model of [1] only nodes have names,
types and contexts.) By checking the option “show similar
answers,” the user can browse through all organizations in
which both Italy and Israel are members. Alternatively, the
user can exclude the labels “organization” and “members”
so that subsequent answers will not include them. Conse-
quently, the user will immediately get an answer that does
not show any information about members of organizations.
One such answer is shown in Figure 3(b), where the two
countries are linked due to the fact that Israel and an island
of Itlay are located on the shores of the Mediterrannean Sea.
There is a subtle difference between choosing the option “ex-
clude similar answers” versus excluding the labels “organiza-
tion” and “members.” The former, but not the latter, allows
subsequent answers to be about organizations and members
as long as their schemas are not identical to the one already
seen.

In [1], there is also a mechanism for diversifying answers.
The main idea is to apply adaptive ranking that takes into
account similarity to answers that have already been shown
to the user. Two answers are similar if they have the same
schema, or if they have two subtrees that are identical or
have the same schema. The ranking function is augmented
with a parameter that takes the degree of similarity into
account, and as a result, the next page of answers is likely
to show results that are substantially different from previous
ones. This mechanism does not require user intervention
(other than turning it on). The user, however, has the option
of tweaking the parameters that measure similarity.

A query may contain keywords that do not appear in the
data graph. For example, the user is interested in “Italy”
and “Israel” in the context of “music,” but the data graph
only contains the first two keywords. Similarly to Section 4,

(a) Members in the same organization

(b) Located on the shores of the same sea

Figure 3: Two answers with diverse schemas for the
query “Italy Israel”

we can extend the data graph with textual context from the
Web. But now there is a need for a suitable ranking function
that also takes the context into account. One approach is
to first explore the data graph without the context, while
ignoring the keywords of the query that appear only in the
context. Once some specific schemas are selected, the rank-
ing takes all the keywords of the query into account and
uses textual “witnesses” (as described in Section 4). How-
ever, this approach may not be as effective and quick as
an exploration that uses all the keywords from the outset.
An alternative is to extend the ranking technique of [8] by
applying IR methods to the textual context.

Filter and Refine. The exploratory options described
above (e.g., “show similar answers”) are effective in prac-
tice, but are quite rudimentary. A more expressive way is
to use trees (of answers produced thus far) in order to cre-
ate SPARQL queries, similar to the approach of Section 4.
There is a natural corresponds between a tree and a con-
junction of triple patterns. There is, however, some latitude
when creating triple patterns from a tree. We can use the
names of the nodes and edges of the given tree, thereby cre-
ating a conjunction that matches just that particular tree.
Alternatively, for some nodes and edges, we can take just
the type or use a variable, and consequently, the generated
SPARQL query would match many answers. We can also
use the contexts of the nodes and edges in order to create
additional selection criteria, as described in Section 4. The
user need not be aware of this translation into a SPARQL
API, because the system would do it automatically based
on some interaction with the user through a high-level UI.
Note that the SPARQL queries of Section 4 correspond, in

42

general, to graphs and not just trees. Thus, the user can ac-
tually construct a SPARQL query corresponding to a graph,
based on the insight she has obtained from several answers
with diverse schemas.

Aggregate. We focus here on how to combine results that
come from different data sources. As an example, consider
the query “find movies that were shot in countries that bor-
der Italy.” We can decompose it into two sub-queries. (1)
“?X = find countries that border Italy,” and (2) “find movies
that were shot in ?X.” The first sub-query could be executed
on the CIA World Factbook, and the second—on the IMDB
(i.e., Internet Movie Database).

In general, the challenge is how to decompose the orig-
inal query, and how to join the results of the sub-queries.
One approach is to add support in the UI for decomposing
the query into several subsets of keywords, according to the
available data graphs, and join the results of the sub-queries
as follows. Initially, the user executes the first sub-query,
which is “countries that border Italy” in our example. Once
she zooms in on the relevant answers, she selects specific
nodes that are used for creating instantiations of the next
query. In the above example, each country returned by the
first sub-query is used to instantiate ?X in the second sub-
query “movies shot in ?X.”

6. CHALLENGES AND OUTLOOK
The IQ paradigm for search is a natural consequence of

the complexity of the information needs of users as well as
the underlying data. There has been a considerable amount
of research on the many different aspects that a system built
on this paradigm should support. Indeed, examples of these
were illustrated in our case studies. However, there are still
several hard problems which need to be solved. We list a
few of these below.

Exploration. In order to make user interactions as easy
as possible, the system has to understand natural-language
questions—a hard problem on which some progress has been
made in the last few years (see, for example, [10, 12]). The
questions need to be mapped to a query language in or-
der to make the processing more precise and efficient, but
there will be parts of the question which may not map to
any structure. We believe that data models such as the
text-augmented RDF where both the structured, as well as
unstructured text are queriable in a unified manner can help
in more robust translations. One way to leverage this is, for
example, to map the question into structured triple patterns
when possible, and leave the rest as keywords attached to
certain triple patterns. The triple patterns themselves may
in turn be automatically derived by doing a keyword search
on graphs and extracting the most interesting patterns from
it.

Even in the case of expert users who may enter formal
queries directly, there is still the issue of query correctness
and whether the query will return a non-empty result set.
Interactions in the form of close-but-correct query sugges-
tions may be needed to guide the user.

Deriving these queries over a single knowledge-base is hard
enough, and even more challenging is the case when there
are several (possibly overlapping) sources. Choosing the ap-
propriate set of sources itself becomes difficult, unless the
user is in the loop.

Filter and Refine. Learning the history of the user allevi-
ates user frustration, by providing, for example, a personal-
ized ranking of results, from which the user can quickly select
interesting ones. Moreover, answers can be tuned based on
whether the user asking a query is an expert or a child.

On-the-fly personalization, where the system learns as the
user goes through the search process is also a challenge. For
example, the query on composers of western music could
return a long list. But as the user chooses one or two com-
posers who also compose classical music, the system could
immediately change the ranking and return classical com-
posers higher up.

Aggregate. The notion of whether two results are identi-
cal is important in some of the aggregations that we men-
tioned. For example, we may need to perform joins on re-
sults returned by two different knowledge sources, or group
near-duplicate results into clusters.

Even in cases of joins involving just entities, there has
to be an implicit entity disambiguation step. Are the two
attributes the same entity despite having different names,
or are they different entities despite having the same name?

In the universe of knowledge rather than Web pages, the
notion of duplicates is more involved. For example, we may
find the same composer related to operas in one answer and
to symphonies in another answer. Since both operas and
symphonies are considered classical music, are these two
results duplicates? Apart these semantic issues, there is
also no support for grouping in SPARQL, and the notion of
grouping in text-augmented RDF data is totally unexplored.
We doubt that generic clustering methods are suitable here.

User Interface. UI issues play a big role in identifying
the basic functionality of the system. For example, consider
the connection between doing aggregation of results and the
display of results. Suppose a user asks for countries border-
ing Italy. Rather than seeing one answer for each bordering
country, she would like to see all the bordering countries in
one answer. However, if the user also wants a typical food
recipe for each country, then aggregating all the countries
and their recipes in one answer might create a display which
is too cluttered. In general, there is a tradeoff between many
similar answers and one aggregated answer. The former has
a simple and clear display of each answer, but the list of
those answers could be long. An aggregated answer might
be too cumbersome to display neatly. So, it is not clear how
aggregation can be carried out automatically at the level
that is most suitable to the user.

Not all browsing and searching happens while a user sits
at her machine, nor is every user patient enough to follow
through on each step. How does the system need to adapt,
if, for example, the only interface between the user and the
system is a cell-phone? The obvious consequence of this
is that no user would start with an exploration step, but
rather convey her entire information need in one shot, and
in speech. Apart from having to translate from speech to
text, the system has to automatically determine when user
feedback is needed and to minimize the interactions as much
as possible.

7. CONCLUSIONS
Iterative querying is a natural paradigm for users with

advanced information needs and users already do this with

43

search engines. Our goal in this paper has been to explore
some of the issues involved in building a system supporting
this paradigm in the context of structured knowledge-bases.
We showed how this could be done with a couple of case
studies and highlighted some of the tools which can already
be used to implement this kind of system.

In conclusion, there is already considerable excitement
over the availability of large and structured knowledge-bases.
The main bottleneck is to figure out how to make use of them
effectively. We believe that studying the problems of itera-
tive querying, both at the conceptual as well as the user level
will substantially advance the process of finding answers to
questions (of any complexity!).

Acknowledgements. This work was partially supported
by The German-Israeli Foundation for Scientific Research &
Development (Grant 973–150.6/2007).

8. REFERENCES
[1] H. Achiezra, K. Golenberg, B. Kimelfeld, and

Y. Sagiv. Exploratory keyword search on data graphs.
In SIGMOD, 2010.

[2] K. Anyanwu, A. Maduko, and A. P. Sheth. Sparq2l:
towards support for subgraph extraction queries in rdf
databases. In WWW, 2007.

[3] C. Bizer, T. Heath, and T. Berners-Lee. Linked data -
the story so far. Int. J. Semantic Web Inf. Syst., 5(3),
2009.

[4] M. Cafarella. Extracting and querying a

comprehensive web database. In CIDR, 2009.

[5] A. Doan et. al. Information extraction challenges in
managing unstructured data. SIGMOD Record, 37(4),
2008.

[6] S. Elbassuoni, M. Ramanath, R. Schenkel, M. Sydow,
and G. Weikum. Language-model-based ranking for
queries on RDF-graphs. In CIKM, 2009.

[7] S. Elbassuoni, M. Ramanath, R. Schenkel, and
G. Weikum. Searching rdf graphs with SPARQL and
keywords. IEEE Data Engineering Bulletin, 33(1),
2010.

[8] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword
proximity search in complex data graphs. In
SIGMOD, 2008.

[9] S. Kulkarni, A. Singh, G. Ramakrishnan, and
S. Chakrabarti. Collective annotation of wikipedia
entities in web text. In KDD, 2009.

[10] Y. Li, H. Yang, and H. V. Jagadish. Nalix: A generic
natural language search environment for xml data.
ACM Trans. Database Syst., 32(4), 2007.

[11] B.-C. Ooi, editor. Special Issue on Keyword Search.
IEEE Data Eng. Bull., March 2010.

[12] J. Pound, I. Ilyas, and G. Weddell. Expressive and
flexible access to web-extracted data: a keyword-based
structured query language. In SIGMOD, 2010.

[13] A. Schaefer, M. Jordan, C.-P. Klas, and N. Fuhr.
Active support for query formulation in virtual digital
libraries: A case study with daffodil. In ECDL, 2005.

44

