
The bionic DBMS is coming, but what will it look like?

Ryan Johnson
University of Toronto

ryan.johnson@cs.utoronto.ca

Ippokratis Pandis
IBM Almaden Research Center

ipandis@us.ibm.com

ABSTRACT
Software has always ruled database engines, and commodity
processors riding Moore’s Law doomed database machines of
the 1980s from the start. However, today’s hardware land-
scape is very different, and moving in directions that make
database machines increasingly attractive. Stagnant clock
speeds, looming dark silicon, availability of reconfigurable
hardware, and the economic clout of cloud providers all align
to make custom database hardware economically viable or
even necessary. Dataflow workloads (business intelligence and
streaming) already benefit from emerging hardware support.
In this paper, we argue that control flow workloads—with
their corresponding latencies—are another feasible target
for hardware support. To make our point, we outline a
transaction processing architecture that offloads much of its
functionality to reconfigurable hardware. We predict a con-
vergence to fully “bionic” database engines that implement
nearly all key functionality directly in hardware and relegate
software to a largely managerial role.

1. INTRODUCTION
Although database systems have flirted with custom hard-
ware for decades, economic realities have historically favored
purely software solutions riding on Moore’s Law. However,
a confluence of several trends is changing this.

First, processor clock speeds—already stagnant for a decade—
are unlikely to increase any time soon due to power concerns.
The industry reaction, to stamp out myriad identical cores,
leads to difficulties with Amdahl’s Law [6] .

Second, transistor power scaling has reached a cross-over
point: power savings due to smaller transistors no longer
compensates fully for the increased number of transistors
per chip. Fixed power envelopes will drive an ever-shrinking
fraction of the chip at any given moment, a phenomenon
known as dark silicon [3] . Performance gains in the future
will come by utilizing transistors more effectively, rather
than by utilizing more of them on as we do today, and
homogeneous multicore designs will fall out of favor.

Finally, the recent explosion of cloud-based “big data” ap-
plications means that, for the first time, providers such as
Google, Facebook, Amazon, and Microsoft have both the

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR’13)
January 6-9, 2013, Asilomar, California, USA.
.

0.1% serial

10% serial

1% serial

0.01% serial

Over

power

budget

Over

power

budget

(a) 2011 (64 cores) (b) 2018 (1024 cores)

10% serial

1% serial
0.1% serial

Figure 1: Fraction of chip (from top-left) utilized at
various degrees of parallelism.

incentive and the economic clout to commission custom hard-
ware if it lowers overall hardware costs or otherwise gives
some edge over other providers [5] .

The community is already responding to these trends, and
recent years have seen a variety of efforts, both commercial
(including IBM Netezza and Oracle Exadata) and academic
[9] , to enhance data management operations with custom
or semi-custom hardware. These efforts generally focus on
dataflow-style computations which are broadly used in the
business intelligence and streaming domains. Several impor-
tant database applications, however, are left out because
they are not based on dataflow computations; instead they
are dominated by control flow and high-latency operations
such as pointer chasing. The most prominent example of
such application is online transaction processing (OLTP).

In this paper, we argue that custom hardware, and re-
configurable hardware in particular, also holds promise for
computations dominated by control flow and high-latency
operations, computations that are broadly used in transac-
tion processing and graph traversals. In particular, using
the recently proposed data-oriented architecture [10, 11] as
a starting point, we briefly highlight the main sources of
latency and software overhead in the system and explore the
potential for hardware support to mitigate these problems.
Along the way, we make two claims:

• Effective hardware support need not always increase raw
performance; the true goal is to reduce net energy use.

• A surprising fraction of database operations are amenable
to hardware implementation; we predict that future sys-
tems will mostly use software to coordinate the use and
interaction of the available hardware units.

2. DARK SILICON
Simply put, dark silicon is the trend for an increasing frac-
tion of the chip’s transistors to remain unused at any given

time. The effect arises from two sources. First—ignoring
power scaling for a moment—homogeneous multicore de-
signs demand exponentially growing parallelism from the
software. Although many important data management tasks
are embarrassingly parallel, not all are. Further, even embar-
rassingly parallel tasks suffer from skew and imbalance effects
as the data are spread across more and more cores. Either
way, a seemingly innocuous serial component of work can
lead to surprisingly large opportunity loss, as illustrated in
Figure 1. The figure highlights how the fraction of hardware
utilized (represented as the area from top-left to each labeled
line) varies with available parallelism. Where achieving 0.1%
serial work arguably suffices for today’s hardware (a), next-
generation hardware with perhaps a thousand cores demands
that the serial fraction of work decreases by roughly two
orders of magnitude. This is precisely the problem that mo-
tivated Amdahl to formulate his famous law, as an argument
against an over-reliance on parallelism for performance. The
second problem, the lack of power scaling in next-generation
transistors, means that power constraints will force a growing
fraction of hardware offline even if the software could have
used it. A conservative calculation puts perhaps 20% of tran-
sistors outside of the 2018 power envelope, with the usable
fraction shrinking by 30-50% each hardware generation after.

Performance is measured in joules/operation in the dark
silicon regime, with performance (latency) merely a con-
straint. Making a computation use one tenth the power is
just as valuable as making it ten times faster: both free up
90% of previously-expended joules for other uses or to be
reclaimed as lower operating costs.

Because modifying already-optimized software has little
impact on its power footprint [14] , an operation’s power
footprint can only be reduced significantly by changing the
hardware that runs it. Moving to leaner general-purpose
hardware helps significantly, and several efforts are under-
way to run server workloads on embedded processors [2] .
Unfortunately, even this extreme step gives only a one-time
boost: a general purpose core can only be made so small,
and Amdahl’s law makes it difficult to utilize hundreds or
thousands of extremely lean cores [6] . Once the move to
embedded cores is complete, joules/op can only be reduced
by moving to specialized or custom hardware.

3. LATENCY AND CONTROL FLOW
Query processing—particularly in columnar form—produces
significant dataflow and relatively straightforward control
flow that maps nicely to hardware. Transaction processing,
on the other hand, features heavy control flow and small,
irregular dataflow components (usually of the pointer chas-
ing variety); they make notoriously inefficient targets for
mainstream processors [1] and do not lend themselves to any
obvious form of hardware acceleration. OLTP benefited from
clock frequency scaling for decades, and currently benefits
even more strongly from the high degree of parallelism offered
by multicore hardware, but will suffer a severe performance
disadvantage under dark silicon: fixed clock frequencies and
fixed core counts across successive generations threaten to
permanently cap OLTP throughput.

OLTP tends to be latency-bound, with multiple latency
sources of varying severity, as depicted below:

disk log

buffer

lock

wait

latch

wait

queues cache

miss

jump or

branch

The “big” delays like disk I/O are well known and fairly
easy to schedule around in software, but the small delays

at the other end of the scale inflict a kind of “death by
a thousand paper cuts” that software and general-purpose
hardware are ill-equipped to deal with.

Rather than attempting to increase raw performance, we
submit that OLTP will benefit most from hardware that
reduces its power footprint and helps hide or avoid as many
latencies as possible. Techniques that avoid the myriad fine-
grained latencies will be especially useful. An asynchronous
and predictable delay of several µs is vastly easier to schedule
around in software than an unexpected cache miss or pipeline
stall; thoughput will improve, even if individual requests
take just as long to complete. Reducing power footprint
will free up power budget for other, more useful work, and
a sufficiently efficient OLTP engine could even run on the
same machine as the analytics, allowing up-to-the-second
intelligence on live data.

4. CONTROL FLOW IN HARDWARE
Custom hardware has a reputation for poor handling of con-
trol flow, mostly from failed attempts to extract dynamic
control flow from general purpose programs. Hardware ac-
tually excels at control flow, as evidenced by the ubiquitous
finite state automaton, particularly non-deterministic finite
state automata (NFA), which employ hardware parallelism
to great effect. Viewing von Neumann-style control flow as
a low-dimensional projection of some underlying state ma-
chine (with parallel threads of control being the dimensions),
it becomes clear why mapping software back to hardware
usually confers few benefits. Effective acceleration of control
flow requires identifying the underlying abstract operation
and mapping a high-dimensional projection to hardware. To
give one concrete example, good regular expression match-
ing and XPath projection algorithms employ NFA, whose
fine-grained parallelism is easily captured in hardware [13]
but leads to extremely inefficient software implementations;
the majority of regexp libraries use inferior algorithms that
map more cleanly to software.

Our initial exploration of common OLTP operations such
as B+Tree probes and logging suggest that much of the inef-
ficiency inherent to OLTP arises due to their poor mapping
to software; the following sections explore this observation
in more detail. We propose to target these software ineffi-
ciency hotspots by examining the underlying operations and
mapping them directly to hardware, thus avoiding fidelity
loss due to starting with the software implementation.

5. “BIONIC” TRANSACTION PROCESSING
As a concrete target system, we consider the Convey HC-2
machine,1 which combines a field-programmable gate array
(FPGA) with a modern Intel processor. The system architec-
ture is depicted in Figure 2. It features a high-performing
FPGA with direct access to disk and to a local memory pool;
the FPGA-side memory is uncached, but its “scatter-gather”
memory controllers deliver 80GBps bandwidth for random
64-bit requests, especially helpful for workloads with poor
locality. FPGA and host-side memory are coherent and acces-
sible by either CPU or FPGA, though the PCI bus imposes
severe NUMA effects (2µs round-trip). These characteris-
tics dictate that the FPGA handle most data manipulation,
and that CPU/FPGA communication must be asynchronous.
The PCI bus provides ample bandwidth to support OLTP
workloads, and Netezza-style filtering at the FPGA should
ease bandwidth concerns for queries.

1 http://www.conveycomputer.com

FPGA

2x SAS

12Gbps/5ms

DDR3 DRAM

20 GBps/400ns

CPU

8x PCI-e

4GBps/2μs

DDR3 SG-DRAM

80GBps/400ns

1x SSD

500MBps/20 μs

Figure 2: A high performance CPU/FPGA platform

0%

20%

40%

60%

80%

100%

TATP UpdSubData TPCC StockLevel

Other

Front-end

Dora

Xct mgmt

Log mgmt

Btree mgmt

Bpool mgmt

Figure 3: Time breakdown of a highly-optimized
transaction processing system running two types of
transactions on a conventional multicore system.

Again, the goal is not to reduce latency directly, but rather
to bundle up myriad small sources of latency and offload
them to a power-efficient, asynchronous medium.

Creating an purely hardware OLTP engine is infeasible
(or at least uneconomical) for several reasons, not least of
which is the variety and dynamic nature of transactional
workloads. We therefore propose a hybrid software-hardware
architecture that implements particularly important opera-
tions to hardware, with software coordinating their use and
providing fallbacks for unimplemented corner cases. Due to
their complexity, traditional DBMS architectures will make
challenging targets for this transformation; in this paper we
assume a data-oriented architecture [10, 11] as a starting
point because it eliminates several sources of complexity
and incorporates a system of queues that will prove useful
in overlapping the latency imposed by hardware-software
communication. We give a brief overview of DORA later.

5.1 Bottleneck analysis
The data-oriented architecture (DORA) allows a fully shared-
everything transaction processing system to gain most of
the benefits available from partitioning datasets, but with-
out the data movement usually required with partitioning.
DORA divides the database into logical partitions backed by
a common buffer pool and logging infrastructure, and then
structures the access patterns of threads so that at most one
thread touches any particular datum. A full implementation
eliminates locking and latching from the majority of code
paths, replacing them with a significantly simpler arrange-
ment of queues and rendezvous points and exploiting careful
placement of data to pages [11] .

In Figure 3 we examine the time breakdowns for an update
(TATP UpdateSubData) and a read-only (TPC-C Stock-
Level) workload executing in a recent DORA prototype.
The remaining overheads fall into four main categories: (a)
B+tree index probes; (b) Logging; (c) Queue management
and (d) Buffer pool management.

5.2 Architectural overview
Based on the bottlenecks identified in the previous section, we
propose an architecture that offloads four major operations to
hardware: tree probes, overlay management (details follow),
log buffering, and queue management. We also assume a
Netezza-style engine implements selections and projections
for queries to reduce bandwidth pressure on the PCI bus.
Higher level concerns, such as query execution, scheduling
and routing, recovery, and index re-org, stay in software.
Figure 4 illustrates these components and their interactions,
with software at the top, hardware in the middle, and storage
below. We exploit the non-uniform paths to storage by
maintaining database files (and cached database content) on
the FPGA side, while the CPU side stores log files on a fast
SSD and temporary/intermediate results in memory.

We now discuss briefly each piece of hardware support and
the types of latency it helps address.

5.3 B+Tree probes
OLTP workloads are index-bound, spending in some cases
40% or more of total transaction time traversing various index
structures (e.g. Figure 3(right)). Overhead could be reduced
significantly by incorporating cache-friendly data structures
and letting higher-level code handle concurrency control.
However, the random nature of tree traversals will leave even
the simplest software implementation latency bound, barring
use of complex measures such as PALM [12] .

A hardware solution is feasible and attractive for several
reasons. First, virtually all concurrency control issues are
resolved before a request ever reaches the tree, eliminating
by far the largest source of complexity in the data structure.
B+Tree operations are typically logically logged, so software
can deal with the logging subsystem as long as the hardware
unit guarantees the atomicity of any request it receives. High
node branching factors mean that the entire index fits in
memory for most datasets, so the hardware can rely on soft-
ware for disk accesses and abort any operations that fall out
of memory. Even if an index is too large to fit in memory, the
inodes tend to still fit comfortably, particularly if leaves are
sized for disk access (leading to branching factors of several
hundred to a few thousand). Finally, giving a pipelined tree
probe unit direct access to memory (bypassing the cache)
should allow the unit to saturate using only perhaps a dozen
outstanding requests, with no need for those requests to
arrive simultaneously; the Convey SG-DRAM delivers high
throughput even for pointer chasing. Initial experiments
suggest that the proposed hardware unit would be extremely
compact: software for probing the above B+Tree requires
only a few dozen machine instructions, mostly triplets of
the form “load-compare-branch.” This kind of control flow
maps extremely well to hardware, and we are currently in
the process of building a generic hardware tree probe engine
that can handle both integer and variable-length string keys.

Other complex operations, such as space allocation, inode
splits, and index reorganization, are handled in software.

5.4 Logging
The DORA system eliminates most locking (with the re-
mainder being thread-local), leaving the database log as the
main centralized service. Although log contention can be
alleviated for single-socket systems with some considerable
effort, multi-socket systems remain an open challenge due to
socket-to-socket communication latencies [7] .

A hardware logging mechanism would have two significant
advantages over the software version. Requests from the
same socket can be aggregated before passing them on, and

Columnar

database

Log files Log buffer

Overlay

manager
Queuing engine Log insertion

Enhanced

scanner

Space mgt. &

result cache

Log sync

& recovery

Query

engine

Routing &

scheduling

Database

overlay

Tree probe

engine

Tree SMO

& reorg
GP-CPU

FPGA

Storage

Figure 4: A “bionic” hardware-software hybrid DBMS architecture

hardware-level arbitration is significantly simpler to reason
about than a typical lock-free data structure, while avoiding
the complexities and overheads normally required to build
a serial log using latches. For maximum effectiveness, the
logging interface would need to be asynchronous, so that
the latency of various log operations can overlap easily with
other requests. Log synchronization can be done in software,
with some assistance from the hardware queue management
engine to keep the latency off the critical path.

We also note that efficient logging infrastructure could
prove useful outside the database engine; high performance
logging file systems are another obvious candidate.

5.5 Queue management
DORA uses queues extensively, to impose regularity on access
patterns, eliminate contention hotspots, and hide latencies
due to partition crossing and log synchronization. The queues
in DORA usually see only light contention at worst, but they
still have significant management overhead (which is part
of the Dora and front-end components in Figure 3). The
main challenges are scheduling-related, such as selecting the
number of queues to use, assigning them appropriate owners,
and knowing when to deschedule an idle agent thread with
an empty input queue (a wrong choice can hold up an entire
chain of queues, leading to convoys).

A wide space of potential hardware support surrounds
queuing. Extensions to cache coherency protocols; resur-
recting message-passing systems of yesteryear; implementing
proposals such as QOLB [8] , etc, with the goal to eliminate
as much overhead as possible without overly restraining the
software. We note that many of the challenges associated
with queues are fundamentally hard; while hardware will
undoubtedly reduce overheads, it will not magically solve the
scheduling problem. We expect that software will continue
to play a key role in this area.

5.6 Overlay database
Rather than a buffer pool, the bionic system would employ
two data pools. The CPU side maintains a cache of inter-
mediate results and other “cooked” data, while the FPGA
side maintains an in-memory overlay of the database. The
overlay serves to cache reads and to buffer writes until they
can be bulk-merged back to the on-disk data (replacing the
buffer pool), and will also patch updates into historical data
requested by queries; SAP HANA [4] is an excellent example
of this approach. Recognizing that OLTP workloads are
heavy index-users, the overlay will consist entirely of vari-
ous indexes that can be probed by the hardware engine. If
disk access is needed, the hardware operation aborts so that
software can trigger a data fetch and then retry.

6. CONCLUSIONS
Dark silicon is here. Hardware software co-design is unavoid-
able. In this paper we made the case of a mostly hardware-
based transaction processing implementation. The preceding
sections sketch a system architecture where every latency
source has hardware support for avoiding or offloading it, so
that software can continue with something else rather than
blocking. This applies from I/O requests all the way down
to cache misses. We have already seen good results with
pipelined log writes [7] , and web servers have honed this

strategy to near-perfection [16] .
Significant challenges remain: not only to design hardware

(hard!), but also to re-architect the software to exploit it.
Initial attempts by others to automate the process have not
gone particularly well [15] , and database engines have a
long legacy of being impervious to hardware-only changes.
Overcoming this challenge presents a huge opportunity for
data management, however, because it already insulates
its users from disruptive hardware changes. More ad-hoc
approaches will face steep disadvantages in this regard.

References
[1] Ailamaki, A., DeWitt, D., Hill, M., and Wood, D. DBMSs on a

modern processor: Where does time go? In VLDB, 1999.

[2] Andersen, D. G., et al. FAWN: a fast array of wimpy nodes. In
SOSP, 2009.

[3] Esmaeilzadeh, H., et al. Dark silicon and the end of multicore
scaling. In ISCA, 2011.

[4] Färber, F., et al. The SAP HANA database – an architecture
overview. IEEE Data Eng. Bull., 35(1), 2012.

[5] Hamilton, J. R. Internet scale storage. In SIGMOD, 2011.

[6] Hill, M. D. and Marty, M. R. Amdahl’s law in the multicore era.
Computer, 41, 2008.

[7] Johnson, R., et al. Scalability of write-ahead logging on multicore
and multisocket hardware. The VLDB Journal, 20, 2011.

[8] Kägi, A., Burger, D., and Goodman, J. R. Efficient synchroniza-
tion: let them eat QOLB. In ISCA, 1997.

[9] Mueller, R., Teubner, J., and Alonso, G. Streams on wires: a
query compiler for FPGAs. PVLDB, 2(1), 2009.

[10] Pandis, I., Johnson, R., Hardavellas, N., and Ailamaki, A. Data-
oriented transaction execution. PVLDB, 3(1), 2010.

[11] Pandis, I., Tözün, P., Johnson, R., and Ailamaki, A. PLP: page
latch-free shared-everything OLTP. PVLDB, 4(10), 2011.

[12] Sewall, J., et al. PALM: Parallel architecture-friendly latch-
free modifications to B+trees on many-core processors. PVLDB,
4(11), 2011.

[13] Teubner, J., Woods, L., and Nie, C. Skeleton automata for fpgas:
reconfiguring without reconstructing. In SIGMOD, 2012.

[14] Tsirogiannis, D., Harizopoulos, S., and Shah, M. A. Analyzing
the energy efficiency of a database server. In SIGMOD, 2010.

[15] Venkatesh, G., et al. Conservation cores: reducing the energy of
mature computations. In ASPLOS, 2010.

[16] Welsh, M., Culler, D., and Brewer, E. SEDA: an architecture for
well-conditioned, scalable internet services. In SOSP, 2001.

	1 Introduction
	2 Dark silicon
	3 Latency and control flow
	4 Control flow in hardware
	5 ``Bionic'' transaction processing
	5.1 Bottleneck analysis
	5.2 Architectural overview
	5.3 B+Tree probes
	5.4 Logging
	5.5 Queue management
	5.6 Overlay database

	6 Conclusions

