Caravan: Provisioning for What-If Analysis

Daniel Deutch Zachary lves
Ben-Gurion Univ. Univ. of Pennsylvania
daniel.deutch1@gmail.com zives@cis.upenn.edu

ABSTRACT

Problems of what-if analysis (such as hypothetical deletions, in-
sertions, and modifications) over complex analysis queries are in-
creasingly commonplace, e.g., in forming a business strategy or
looking for causal relationships in science. Here, data analysts are
typically interested only in task-specific views of the data, and they
expect to be able to interactively manipulate the data in a natural
and seamless way — possibly on a phone or tablet, and possibly
via a spreadsheet or similar interface without having to carry the
full machinery of a DBMS.

The Caravan system enables what-if analysis: fast, lightweight,
interactive exploration of alternative answers, within views com-
puted over large-scale distributed data sources. Our novel approach
is based on creating dedicated provisioned autonomous representa-
tions, or PARs. PARs are compiled out of the data, initial analy-
sis queries and user-specified what-if scenarios. They allow rapid
evaluation of what-if scenarios without accessing the original data
or performing complex query operations. Importantly, the size of
PARs is governed by the parameters of the what-if analysis and
is proportional to the size of the initial query answer rather than
the typically much larger source data. Consequently, many what-if
analysis tasks performed through PAR evaluations can be done au-
tonomously, on limited-resource devices. We describe our model
and architecture, demonstrate preliminary performance results, and
present several open implementation and optimization issues.

1. INTRODUCTION

With the advent of large scientific community repositories, busi-
ness-to-business cooperatives, and enterprise warehouses — there
are increasingly many settings with large numbers of relations and
interrelated derived views, whether within a single database in-
stance [9] or across multiple distributed sites (e.g., data exchange [6]
or collaborative data sharing [14]). Such sources of data may be
used to answer a vast array of different questions. However, a typi-
cal end user of the data will likely be interested in a fairly restricted
set of information: e.g., an account executive may care about the
data and customers within his or her region, or a scientist may care
about specific organisms or genes. Ideally, the user will interact
with the relevant data via an interactive application — whether a
domain-specific application used by the analyst, a spreadsheet in-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.

CIDR’13 6th Biennial Conference on Innovative Data Systems Research,
January 6-9, 2013, Asilomar, California, USA.

milo@post.tau.ac.il

Tova Milo Val Tannen

Tel Aviv Univ.  Univ. of Pennsylvania & EPFL
val@cis.upenn.edu

terface over a DBMS [16, 18], a visualization tool, or even a con-
ventional spreadsheet. Today, such a spreadsheet might not even be
hosted on a conventional PC, but rather a tablet or a phone!

The end user’s goal may be to understand the data in his or her in-
terest area, and to experiment with predictions, forecasts, and diag-
noses. Hence he or she will often want to do more than pose single
static queries: he or she may want to interact with the system by
drilling down or refining a query, or by considering hypothetical
updates — modifying some assumptions, projecting an outcome,
postulating a connection, etc. In general, the goal is to perform
some form of what-if analysis, over a view or set of related views
over the data — without having to modify the original copy of the
data and producing side effects elsewhere within the data manage-
ment infrastructure. We illustrate with a simple running example.

EXAMPLE 1.1. An analyst working for PhoneCo is looking at
data involving customers, their current subscriptions to calling plans,
plan prices, and call durations, using the following schema:

Cust(Num,Name,State) Subscr(Num,Plan)
Plan(Name,Mo,Price) Call(Num,Mo,Dur)
MonthQuarter(Month,Quarter)
The call durations in minutes are already totaled by month for each
customer. Plan per minute prices may vary from month to month.
Now consider an analysis question, “Compute the company rev-
enues grouped by and totaled by calling plan, quarter, and month.”
Perhaps the user’s original view of the data might be captured in
SOL as:
SELECT Plan, Quarter, C.Mo, SUM(Dur * Price)
FROM Call C, Subscr S, Plan P, MonthQuarter MQ
WHERE C.Num=S.Num AND Plan=P.Name AND
C.Mo=P.Mo AND MQ.Month = P.Mo
GROUP BY ROLLUP (Plan, Quarter, C.Mo)
The user, performing as an analyst, may want to explore the rev-
enue figures under some “what-if”’ scenarios:

S1. What if prices for Connecticut and Pennsylvania customers
during some quarter are decreased by 20%?

S2. What if Connecticut customers made no calls in January?

S3. What if the analyst wants to see just the revenue from cus-
tomers in Pennsylvania that subscribe to Plan A?

All these scenarios involve query refinement, and specifically they
may require additional detail about State data. S1 asks for hypo-
thetical modifications while S2 and S3 ask for hypothetical dele-
tions. Note also that SI has a parameter that can be set to any of
4 quarters. (The percentage could also be a parameter, one that
takes continuously many values.) We can also think that each sce-
nario is associated with a Boolean parameter which encodes that
the scenario is on/off. All in all, there are 5 X 2 X 2 = 20 (counting
the Boolean conditions and parameters for each scenario) separate



combinations of parameter values that yield (in general) 20 distinct
answers, and the analyst may want to explore any number of them.

The previous example also emphasizes an important challenge:
an analyist may formulate a reasonably short list of what-if scenar-
ios, like the three above, but will in principle be interested in any of
the possible ways of considering subsets of these scenarios (turning
any of them “on/off”) and of all possible values given to the vari-
ous parameters. Throughout the paper we will refer to these many
more situations as combinations of scenarios keeping in mind that
the number of such combinations is exponential in the number of
scenarios/parameters.

The question, then, is how to enable the user to interact with
a view instance by refining such parameters, e.g., as the ones as-
sociated with our three scenarios in the above example. Ideally,
each time the user tweaks parameters and tests a combination of
scenarios, the system should recompute the contents of the view
at interactive rates (generally considered to be 300msec or faster).
Many spreadsheets can provide such responsiveness, but in gen-
eral spreadsheets operate in main memory and do not scale to large
OLAP settings. Conversely, what-if analyses are only addressed in
a limited way using today’s widely available OLAP technologies
— which help with certain query refinements but not with hypo-
thetical updates, since they are focused on querying over existing
state. (Some past investigations of querying under hypothetical up-
dates, e.g. [8, 12, 4], are discussed in Section 6.) To accomplish
what-if analysis today, we must have direct access to the source
data or a replica, and must determine the effects of query refine-
ment and hypothetical updates by reformulating the initial query
and maybe even performing some transactional updates. Moreover,
we must repeat this for each combination of scenarios of interest.
Such repeated computations can get expensive as the queries are
posed over multiple levels of views and aggregates, or in a dis-
tributed setting. They are unlikely to provide sub-second response
rates, and moreover, they rely on having direct access to full DBMS
machinery and all of the data underlying the view(s).

Intuitively, it should be possible to precompute some parame-
terized data instance (where the parameters come from the what-if
scenarios) which then enables rapid and autonomous recomputa-
tion of the effects of updates over the view, analogous to the way
today’s DBMSs use materialized views to speed up evaluation of
complex queries. This parameterized data instance would have to
maintain the information that is relevant to scenarios, information
that would otherwise not appear in the original view (e.g., in Ex-
ample 1.1, to deal with the discounting in scenario S1 it would
have to preserve separately the computed revenue from Pennsyl-
vania and Connecticut for each quarter). Moreover, it would have
to do this for all what-if scenarios at once and only preserve the
“minimum necessary” information such that we do not preserve,
e.g., the entire source database. We refer to the problem of creating
such parameterized instances as provisioning and to the instances
as provisioned autonomous representations or PARs.

Provisioning introduces many of the same problems as view ma-
terialization: choosing what to materialize, trading off space and
time, and using the PAR to compute results for a combination of
what-if scenarios. While the example above is simple for exposi-
tory reasons, in general we expect typical what-if scenarios to be
similarly characterized by a fixed and relatively small number of
parameters or options. We show that the corresponding PARs are
in general much more compact than materialized views, and may
be created for highly complex OLAP views. Moreover, we con-
sider it highly desirable that the PAR can be stored in a spreadsheet
or similar client application, and that the view instance correspond-
ing to a combination of scenarios can be rapidly evaluated over the

PAR in a single pass. Therefore the size of the PAR should be
comparable to the size of (the largest of) the answers/views that
it represents, rather than the size of the source data, or even of a
significant portion thereof. This introduces a number of issues in
determining how to most efficiently compute and encode the data
for the PAR, as required for the different combinations: how ag-
gressively do we combine common subexpressions, when should
we add rows versus columns to capture different scenario combi-
nations, etc. Of course, as we encode the PAR we must additionally
generate the view, spreadsheet, or user interface code that evaluates
scenario combinations over it. Our work on the Caravan system has
begun an exploration of these issues.

The rest of this short paper is organized as follows. Section 2
presents an overview of our system architecture. In Section 3 we
describe the formal model for provisioning, and in Section 4 we
show how to compute PARs. We next present preliminary results
to illustrate the three-orders-of-magnitude and higher performance
gains provided by PARs. Finally, we discuss related work in Sec-
tion 6 with conclusions and future work in Section 7.

2. CARAVAN SYSTEM ARCHITECTURE

As illustrated in Figure 1 provisioning is achieved via two com-
ponents (separated by the vertical dashed in the figure) with quite
different computing characteristics. In the first stage, we have the
Caravan system, a “thin”” middleware layer that wraps with addi-
tional capabilities an existing query system (in the current Caravan
implementation this is IBM DB2 or MySQL, but it could alterna-
tively be an enterprise information integration system). Caravan
passes through standard DBMS requests, but it is especially de-
signed to support what-if analysis over OLAP queries with lightweight
clients. Given the definition of a view of interest to the user, as well
as a set of possible what-if scenarios (both defined in a novel provi-
sioning query language that extends SQL), Caravan provisions by
computing one or more PARs. Intuitively, PARs represent minimal,
compressed, parameterized instances from which answer instances
under any combinations of scenarios can be computed. The re-
quirements of this first stage are similar to those needed to compute
the view itself, whether a server-based RDBMS or a query system
over federated databases.

PARC(s) are then transferred to the second component, an inter-
active client application (currently a spreadsheet or a lightweight
DBMS). This second stage’s requirements are much simpler. The
client application does not present PARs directly to the user, but
rather evaluates them for different parameter values, yielding a sin-
gle database view instance. A useful metaphor (continued in Sec-
tion 3) is that of a “dashboard” with “switches”, “knobs”, and a
“go” button. Giving values to the parameters that appear in a PAR
corresponds to the user setting switches and turning knobs. The
user then hits the go button and the application displays the view
instance that corresponds to the chosen switch/knob settings. This
can be repeated indefinitely, and does not affect the original database
unless the user specifically requests updates in accordance with the
knobs’ settings. In our current platform, we have implemented such
a dashboard both with a spreadsheet, in which case the data seen
by the user is a tab that contains formulas linked to the PAR; and
with a lightweight DBMS, in which case the data seen by the user
is a view computed based over the PAR instance.

3. PROVISIONED
REPRESENTATIONS

In this section we describe the main ingredient of our approach
to provisioning. We intend provisioned autonomous representa-

AUTONOMOUS



What-if scenarios View
ab,... definition

Caravan Provisioning

D
Data
Sources Query
System

Interactive App

ult View
inst.

View
inst.

View
inst.

View
inst.

Figure 1: Caravan layers over a query system to compute provisioned autonomous representations (PARs) from view definitions and lists of what-if
scenarios. PARs are then transfered to a client spreadsheet or other interactive application. Based on user interaction different combinations of

scenarios can be selected, returning different instances of the view.

tions (PARs) to have the ability to produce in a lightweight fashion
the answer to any combination of the what-if scenarios from which
they were built. Since we need compact single representations of
multiple answer instances, it is natural to appeal to past work on
incomplete databases and specifically to the conditional tables (c-
tables) of [13]. In c-tables, the tuples are associated (annotated)
with conditions: Boolean expressions involving variables (param-
eters). When the parameters are given values, these annotations
evaluate to true of false. Keeping only the tuples annotated true
yields a conventional relation.

For us, the parameters correspond to the what-if scenarios. Con-
tinuing the dashboard metaphor introduced in Section 2 we think
of giving values to the parameters as setting switches and turning
knobs. Typically, for each scenario we have a Boolean parameter
(a switch parameter) which is valuated to true when the scenario
is on and false when it is off. Knob parameters capture additional
aspects of the scenarios and can be string, integer, or real values as
needed. Boolean parameters participate directly in the annotations
while we use the Boolean-valued construct [Attr @ p| to involve
the knob parameter p in annotations (6 is equality, inequality, etc.).

C-tables are not appropriate for queries with aggregation (they
lead to an exponential blow-up in data complexity [3]). Follow-
ing [3] we associate (annotate) also the values that participate in
an aggregation with conditions—Boolean expressions. Suppose
we sum-aggregate n values of Attr such that the tuple in which
v, appears is annotated with the (condition) Boolean expression
bk, k=1,...,n. We express the result as

('Ul)bl + -+ ('Un)bn

and we allow such expressions to appear in the fields of a PAR.
The use of + in the expression above is akin to the use we make
of operation symbols in conventional algebraic expression: while
we have variables, we can only do algebraic manipulations; how-
ever when the variables are replaced by numbers then we can do
arithmetic and get a numerical result. Indeed, the key to dealing
with annotated aggregation expressions efficiently, are their rich al-
gebraic properties [3], specifically the fact that + is associative and

commutative and

(u)b + (v)b (u+v)b
(()b1)b2 = (v)b1b2

where b1 b is short for by A ba.

(v)false = 0

(v)true = v

EXAMPLE 3.1. Continuing example 1.1 we show in Figure 2
(a) the PAR generated from the scenarios S1,52,53, from the orig-
inal revenue view definition shown in example 1.1 and from some
sample data, a PhoneCo instance similar to the one used in the
experiments described in Section 5. In the sample data, which as-
sumes two calling plans, the tables Cust and Subscr have on the
order of 400K tuples each and Call has on the order of 4.8M tu-
ples assuming that it totals durations for each of 12 months.

Therefore the PAR is a table with 2 X (12 4+ 4 + 1) = 34 tuples
(only 5 rows are shown in Figure 2 for simplicity) featuring switch
(Boolean) parameters si1, s2, S3 where s, = true iff Sk is on, and
the additional knob parameter p1 (used in S1) that can be set to
any of 1st,2nd, 3rd, 4th. Combinations of scenarios corre-
spond to assignments of values for these parameters. Notice that
the PAR has both annotated values (in the sum-aggregations) and
annotated tuples and that the annotations are boolean expressions.
The example can be understood just from the following evaluation
rules: (1) tuples annotated with true are kept, (2) those annotated
with false are deleted, (3) (v)true = v, and (4) (v)false = 0.
Notice that the Amt fields contain aggregations of values associ-
ated (annotated) with Boolean expressions (when the annotation is
Just true it is omitted since (v)true = v). The aggregations that
appear in the PAR involve only a small number of terms (mostly
up to 4 terms but in one global summary row we have 12) even
though they result from the grouping-aggregation of millions of tu-
ples. This is because the computation of the PAR takes advantage
of the algebraic laws that govern these expressions: distributivity
of annotation over sum, associativity, commutativity, etc. The num-
ber of terms in the PAR aggregation expressions is not determined
by the size of the input data, but by how many separate combi-
nations of scenarios we must keep track of. The result is a small
PAR that yields, at interactive speeds, any of the conventional an-
swers of interest — in particular those shown in Figures 2 (b), (c),
and (d). Note, for example, that under S3 the annotation of the B-



Plan Qrt Mo Amt cond
A 1st Jan (750K) 4 (—150K)s1[p1 = 1st] + (500K)32 53 + (—100K)s1[p1 = 1st]s253 | true
B 1st Feb (600K)s3+ (—40K)si[p1 = 1st]s3 53
A 1st null (1800K) + (—360K)s1[p1 = 1st] + (500K)3z 53+

+(—100K)s1[p1 = 1st]|52 55 + (650K)535 4+ (—130K)s1[p1 = 1st]s3 true
B 2nd null (2600K)s3 + (—240K)s[p1 = 2nd]s3 53
B null null (12000K)s3 + (—360K)s1[p1 = 1st]s3 + (—240K)s1[p1 = 2nd|s3
+(—360K)s1[p1 = 3rd]ss + (—240K)s1[p1 = 4th|s3 53
(a)
Plan Qrt Mo Amt Plan Qrt Mo Amt
A 1st Jan 1250K A 1st Jan 600K
Plan Qrt Mo Amt
B 1st Feb 600K B 1st Feb 560K
A 1st Jan 600K
A 1st null  2950K A 1st null  1960K
A 1st null 1440K
B 2nd null  2600K B 2nd null  2600K
B null  null  12000K B null null 11640K
(b) () (d)

Figure 2: (a) Some rows from the provisioned autonomous representation (PAR) for S1, S2, and S3; (b) answer to initial query, all scenarios
off: s1 = s2 = s3 = false; (c) all scenarios are on (S1 with first quarter): s; = s = s3 = true,p1 = 1st; (d) S1 and S2 are on (S1 with

first quarter) but S3 is off: s; = s = true, p1 = 1st, s3 = false.

tuples of the PAR is 53 = false so they go away in Figure 2 (c).
Note also that under S1 with the first quarter knob choice we have
[p1 = 2nd] = false so revenue in the second quarter does not differ
between Figures 2 (d) and (b).

Our example illustrates a quite general situation: the size of (an-
notated) result depends primarily on the number of scenarios, rather
than on the source data size. This observation is key for the appli-
cability of provisioning.

In a similar fashion to sum-aggregation, our framework also sup-
ports max/min-aggregation (and count and average are derived from
sum). The entire framework is compositional with respect to query
constructs and allows for nested aggregation, since we can put ag-
gregation expressions everywhere where a value is expected, even
within comparison predicates in condition annotations.

The Boolean-valued construct [Attr 6 p| is a particularly flexi-
ble device. For example, if our view definition also included

HAVING Amt > 1300K
then our PAR would include conditions such as

33[(1400K)33 + (—160K)s1[p1 = 1st]s3 > 1300K]

In the end, given a parameter valuation all such conditions still eval-
uate to true or false.

4. IMPLEMENTING PARS

PAR implementation is comprised of three interrelated aspects.
The first is computing the PAR efficiently given the original view

definition, the set of scenarios and a (possibly distributed) data in-
stance. The second aspect is finding compact encodings for PARs
and the third is fast evaluation of PARs producing view instances
that correspond to user-specified choices of scenario combinations.
We assume data analytics-scale computing power to be available
for the first aspect, but only limited-resource environments for the
second and third.

4.1 Provisioning the View

In a first phase, Caravan takes a view definition and a set of
what-if scenarios and rewrites the view definition into a provision-
ing computation according to rules that are compiled by Caravan
from each of the what-if scenarios (formulated in a dedicated spec-
ification language). We can think of the provisioning computation
as a query computation. Recall however that PARs go beyond con-
ventional instances in several ways: they include boolean-valued
expressions built from parameters (variables), they include annota-
tions (associations) of tuples by such expressions as well as similar
annotations of values that participate in an aggregation. Neither
variables nor annotations will appear in the data sources so they
must be introduced by the provisioning query, which means that
it will have to feature constructs beyond the standard SQL. These
constructs manipulate will manipulate the scenario parameters and
will build annotations. We sketch the process of our preliminary
implementation here, starting with an illustrative example.

EXAMPLE 4.1. Again continuing Example 1.1 we show how to
rewrite the original view definition in order to provision for S1.



SELECT Plan, Quarter, C.Mo,
SUM(Dur * Price *
(-
(0.2) CASE WHEN State="CT’ OR State="PA’
THEN s1 AND [p1=Quarter] ELSE FALSE END
)
FROM Call C, Subscr S, Plan P, MonthQuarter MQ, Cust Cu
WHERE C.Num=S.Num AND Plan=Name AND C.Mo=P.Mo AND
Month=P.Mo AND S.Num=Cu.Num
GROUP BY ROLLUP (Plan, Quarter, C.Mo)
Note the (nonstandard SQL) construct that annotates (0.2) by
Boolean expressions. In order to compute a small PAR with this
query the Caravan engine takes advantage of algebraic manipula-
tions to arrange the term such that what is summed is the annotated
aggregation expression:

(Dur * Price)true + (—Dur * Price * 0.2)s1[pl = Quarter]

During the computation of the PAR Caravan creates, for each group,
two buckets, one corresponding to the annotation true the other to
s1[pl = Quarter] and sums in each bucket the corresponding val-
ues. The resulting Amt in the PAR (for plan B, 1st quarter and
Jan) is (1250K)true + (—250K)s1[pl = Quarter| This corre-
sponds to the informal understanding of the problem: 1250K is
the revenue when S1 is off; when S1 is on and it discounts the first
quarter, we subtract 250K yielding 1000K.

For scenario S2 (respectively S3), the rewriting will introduce
further (semi)joins between Call (respectively Subscr) and Cust as
well as tuple annotations involving the switch parameter ss (re-
spectively s3) to capture the hypothetical deletions.

We take the query for building the PAR and create two comple-
mentary views:

1. An SQL materialized view for the PAR itself that computes,
in a separate column, each intermediate value that is condi-
tionally used in a scenario. We discuss the contents of this
view in the Section 4.2.

2. A means of computing a single instance from the PAR (via,
e.g., a parameterized SQL query or even a spreadsheet). This
takes parameters and the materialized view representing the
PAR, and returns the results corresponding to the scenario
combination. We discuss this second construct in Section 4.3.

We now describe how we achieve these two subtasks.

4.2 Encoding PARs in Relations

While standard SQL does not support direct encoding of annota-
tions and expressions within tables, there is a reasonably straight-
forward mapping from a PAR to a materialized encoding. This
involves involves taking each WHERE or SELECT expression, and
determining the set of parameters involved. In our example, these
are s1 and p1.

We next do case-based reasoning about the subexpressions de-
pendent on each such parameter and scenario. We look at the PAR
generation query and each component that is dependent on a sce-
nario: here, s1 affects the sum for tuples where the state is CT or
PA, and p1 affects tuples where the quarter is equal to the value of
p1. Our initial implementation creates a separate column for each
such subexpression.

EXAMPLE 4.2. We would transform the extended SQL for sce-
nario S1 from our previous example into the following, by observ-
ing the portion of the SUM conditioned on scenario S1. The re-
sulting view separately computes attributes for the overall monthly

revenue and the potential discount for Pennsylvania and Connecti-
cut. We will get one attribute for each derived result used in a
scenario.

CREATE MATERIALIZED VIEW Scenario1_PAR_Encoding

SELECT Plan, Quarter, C.Mo,

SUM( Dur * Price ) AS Amt1,
SUM(CASE WHEN State = 'CT’ OR State = 'PA’
THEN 0.2*Dur*Price ELSE 0 END) AS Amt2

FROM Call C, Subscr S, Plan P, MonthQuarter MQ, Cust Cu

WHERE C.Num=S.Num AND Plan=Name AND C.Mo=P.Mo AND

Month=P.Mo AND S.Num=Cu.Num

GROUP BY Plan, Quarter, C.Mo
Observe that this materialized view separates out the portion of the
arithmetic expression attached to the CASE WHEN State = 'CT’ OR
State = 'PA’ scenario test. The test for the value of s1 can only be
evaluated at runtime, hence this expression is given its own column.
Similarly, we cannot evaluate p1=Quarter until runtime, and the
view must output Quarter (which in fact it already did according to
the original PAR definition).

The above expression may need to be further factored into a
query and subquery for some DBMSs, e.g., the above works in
MySQL but not DB2. This is due to restrictions on how aggegation
and conditionals can be applied. For DB2 we generate separate
subqueries to compute the different sets of tuples to be aggregated
under different scenarios, e.g., PA vs. CT vs. the remaining states.

Our preliminary implementation is relatively naive in several
ways. It enumerates scenarios individually and does not consider,
e.g., ways of pre-evaluating results based on scenario combina-
tions, or ways of reusing columns if certain combinations are mu-
tually exclusive. Moreover, for some settings it might be more ef-
ficient to encode some of the scenario data in additional rows as
opposed to columns. We hope to explore such opportunities in the
future.

4.3 Computing Instances for Scenarios

For the implementation that uses a lightweight DBMS, along
with creating a relation encoding the PAR, Caravan simultaneously
creates a parameterized view that can be used to evaluate the in-
stance under the different scenarios. Given the rewritten view def-
inition from Section 4.1, we further rewrite it to make use of the
materialized view representing the PAR: this is straightforward, as
the materialized view precisely matches it except that it separately
encodes the intermediate results for operations that are conditioned
on scenarios or parameters. Each subexpression that is conditioned
by a variable is in its own column in the materialized view, and
we can use an SQL CASE statement to combine the results of such
subexpressions, based on the values of the parameter(s).

We arrive at a final PAR evaluation view that consists of selec-
tion conditions and expressions over the parameters (plus, in our
specific case, an inexpensive computation of the ROLLUP values
over the already-aggregated line items) and the single materialized
view corresponding to the PAR. From this pairing of materialized
PAR encoding and parameterized PAR evaluation view, any com-
bination of scenarios can be directly and efficiently evaluated.

EXAMPLE 4.3. Continuing our running example, the parame-
terized view would be as follows.
SELECT Plan, Quarter, Mo,
CASE WHEN ?s1 AND ?p1=Quarter THEN Amt1
ELSE Amt1 - Amt2 END
FROM Scenario1_PAR_Encoding
GROUP BY ROLLUP (Plan, Quarter, C.Mo)



Our examples have all been based on SQL, under the assumption
that the client is a DBMS. Very similar techniques can be used to
map to a spreadsheet such as Microsoft Excel: here Caravan com-
putes the PAR-encoded materialized view in an almost identical
fashion, using the conditional primitives (IF/ELSE), aggregate func-
tions, and expressions supported by the spreadsheet. Such a view
can then be loaded directly into the spreadsheet, in a way that sup-
ports fully autonomous evaluation because all data is pre-encoded.
Observe that this is quite different from most existing schemes for
supporting spreadsheet views over databases, such as Oracle Gold-
enGate, in that what-if evaluation leaves the database unaffected.
It also differs from techniques that simply copy the contents of a
view into a spreadsheet, as what-if scenario changes can be made;
and from techniques that copy the source data into the spreadsheet,
as we do not need to carry along all of the database data.

5. PROOF-OF-CONCEPT EXPERIMENTS

To demonstrate the potential of PARs for speeding up what-if
analysis, we show preliminary numbers for a workload based on
our example scenario. We took the original view and scenarios
used in Example 1.1. We built a simple data generator largely mod-
eled after the one for TPC-H. The data generator creates 400K cus-
tomers by randomly concatenating strings for names. Customers
are assigned one of two plans and a state uniformly at random.
Each plan alternates between two prices in consecutive months. Fi-
nally, users are allocated different call durations each month. Our
experiments compare the performance of computation and evalu-
ation of PARs versus running the user’s view (modified for each
scenario) in its entirety. We also considered running times for each
scenario using incremental view maintenance. We conducted ex-
periments in two settings. To illustrate server performance we
used a 2.83GHz dual Xeon E5440 (i.e., 8-core) Dell PowerEdge
1950 with 8GB RAM, Windows 2008 Server (64b), IBM DB2
UDB 9.5.0.808, and Java JDK 1.6.0_11. We also show timings for
the same experiments (other than PAR creation, which is intended
to be server-side, and non-incremental view update, which is an or-
der of magnitude slower than incremental update) in a laptop set-
ting, for which we used a Core 2 Duo L9600 machine (dual-core)
with 4GB RAM and a 200GB SSD, using Java JDK 1.6.0_29 over
MySQL 5.1 on Windows 7 SP1. Experiments are averaged across
9 runs, using prepared statements and a warm cache.

From the results in Table 1, we observe that fully recomputing
the view instance based on scenarios (S1-S3) is at least as expen-
sive as the original query (Scenario S1 introduces a union, so it is
more costly). Creating the PAR (build PAR) has essentially the same
cost as computing the original view instance (the 0.2 sec difference
is well within the variance between runs). Incremental maintenance
using the base  data(incremental-S1 -  incremental-
S3), where we have local access to the entire database, takes sev-
eral seconds on the server, and more than 8 seconds on the laptop.
This is significantly slower than users expect for an interactive ap-
plication, and moreover seems implausible in mobile settings. On
the other hand, computing scenarios via the PAR (PAR-original-view
and PAR-S1-PAR-S3) provides results in under 2.5 milliseconds —
a 1000x performance improvement on the server.

We also copied the PAR to Microsoft Excel 2007, using Excel’s
conditional formulas to compute the result from the PAR, and con-
verting the ROLLUP columns to cumulative totals. The effects of
updating the results here were seemingly instantaneous (but diffi-
cult to measure due to the interactive user interface).

Our results are still preliminary, but we believe these suggest
the speedups are significant enough to make previously-expensive
queries into ones that can be computed at interactive speeds. While

Computation Server Laptop
build PAR 11.2 sec N/A
original view 11.4 sec 4.65 min

PAR-original-view | 0.66 msec | 2.76 msec
S1 18.3 sec
7.64 sec

>4 min

incremental-S1 21.4 sec

PAR-S1 2.33 msec | 3.33 msec
S2 11.1 sec > 4 min
incremental-S2 4.17 sec 5.80 sec
PAR-S2 0.64 msec | 2.43 msec
S3 10.3 sec > 4 min
incremental-S3 3.57 sec 8.21 sec
PAR-S3 0.76 msec | 1.50 msec

Table 1: Experimental results show significant speedup factors
for PARs.

in general we expect that the user may not be exploring a huge
number of potential combinations of scenarios, it is entirely likely
that they may be adjusting certain parameters many times to “fine
tune” their results.

6. RELATED WORK

We discuss related work in two areas: (1) other approaches to
answering queries under hypothetical updates and (2) data annota-
tion, which serves as background for our approach.

We have already discussed in the introduction that with unre-
stricted direct access to the source data or by building a replica
of it (e.g., in a warehouse) we can perform what-if analysis with
conventional means: running multiple variants of query and per-
forming as needed transactional updates (and then rollbacks). Up-
dates/rollbacks are expensive and cumbersome. Avoiding transac-
tional updates is the goal of the elegant work in Heraclitus/HQL [8,
12] and SESAME [4] which investigates languages that combine
querying with hypothetical updates, and their implementation over
data warehouses. The salient ingredient in these papers is rewriting
of queries under hypothetical update scenarios. We use rewriting
also but there is a big difference. Suppose a user has n scenarios
and thus may be interested in up to 2" combinations thereof. Her-
aclitus/HQL/SESAME rewrite the query together with each com-
bination of scenarios separately and run the resulting query. Thus
to get 2" different answers they run 2" different queries, each of
complexity comparable to the original query. Caravan rewrites the
query together with original n scenarios producing one (provision-
ing) query. Running this query builds a PAR. Out of this PAR we
can obtain, at interactive speeds, any of the desired 2™ answers. As
we show in our experiments, for Caravan computing an answer out
of a PAR is several orders of magnitude faster than running the orig-
inal query or its scenario-modified versions, even with incremental
maintenance.

Evaluating Datalog queries under hypothetical deletions and in-
sertions was studied in [5]. ' The scenarios are not separated from
the program and, as in Heraclitus/HQL/SESAME, each combina-
tion of scenarios leads to a running a separate program. Another

'The paper is a also a link to the rich Al literature on “hypothetical
reasoning”.



related project [15] adds perspectives to Essbase/MDX [2, 1] thus
enhancing the capabilities of its warehouse server to allow for re-
finement of OLAP query dimensions.

The concept of annotating data with Boolean conditions which is
central to our proposed techniques has its roots in the seminal work
on conditional tables for incomplete databases [13]. We further
build upon recent advances in data provenance research that uses
the “semiring framework™ [10]. Specifically, we use the concept of
annotating queries, introduced in [7]. We also note that aggrega-
tions are central to what-if analysis and therefore in our example;
the mechanism of propagating annotations through aggregation that
we used in the generation of PARs was developed in [3].

7. CONCLUSIONS AND CHALLENGES

We have presented an approach for a fast, lightweight, interac-
tive client-based exploration of what-if scenarios, that is centered
around the notion of provisioning. We have shown how to compute
a Provisioned Autonomous Representation (PAR) that allows the
user to explore a set of different what-if scenarios, without resorting
to the original database, and without expensive evaluation. Such
PARSs require little computing power to produce view instances,
and are thus well-suited to client-based evaluation in a spreadsheet,
on a tablet, or even on a phone. Our initial experimental results
show that the proposed method outperforms conventional schemes
by orders of magnitude.

There are many essential aspects to consider in future work and
we list the most important of these.

The PAR selection problem. One of the major challenges that
PARSs introduce — as with materialized views and the associated
view selection problem — is the question of what autonomous rep-
resentation(s) to compute for a set of user views, and when they
are advantageous. This requires a more comprehensive theoretical
understanding of the sizes of PARs (for most views the size of the
PAR depends on the number of different scenarios rather than on
the database size, but there are formulations where the domain of
the parameters may also affect the size). Effective cost estimation
techniques are also needed for computation and evaluation. More-
over, our early experience suggests that there are often choices be-
tween creating multiple PARs or creating larger PARs, and these
have different performance implications. Another important ques-
tion is how best to materialize PARs for use in answering multiple
views, as in [17]. Finally, for situations in which the source data it-
self is distributed, as in [14], there are many questions about where
to compute and place PARs. Given that computation becomes more
expensive, PARs are actually likely to be even more desirable.

PAR encoding. Our current scheme is fairly primitive for en-
coding the PAR and the query or spreadsheet that evaluates sce-
narios over it. We plan to explore different schemes for making
the PAR more compact by reusing columns when certain scenar-
ios are mutually exclusive. Additionally, for some scenarios, espe-
cially those involving aggregate functions applied over values con-
ditioned on scenarios, it may be more efficient to add further rows
to the database, which might reduce the number of additional views
to be created. Of course, such decisions may “blow up” the number
of tuples and must be done in a cost-based fashion.

Insertions and random choices. Our examples did not in-
clude hypothetical insertions. One may consider two flavors of in-
sertions in this context. The first, which is easy to incorporate in
Caravan, comprises only fully specified insertions of the kind con-
sidered in Heraclitus/HQL/SESAME. Such insertions require the
analyst to incoporate the new tuples in full detail within the what-if
scenarios. Clearly this approach is restricted to a few insertions.

For example, within our running PhoneCo example, a possible sce-
nario would be to add a new plan and switch all Pennsylvania cus-
tomers to it. This involves hypothetically inserting a few tuples into
the P1an table and hypothetically modifying Subscr. Let us also
point out that our framework also supports the case when inserted
data is from a view of the existing data.

However, there are other interesting kinds of hypothetical inser-
tion scenarios. In particular, analysts will want to postulate the
addition of large amounts of new data, too large for them to spec-
ify in complete detail (when pressed they might say that some of
the new data consists of random values). Consider the scenario
“(S5) What if we acquire 10% more customers in Connecticut?”
It sounds reasonable, but what are the plans and the calls of these
new customers? The user will not specify these for tens of thou-
sands of records. Instead she might say “distributed randomly like
the others” or “plan A or B with equal probability”, etc.

The issue of random choices is not restricted to insertions. Con-
sider another natural question: “(S6) What if 30% of plan A cus-
tomers in Pennsylvania switch to plan B?” This is also underspeci-
fied: which of the customers should we switch? (this matters since
the call durations are different). It turns out that Caravan can handle
S6 and also random deletions by building a PAR based on proba-
bilistic conditional tables [11] which can also be extended to ex-
pected values of aggregations.

Scenarios like S5, however, are an interesting challenge for fu-
ture work. Another interesting challenge for future work is to con-
sider random choices governed by continuous distributions. Some
such can already be handled with formulas in the provisioning com-
putation while others require a significant extension of the frame-
work.

Specification Languages and Tools. While we have devel-
oped an early set of SQL extensions in Caravan to compute a PAR,
an additional important facet to consider is the specification of the
what-if scenarios by the administrator or the user. We plan to
design the formal syntax and semantics of such specification lan-
guage, building upon the foundations of annotating queries [7].

Clearly, specifying what-if scenarios is not an easy task for an
analyst both because it requires understanding what can be changed
and because of the dangers of scenarios that may be inconsistent
with each other, may yield different results depending on the order
they are applied, or may lead to unwieldy PARs. We discussed
already the last issue above. More generally, to help the analyst we
will further pursue the implementation of interactive fools that aid
users in specifying the scenarios, point out potential inconsistencies
provide feedback on the impact of each new scenario on the size or
cost of the PAR.

Acknowledgments

We thank the reviewers for their helpful comments. This research
was funded in part by NSF grants IIS-1217798 and CNS-1065130,
by the Binational (US-Israel) Science Foundation, by the Israeli
Ministry of Science, and by the European Research Council un-
der the European Community’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant MoDaS, agreement 291071. Val
Tannen is grateful to EPFL for the excellent sabbatical support re-
ceived.

8. REFERENCES

[1] Multidimensional expressions (mdx) reference. Available at
http://msdn.microsoft.com/en-us/library/
ms145506.aspx.



(2]

(3]

(4]

(3]
(6]

(7]

(8]

(9]

(10]

Oracle Essbase overview. Available at
http://www.oracle.com/technetwork/
middleware/essbase/overview/index.html.
Yael Amsterdamer, Daniel Deutch, and Val Tannen.
Provenance for aggregate queries. In PODS, 2011.

Andrey Balmin, Thanos Papadimitriou, and Yannis
Papakonstantinou. Hypothetical queries in an OLAP
environment. In VLDB, 2000.

Anthony J. Bonner. Hypothetical datalog: Complexity and
expressibility. Theor. Comput. Sci., 76(1), 1990.

Ronald Fagin, Phokion Kolaitis, Renée J. Miller, and Lucian
Popa. Data exchange: Semantics and query answering. TCS,
336:89-124, 2005.

J. Nathan Foster, Todd J. Green, and Val Tannen. Annotated
XML: queries and provenance. In PODS, 2008.

Shahram Ghandeharizadeh, Richard Hull, and Dean Jacobs.
Heraclitus: Elevating deltas to be first-class citizens in a
database programming language. TODS, 21(3), 1996.

Todd J. Green and Zachary G. Ives. Recomputing
materialized instances after changes to mappings and data. In
ICDE, 2012.

Todd J. Green, Grigoris Karvounarakis, and Val Tannen.
Provenance semirings. In PODS, 2007.

(1]
[12]
(13]

[14]

[15]

[16]

(17]

(18]

Todd J. Green and Val Tannen. Models for incomplete and
probabilistic information. In EDBT Workshops, 2006.
Timothy Griffin and Richard Hull. A framework for
implementing hypothetical queries. In SIGMOD, 1997.
Tomasz Imielinski and Witold Lipski. Incomplete
information in relational databases. JACM, 31(4), 1984.
Zachary G. Ives, Todd J. Green, Grigoris Karvounarakis,
Nicholas E. Taylor, Val Tannen, Partha Pratim Talukdar,
Marie Jacob, and Fernando Pereira. The ORCHESTRA
collaborative data sharing system. SIGMOD Rec., 2008.
Laks V. S. Lakshmanan, Alex Russakovsky, and Vaishnavi
Sashikanth. What-if OLAP queries with changing
dimensions. In ICDE, 2008.

Bin Liu and H. V. Jagadish. A spreadsheet algebra for a
direct data manipulation query interface. In /ICDE, 2009.
Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi
Ramamritham. Materialized view selection and maintenance
using multi-query optimization. In SIGMOD, 2001.
Andrew Witkowski, Srikanth Bellamkonda, Tolga Bozkaya,
Gregory Dorman, Nathan Folkert, Abhinav Gupta, Lei
Sheng, and Sankar Subramanian. Spreadsheets in RDBMS
for OLAP. In SIGMOD, 2003.



