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ABSTRACT

We explore the problem of managing information leakage
by connecting two hitherto disconnected topics: entity res-
olution (ER) and data privacy (DP). As more of our sen-
sitive data gets exposed to a variety of merchants, health
care providers, employers, social sites and so on, there is
a higher chance that an adversary can “connect the dots”
and piece together our information, leading to even more
loss of privacy. For instance, suppose that Alice has a so-
cial networking profile with her name and photo and a web
homepage containing her name and address. An adversary
Eve may be able to link the profile and homepage to con-
nect the photo and address of Alice and thus glean more
personal information. The better Eve is at linking the in-
formation, the more vulnerable is Alice’s privacy. Thus in
order to gain DP, one must try to prevent important bits
of information being resolved by ER. In this paper, we for-
malize information leakage and list several challenges both
in ER and DP. We also propose using disinformation as a
tool for containing information leakage.

1. INTRODUCTION
In this paper we explore the connections between two hith-

erto disconnected topics: entity resolution and data privacy.
In entity resolution (ER), one tries to identify data records
that refer to the same real world entity. Matching records
are often merged into “composite” records that reflect the
aggregate information known about the entity. The goal of
data privacy (DP) is to prevent disclosure to third parties of
sensitive user (entity) data. For instance, sensitive data can
be encrypted to make it hard for a third party to obtain, or
the sensitive data can be “modified” (e.g., changing an age
24 to a range “between 20 and 30”).

We will argue that in a sense ER and DP are opposites:
the better one is at ER, them more one learns about real
world entities, including their sensitive information. And to
achieve DP, one must try to prevent the bits of information
that have been published about an entity from being glued
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together by ER.
To illustrate, we present a simple motivating example.

Consider an entity (person) Alice with the following infor-
mation: her name is Alice, her address is 123 Main, her
phone number is 555, her credit card number is 999, her so-
cial security number is 000. We represent Alice’s information
as the record: { 〈N, Alice〉, 〈A, 123 Main〉, 〈P, 555〉, 〈C, 999〉,
〈S, 000〉 }. Suppose now that Alice buys something on the
Web and gives the vendor a subset of her information, say
{〈N, Alice〉, 〈A, 123 Main〉, 〈C, 999〉}. By doing so, Alice has
already partially compromised her privacy. We can quantify
this “information leakage” in various ways: for instance we
can say that the vendor has 3 out of 5 of Alice’s attributes,
hence the recall is 3

5
. We view leakage as a continuum, not

as all-or-nothing. Low leakage (recall in our example met-
ric) is desirable, since the vendor (or third party) knows less
about Alice, hence we try to minimize leakage. (Note we
can actually weight attributes in our leakage computation
by their sensitivity.)

Next, say Alice gets a job, so she must give her employer
the following data: {〈N, Alice〉, 〈A, 123 Main〉, 〈P, 555〉, 〈S,
000〉}. In this case the leakage is 4

5
. This is where ER comes

into play: If the employer and vendor somehow pool their
data, they may be able to figure out that both records refer
to the same entity. In general, in ER there are no unique
identifiers: one must analyze the data and see if there is
enough evidence. In our example, say the common name and
address (and the lack of conflicting information) imply that
the records match and are combined (and say the attributes
are unioned). Then the third party has increased leakage
(recall) to 1.

If Alice wants to prevent this increase in leakage, she may
release disinformation, e.g., a new record that prevents the
resolution that increased leakage. For example, say that
Alice somehow gives the vendor the following additional
record: {〈N, Alice〉, 〈A, 123 Main〉, 〈P, 666〉, 〈C, 999〉}.
(Note the incorrect phone number.) Now the vendor re-
solves this third record with its first record, reaching the
conclusion that Alice’s phone number is 666. Now, when
the vendor and employer pool their information, the differ-
ent phone numbers lead them to believe that records cor-
respond to different entities, so they are not merged and
leakage does not increase. The incorrect phone number also
decreases another metric we will consider, precision, since
now not all of the third party’s data is correct. Thus, leak-
age can decrease, not just by knowing less about Alice, but
by mixing the correct data about Alice with incorrect data.

Before proceeding with the main body of our paper, we
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highlight the key features of our approach, which we believe
make it well suited for studying ER and DP:

• Although not illustrated in our example, our model cap-
tures data confidences and multiple attribute values, both
which arise naturally in ER. In particular, we believe less
information has leaked if a third party is uncertain about
Alice’s attributes, as opposed to the case where the third
party is certain.

• In most DP work, privacy is all-or-nothing, while as men-
tioned above, our leakage ranges between 0 (no informa-
tion known by third party) to 1 (all information, and only
correct information, is known). We believe that our con-
tinuous leakage model is more appropriate in our case:
Alice must give out some sensitive data in order to buy
products, get jobs, and so on. We cannot guarantee full
privacy in this context; we can only quantify (and hope-
fully minimize) leakage. Furthermore, we are able to cap-
ture the notion that more leaked attributes is worse than
fewer. For example, if a third party only knows our credit
card number, that by itself is not a great loss. If the third
party also learns our card expiration date, that is a more
serious breach. If in addition they know our name and
address, the information leakage is more serious.

• So far we have phrased leakage as a bad thing, something
to be minimized. However, our model can also be used
to study the mirror problem, where a good analyst is us-
ing ER to discover information about “bad guys”. Here
the goal is to maximize leakage, i.e., to discover how to
perform ER so we can learn the most correct information
about adversaries.

As we will show, our framework can help us answer fun-
damental questions on information leakage, for instance:

• Alice needs to give certain information to a store. She
may want to know the impact of this release: Will the
new information allow the store to “connect the dots”
and piece together many previously released records? Or
will the leakage increase be minimal?

• An analyst may want to understand what ER algorithms
are best to increase information leakage.

• Alice may want to use disinformation to reduce the impact
of previously leaked information. By adding some bogus
information about herself, it becomes more costly for Eve
to resolve Alice’s correct information.

In this short paper we present a relatively brief summary
of our work on the convergence of ER and DP. Our technical
report [5] contains full details. In a nutshell, our contribu-
tions are two-fold:

(1) We propose a framework for measuring information leak-
age (summarized in Section 2 of this paper), and

(2) We study how the framework can be used to answer a
variety of questions related to leakage and entity resolu-
tion. Section 3 of this paper briefly describes two of the
questions we have studied (exemplified by the first and
third bullets immediately above).

2. MODELS AND ALGORITHMS
We assume a database of records R = {r1, r2, . . . , rn}.

The database could be a collection of social networking pro-
files, homepages, or even tweets. Or we can also think of R

as a list of customer records of a company. Each record r

is a set of attributes, and each attribute consists of a label
and value. (In Section 2.4 we extend the model to values
with confidences.) We do not assume a fixed schema because
records can be from various data sources that use different
attributes. As an example, the following record may repre-
sent Alice:

r = {〈N, Alice〉, 〈A, 20〉, 〈A, 30〉, 〈Z, 94305〉}

Each attribute a ∈ r is surrounded by angle brackets and
consists of one label a.lab and one value a.val. Notice that
there are two ages for Alice. We consider 〈A, 20〉 and 〈A,
30〉 to be two separate pieces of information, even if they
have the same label. Multiple label-value pairs with iden-
tical labels can occur when two records combine and the
label-value pairs are simply collected. In our example, Alice
may have reported her age to be 20 in some case, but 30 in
others. (Equivalently, year of birth can be used instead of
age.) Although we cannot express the fact that Alice has
only one age (either 20 or 30), the confidences we introduce
in Section 2.4 can be used to indicate the likelihood of each
value.

2.1 Record Leakage
We consider the scenario where Eve has one record r of

Alice in her database R. (We consider the case where R
contains multiple records in Section 2.2.) In this scenario,
we only need to measure the information leaked by r in
comparison to the “reference” record p that contains the
complete information of Alice. We define Lr(r, p) as the
record leakage of r against p.

While leakage can be measured in a variety of ways, we
believe that the well known concepts of precision and recall
(and the corresponding F1 metric) are very natural for this
task. We first define the precision Pr of the record r against

the reference p as |r∩p|
|r|

. Intuitively, Pr is the fraction of

attributes in r that are also correct according to p. Suppose
that p = {〈N, Alice〉, 〈A, 20〉, 〈P, 123〉, 〈Z, 94305〉} and
r = {〈N, Alice〉, 〈A, 20〉, 〈P, 111〉}. Then the precision
of r against p is 2

3
≈ 0.67. We next define the recall Re

of r against p as |r∩p|
|p|

. The recall reflects the fraction of

attributes in p that are also found in r. In our example,
the recall of r against p is 2

4
= 0.5. We can combine the

precision and recall to produce a single metric called F1 =
2×Pr×Re

Pr+Re
. In our example, the F1 value is 2×0.67×0.5

0.67+0.5
≈ 0.57.

It is straightforward to extend our definitions of precision
and recall to weighted attributes, where the weight of an
attribute reflects its sensitivity.

2.2 Query Leakage
We now consider the case where Eve has a database R

containing multiple records. These records can represent
information on different entities, and can be obtained di-
rectly from the entities, from public sources, or from other
organizations Eve pools information with.

When Eve had a single record (previous section), we im-
plicitly assumed that the one record was about Alice and
we computed the resulting leakage based on what Eve knew
about Alice. Now with multiple records, how does Eve know
which records are “about Alice” and leak Alice’s informa-
tion? And what happens if multiple database records are
about Alice?

To address these questions, we now define leakage, not
as an absolute, but relative to a “query”. For instance, Eve
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Rec. Type Attributes

r1 Social 〈N, Alice〉 , 〈P, 123〉 , 〈B, Jan. 10〉
r2 Homepage 1 〈N, Alice〉 , 〈C, Google〉, 〈A, 30〉
r3 Homepage 2 〈N, Alice〉, 〈E, Stanford〉 , 〈A, 20〉
r4 Homepage 3 〈N, Alice〉, 〈C, Boggle〉, 〈A, 50〉

Table 1: Records of Alice on the Web

may pose the query “What do I know about {〈N, Alice〉, 〈A,
123Main〉}”. In this case, Eve is saying that the attributes
“name: Alice” and “address: 123Main” identify an entity of
interest to her, and would like to know what else is known
about this entity. Note that this pair of attributes is not
necessarily a unique key that identifies entity Alice; the two
attributes are simply how Eve thinks of entity Alice. They
may be insufficient to uniquely identify Alice, they may be
more than is needed. Furthermore, there could be different
attributes that also identify Alice.

Our next step is to compute leakage (relative to this query)
by figuring out what Eve knows related to {〈N, Alice〉, 〈A,
123Main〉}. But which database records are related to this
query? And how are all the related records combined into
what Eve knows about Alice?

To answer these questions, we introduce what we call the
match and the merge functions in ER. A match function M
compares two records r and s and returns true if r and s
refer to the same real-world entity and false otherwise. A
merge function µ takes two matching records r and s and
combines them into a single record µ(r, s).

To illustrate how we use these functions to evaluate leak-
age, consider the database of Table 1, owned by Eve. Sup-
pose that Eve identifies Alice by the query q={〈N, Alice〉,
〈C, Google〉} (i.e., the Alice that works at Google). What
else does Eve know about this Alice? We use a process called
dipping to discover database records that match (defined by
our function) the query record. That is, we first look for
a database record that matches the query. When we find
it, we merge the matching record with the query, using our
merge function. In our example, say record r2 matches q,
so we obtain rq = µ(q, r2). Then we look for any database
record that matches rq, the expanded query, and merge it to
our expanded record. For instance, say M(rq, r1) evaluates
to true, so we replace rq by µ(rq, r1). We continue until no
other database record matches. This process is called dip-
ping because it is analogous to dipping say a pretzel (the
query) into a vat of melted chocolate (the database). Each
time we dip the pretzel, more and more chocolate may ad-
here to the pretzel, resulting in a delicious chocolate-covered
pretzel (or an expanded query with all information related
to Alice). Note that dipping is a type of entity resolution,
where records in the database match against one record (the
pretzel), as opposed to any record in the database.

At the end of the dipping process, rq represents what Eve
knows about Alice (q), so we evaluate the leakage by com-
paring rq to Alice’s private information p, as before. Note
that we will get different leakage for different queries. For in-
stance, if Eve thinks of Alice as q={〈N, Alice〉}, more records
will conglomerate in our example, which may lead to lower
leakage (if r3 and r4 actually refer to different Alices) or
higher leakage (if r3 and r4 are the same Alice as r1 and r2).

In the remainder of this section we define the dipping
process more formally. We start by defining two properties
that match and merge functions generally have (and that
we assume for our work).

We assume two basic properties for M and µ – commu-
tativity and associativity. Commutativity says that, if r
matches s, then s matches r as well. In addition, the merged
result of r and s should be identical regardless of the merge
order. Associativity says that the merge order is irrelevant.

• Commutativity: ∀r, s, M(r, s) = true if and only if M(s, r)
= true, and if M(r, s) = true, µ(r, s) = µ(s, r)

• Associativity: ∀r, s, t, µ(r, µ(s, t)) = µ(µ(r, s), t)

We believe that most match and merge functions will nat-
urally satisfy these properties. Even if they do not, they can
easily be modified to satisfy the properties. To illustrate the
second point, suppose that commutativity does not hold be-
cause M(r, s) only compares r and s if r has an age smaller
or equal to s and returns false otherwise. In that case, we
can define the new match function M ′(r, s) to invoke M(r, s)
if r’s age is smaller or equal to s’s age and invoke M(s, r) if
s’s age is smaller than r. In the case where the two proper-
ties are not satisfied, we only need to add a few more lines
in our dipping algorithms for correctness.

Before defining the dipping result of a set of records, we
define the “answer sets” for Alice. Throughout the paper, we
use the short-hand notation µ(S) for any associative merge
function µ as the merged result of all records in the set of
records S (if S = {r}, µ(S) = r).

Definition 2.1. Given a query q, a match function M ,
a merge function µ, and a set of record R, the collection of
answer sets is A = {S1, . . . , Sm} where each Si ∈ A is a set
of records that satisfies the following conditions.

• q ∈ Si

• Si ⊆ R ∪ {q}

• The records in Si − {q} can be reordered into a sequence
[r1, . . . , rm] such that M(q, r1) = true, M(µ(q, r1), r2) =
true, . . . , M(µ({q, r1, . . . , rm−1}), rm) = true

For example, suppose we have a database R = {r1, r2}
where r1 and r2 are clearly not the same person and have
the names Alice and Alicia, respectively. However, say the
query q matches either r1 or r2 because it contains both
names Alice and Alicia and no other information. Then the
answer set is A = {{}, {q, r1}, {q, r2}}. Notice that in this
example the set {q, r1, r2} is not in A because r1, even after
it merges with q, does not match r2.

A dipping result of R is then the merged result of a “maxi-
mal” answer set from Definition 2.1 that has no other match-
ing record in R.

Definition 2.2. Given the collection of answer sets A, a
match function M , and a merge function µ, rq = µ(S) is a
dipping result if S ∈ A and ∀r ∈ R−S, M(r, µ(S)) = false.

Continuing our example from above, the dipping result rq

can be either µ(r1, q) or µ(r2, q) because once q merges with
r1 (r2), it cannot merge with r2 (r1). Notice that we exclude
the case of merging multiple records with rq at a time. For
example, even if rq matches with the merged record µ(r, s),
but not with r or s individually, then we still cannot merge
rq with r and s.

While Definition 2.2 assumes that one record is added
to q at a time, it can easily be extended to capture more
sophisticated dipping such as adding multiple records to q

at a time.
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We define the query leakage Lq(p, q, M, µ, R) of Alice as
the maximum value of Lr(p, rq) for all possible dipping re-
sults rq that can be produced using the match and merge
functions M and µ on the database R. In general, deriving
the query leakage is an NP-hard problem (see our technical
report [5] for a proof).

Properties. We identify two desirable properties for M and
µ: representativity and negative representativity. Represen-
tativity says that a merged record µ(r, s) “represents” r and
s and matches with all records that match with either r or
s. Intuitively, there is no “negative evidence” so merging r
and s cannot create evidence that would prevent µ(r, s) from
matching with any record that matches with r or s. It can
be shown that representativity guarantees the uniqueness of
a dipping result and is needed for efficient dipping. Nega-
tive representativity says that two records r and s that do
not match will never match even if r or s merges with other
records. That is, there is no “positive evidence” where r and
s will turn out to be the same entity later on. The nega-
tive representativity property also enables efficient dipping.
Note that the two properties above do not assume that r

matches with s. We can show that none of the properties
imply each other.

• Representativity: If t = µ(r, s), then for any u where
M(r, u) = true, we also have M(t, u) = true

• Negative Representativity: If t = µ(r, s), then for any u
where M(r, u) = false, we also have M(t, u) = false

We illustrate a match function called Mc and merge func-
tion called µu that satisfy both representativity and negative
representativity (the proof that Mc and µu satisfy the prop-
erties and more examples of match and merge functions can
be found in our technical report [5]). The Mc function uses
a single “key set” for comparing two records. A key set k is
a minimal set of attribute labels {l1, . . . , lm} that are suffi-
cient to determine if two records are the same using equality
checks. All records are assumed to have values for the key-
set attributes. The Mc function then matches r and s only
if they have the exact same key-set attributes. For example,
given the key set k = {A, B}, the record r = {〈A, a〉, 〈B, b〉}
matches with s = {〈A, a〉, 〈B, b〉, 〈C, c〉}, but not with t =
{〈A, a〉, 〈A, a′〉, 〈B, b〉}. As another example, the record r =
{〈A, a1〉, 〈A,a2〉, 〈B, b〉} matches with s = {〈A, a1〉, 〈A,a2〉,
〈B, b〉}, but not with t = {〈A, a1〉, 〈B, b〉}. The merge func-
tion µu unions the attributes of r and s (i.e., µ(r, s) = r∪s).
For instance, if r = {〈A, a〉, 〈B, b〉} and s = {〈A, a〉, 〈C, c〉},
then µ(r, s) = {〈A, a〉, 〈B, b〉, 〈C, c〉}.

Dipping Algorithms. In our technical report [5], we ex-
plore various dipping algorithms that exploit properties. (Ta-
ble 2 in Section 2.5 summarizes their complexities.)

2.3 Database Leakage
What happens if we do not know how Eve identifies Alice,

i.e., if we do not have a specific query q? In such a case, we
may assume that Eve can think of any one of the records
in R as “Alice’s record”. Thus, for each R record we can
compute a leakage number, and by taking the maximum
value we can obtain a worst case leakage, representing what
Eve can potentially know about Alice.

More formally, we define the database leakage Ld(p, M, µ, R)
as maxq∈R Lq(p, q, M, µ, R − {q}). That is, for each record

q ∈ R, we compute the dipping of q on R − {q} (i.e., the
database without q) and choose the worst-case query leak-
age of Alice as the entire database leakage. In our technical
report [5], we explore various algorithms that compute the
database leakage of R (Table 2 in Section 2.5 summarizes
their complexities) as well as techniques to further scale the
algorithms.

2.4 Uncertain Data
As we argued in the introduction, data confidence plays

an important role in leakage. For instance, Eve “knows more
about Alice” if she is absolutely sure Alice is 50 years old
(correct value), as opposed to thinking she might be 50 years
old with say 30% confidence, or thinking Alice is either 30
or 50 years old. To capture this intuition, we extend our
model to include uncertain data values. Note that there are
many ways to model data uncertainty, and our goal here is
not to use the most sophisticated model possible. Rather,
our goal is to pick a simple uncertainty model that is suf-
ficient for us to study the interaction between uncertainty
and information leakage.

Thus, in our extended model, each record r in R con-
sists of a set of attributes, and each attribute contains a
label, a value, and a confidence (from 0 to 1) that captures
the uncertainty of the attribute (from Eve’s point of view).
Any attribute that does not exist in r is assumed to have a
confidence of 0. As an example, the following record may
represent Alice:

r = {〈N, Alice, 1〉, 〈A, 20, 0.5〉, 〈A, 30, 0.4〉, 〈Z, 94305, 0.3〉}

That is, Eve is certain about Alice’s name and age, but
is only 50% confident about Alice being 30 years old, 40%
confident in Alice being 30 years old, and 30% confident
about Alice’s zip code 94305. For each attribute a ∈ r, we
can access a’s label a.lab, a single value a.val, and confidence
a.cnf . In Table 1, the outdated record r3 of Alice can be
viewed to have a lower confidence than the up-to-date record
r2. We assume that attributes in the reference p always have
a confidence of 1. We require that no two attributes in the
same record can have the same label and value pair.

The confidences within the same record are independent
of each other and reflect “alternate worlds” for Eve’s belief
of the correct Alice information. For example, if we have
r = {〈name, Alice, 1〉, 〈age, 20, 0.5〉, 〈phone, 123, 0.5〉},
then there are four possible alternate worlds for r with equal
probability: {〈name, Alice〉}, {〈name, Alice〉, 〈age, 20〉},
{〈name, Alice〉, 〈phone, 123〉}, and {〈name, Alice〉, 〈age,
20〉, 〈phone, 123〉}.

We show one example on how our record leakage met-
rics in Section 2.1 can be extended to use confidences. We
first define the notation IN(r, s) for two records r and s as
{a ∈ r | ∃a′ ∈ s s.t. a.lab = a′.lab∧a.val = a′.val}. That is,
IN(r, s) denotes the attributes of r whose label-value pairs
exist in s. The precision Pr or a record r against the ref-

erence p is defined as
Σt∈IN(r,p)t.cnf

Σt∈rt.cnf
. Compared to the pre-

vious definition in Section 2.1, we now sum the confidences
of the attributes in r whose label-value pairs are also in p
and divide the result by the total confidence of r. The recall

Re of r against p is defined as
Σt∈(r∩p)t.cnf

Σt∈pt.cnf
. This time, we

divide the sum of confidences of the attributes in r whose
label-value pairs are also in p by the total confidence of p.
We define the record leakage Lr as the F1 metric 2×Pr×Re

Pr+Re
.
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Confidence Properties Query Database

No (none) NP-hard NP-hard
No Representativity O(N2) O(N3)

No
Neg. Representativity

O(N) O(N2)
Representativity

Yes (none) NP-hard NP-hard

Yes
Representativity

O(N2) O(N3)Monotonicity
Increasing

Yes

Neg. Representativity

O(N) O(N2)
Representativity

Monotonicity
Increasing

Table 2: Summary of Leakage Measurements

In our technical report [5], we elaborate on how to extend
our leakage algorithms to take into account confidences. In
addition, we discuss two properties (called monotonicity and
increasing) for the extended match and merge functions that
can be exploited to compute leakage efficiently.

2.5 Summary of Contributions
As mentioned earlier, Table 2 summarizes the scenarios

we have considered in our work. The first column shows
whether or not the adversary (which we call Eve) uses con-
fidences in the leakage model. The second column shows
properties that are satisfied by the match and merge func-
tions. For each scenario (row) we have developed an algo-
rithm that computes either query or database leakage (given
a reference record p for Alice, and a database R held by
Eve), and columns 3 and 4 show the complexity of these
algorithms. As one can see in the table, the more properties
that hold, the more efficiently we can compute leakage.

The properties depend on the data semantics, and dif-
ferent applications (e.g., commercial products, publications,
personal information) will have different properties. To show
that the properties are achievable in practice, for each sce-
nario in Table 2 we have developed simple match and merge
functions that satisfy the corresponding properties. These
functions, as well as the algorithms, are all detailed in our
technical report [5].

3. USING OUR FRAMEWORK
Our framework can be used to answer a variety of ques-

tions, and here we illustrate two questions. As we use our
framework, it is important to keep in mind “who knows
what”. In particular, if Alice is studying leakage of her in-
formation (as in the two examples we present here), she
needs to make assumptions as to what her adversary Eve
knows (database R) and how she operates (the match and
merge functions, and dipping algorithm Eve uses). These
types of assumptions are common in privacy work, where
one must guess the sophistication and compute power of an
adversary. On the other hand, if Eve is studying leakage she
will not have Alice’s reference information p. However, she
may use a “training data set” for known individuals in order
to tune her dipping algorithms, or say estimate how much
she really knows about Alice.

3.1 Releasing Critical Information
Suppose that Alice wants to purchase a cellphone app

from one of two stores S1 and S2, and is wondering which
purchase will lead to a more significant loss of privacy. Both

stores require Alice to submit her name, credit card number,
and phone number for the app. However, due to Alice’s pre-
vious purchases, each store has different information about
Alice. In particular:

• Alice’s reference information is p = {〈N, n1, 1〉, 〈C, c1,
1〉, 〈C, c2, 1〉, 〈P, p1, 1〉, 〈A, a1, 1〉} where N stands for
name, C for credit card number, P for phone, and A for
address.

• Store S1 has one previous record R1 = {r = {〈N, n1, 1〉,
〈C, c1, 1〉, 〈A, a1, 1〉}}. That is, Alice bought an item
using her credit card number and shipping address. (We
omit the item information in any record for brevity.)

• Store S2 has two previous records R2 = {s = {〈N, n1, 1〉,
〈C, c1, 1〉, 〈P, p1, 1〉}, t = {〈N, n1, 1〉, 〈C, c2, 1〉, 〈A, a1,
1〉}}. Here, Alice has bought items using different credit
cards. The item of s could be a ringtone that required a
phone number for purchasing, but not a shipping address.

• Both S1 and S2 require the information u = {〈N, n1, 1〉,
〈C, c2, 1〉, 〈P, p1, 1〉} for the cellphone app purchase. Since
Alice is purchasing an app, again no shipping address is
required.

To compute leakages, say Alice is only concerned with
the previously released information, so she assumes that
the database at store S1 only contains record r, while the
database at store S2 only contains s and t. (The stores are
not colluding in this example.) Alice also assumes that two
records match if their names and credit card numbers are the
same or their names and phone numbers are the same, and
that merging records simply performs a union of attributes.

Under these assumptions, before Alice’s app purchase, the
database leakage for both stores is 3

4
. For the first store,

R1 only contains one record r, so the database leakage is

Lr(p, r) = 2×1×3/5

1+3/5
= 3

4
. For the second store, R2 contains

two records s and t, so we need to take the maximum of the
query leakages of s and t. Since s and t do not match with
each other (i.e., they do not have the same name and credit
card or name and phone combination), the dipping result of
s is s while the dipping result of t is t. Hence, the database
leakage is max{Lr(p, s), Lr(p, t)} = max{ 3

4
, 3

4
} = 3

4
.

If Alice buys her app from S1, then its database will con-
tain two records, r and u. In this case, the database leakage
at S1 is still 3

4
because r and u do not match and thus

have the same query leakage 3

4
(the maximum query leak-

age is thus 3

4
). On the other hand, if Alice buys from S2, the

database at S2 will contain s, t, and u. Since u matches with
both s and t, the dipping result of u is µ({s, t, u}), which is
identical to p. Hence, the database leakage becomes 1.

To compare Alice’s two choices, it is useful to think of the
incremental leakage, that is, the change in leakage due to
the app purchase. In our example, the incremental leakage
at S1 is 3

4
− 3

4
= 0 while the incremental leakage at S2 is

1− 3

4
= 1

4
. Thus, in this case Alice should buy her app from

S1 because it preserves more of her privacy.

3.2 Releasing Disinformation
Given previously released information R, a match func-

tion M , and a merge function µ, Alice may want to release
either a single record or multiple records that can decrease
the query or database leakage. We call records that are used
to decrease the database leakage disinformation 1 records.

1A classic example of disinformation occurred before the
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Of course, Alice can reduce the query or database leakage
by releasing arbitrarily large disinformation. However, dis-
information itself has a cost. For instance, adding a new
social network profile would require the cost for registering
information. As another example, longer records could re-
quire more cost and effort to construct. We use C(r) to
denote the entire cost of creating r.

We define the problem of minimizing the database leakage
using one or more disinformation records. Given a set of
disinformation records S and a maximum budget of Cmax,
the optimal disinformation problem can be stated as the
minimization function presented below:

minimize Ld(p,M, µ, R ∪ S)
subject to Σr∈SC(r) ≤ Cmax

The problem of minimizing the query leakage can also be
stated by replacing Ld by Lq in the above formula. The set
of records S that minimizes the database leakage within our
cost budget Cmax is called “optimal” disinformation.

A disinformation record rd can reduce the database leak-
age in two ways. First, rd can perform self disinformation
by directly adding the irrelevant information it contains to
the dipping result rq that yields the maximum query leak-
age. For example, given the database R = {r, s, t} and a
reference p, suppose the database leakage is Lr(p, µ(r, s)).
Then rq can be created to match with µ(r, s) and to con-
tain bogus data not found in p, thus decreasing database
leakage to Lr(p, µ({r, s, rd})). Second, rd can perform link-
age disinformation by linking irrelevant records in R to rq .
For example, say that t contains totally irrelevant informa-
tion of the target p. If rd can be made to match with both
µ(r, s) and t, then the database leakage could decrease to
Lr(p, µ({r, s, t, rd})) because of rd. Of course, rd can also
use both self and linkage disinformation.

When creating a record, we use a user-defined function
called Create(S, L) that creates a new minimal record that
has a size less or equal to L and is guaranteed to match all
the records in the set S. If there is no record r such that
|r| ≤ L and all records in S match with r, the Create func-
tion returns the empty record {}. A reasonable assumption
is that the size of the record produced by Create is pro-
portional to |S| when L > |S|. We also assume a function
called Add(r) that appends a new attribute to r. The new
attribute should be “incorrect but believable” (i.e., bogus)
information. We assume that if two records r and s match,
they will still match even if Add appends bogus attributes
to either r or s. (Notice that this property is similar to the
representativity property for match and merge functions.)
The Create function is assumed to have a time complexity
of O(|S|) while the Add function O(|r|). In our technical re-
port [5], we list more details to consider when adding bogus
attributes to rd using the function Add.

We propose disinformation algorithms in our technical re-
port [5], both for the case we release a single disinformation
record (S is size 1) and the case where we release multiple
records. In addition, we consider scenarios where different
properties hold. If both representativity and negative rep-
resentativity hold, one can show that a new record can only
use self-disinformation to lower the database leakage, which

Normandy landings during World War II where British in-
telligence convinced the German Armed Forces that a much
larger invasion was about to cross the English Channel from
Kent, England.

enables efficient algorithms that return the optimal disin-
formation. If the properties do not hold, a new record can
also use linkage disinformation, and we might have to con-
sider all possible combinations of irrelevant records in the
worst case (which makes the disinformation problem NP-
hard). Thus, we also propose a heuristic algorithm that
searches a smaller space, where we either combine two ir-
relevant records and use self disinformation or use self dis-
information only. As more properties are satisfied by the
match and merge functions, the more efficient the disinfor-
mation algorithms become. Similar results can be obtained
when using confidences and the monotonicity and increasing
properties for the extended match and merge functions.

4. RELATED WORK
Many works have proposed privacy schemes for data pub-

lishing in the context of linkage attacks. Various models
including k-anonymity [3] and l-diversity [1] guarantee that
linkage attacks on certain attributes cannot succeed. In con-
trast, we assume that the data is already published and that
we want to manage the leakage of sensitive information.

Several closely related products manage information leak-
age. A service called ReputationDefender [2] manages the
reputation of individuals, e.g., making sure a person’s cor-
rect information appears on top search results. TrackMeNot [4]
is a browser extension that helps protect web searchers from
surveillance and data-profiling by search engines using noise
and obfuscation. In comparison, our work complements the
above works by formalizing information leakage and propos-
ing disinformation as a general tool for containing leakage.

5. CONCLUSION
We have proposed a framework for managing information

leakage and studied how the framework can be used to an-
swer a variety of questions related to ER and DP. The algo-
rithms for computing leakage become more efficient as the
match and merge functions satisfy more properties. We have
studied the problems of measuring the incremental leakage
of critical information and using disinformation as a tool for
containing information leakage. We believe our techniques
are preliminary steps to the final goal of truly managing
public data, and that many interesting problems remain to
be solved.
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