
QPPT: Query Processing on Prefix Trees

Thomas Kissinger, Benjamin Schlegel, Dirk Habich, Wolfgang Lehner
Database Technology Group

Technische Universität Dresden
01062 Dresden, Germany

{firstname.lastname}@tu-dresden.de

ABSTRACT
Modern database systems have to process huge amounts of
data and should provide results with low latency at the same
time. To achieve this, data is nowadays typically hold com-
pletely in main memory, to benefit of its high bandwidth
and low access latency that could never be reached with
disks. Current in-memory databases are usually column-
stores that exchange columns or vectors between operators
and suffer from a high tuple reconstruction overhead. In
this paper, we present the indexed table-at-a-time process-
ing model that makes indexes the first-class citizen of the
database system. The processing model comprises the con-
cepts of intermediate indexed tables and cooperative opera-
tors, which make indexes the common data exchange format
between plan operators. To keep the intermediate index ma-
terialization costs low, we employ optimized prefix trees that
offer a balanced read/write performance. The indexed table-
at-a-time processing model allows the efficient construction
of composed operators like the multi-way-select-join-group.
Such operators speed up the processing of complex OLAP
queries so that our approach outperforms state-of-the-art
in-memory databases.

1. INTRODUCTION
Processing complex OLAP queries with low latencies as

well as high throughput on ever-growing, huge amounts of
data is still a major challenging issue for modern database
systems. With the general availability of high main memory
capacities, in-memory database systems become more and
more popular in the OLAP domain since often the entire
data pool fits into main memory. Hence, the superior char-
acteristics of main memory (e.g., low access latency, high
bandwidth) could be exploited for query processing, which
leads at the same time to a paradigm shift in query process-
ing models.
The traditional tuple-at-a-time processing model [8] was

found to be sufficient for row-stores as query processing was
limited by the I/O of disks. Newer processing models, e.g.,

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.

Figure 1: Overview of QPPT’s indexed table-at-a-time Pro-
cessing Model.

the column-at-a-time [6] or the vector-at-a-time processing
model [7], avoid certain drawbacks of the traditional query
processing (e.g., massive virtual function calls) and are thus
more suitable for modern in-memory column-stores. How-
ever, the logical unit of a tuple as present in row-stores
is decomposed in columns resulting in an expensive tuple
reconstruction overhead. The complexity of the tuple re-
construction procedure grows with an increasing number of
attributes involved during query processing.
To avoid the tuple reconstruction overhead, we propose to

return to row-oriented systems enhanced with a novel up-
to-date processing model. In this paper, we introduce our
new indexed table-at-a-time processing model for in-memory
row-stores, which is depicted in Figure 1. The main char-
acteristics of this processing model are: (1) intermediate in-
dexed tables, (2) cooperative operators, and (3) composed
operators.

Intermediate Indexed Tables
Instead of passing plain tuples, columns, or vectors between
individual operators, our indexed table-at-a-time processing
model exchanges clustered indexes (a set of tuples stored
within an in-memory index) between operators. In this way,
we (i) eliminate the major weakness of the volcano iterator
(tuple-at-a-time) model by reducing the number of next calls
to exactly one and (ii) enable data processing using highly
efficient operators that can exploit the indexed input data.

N 0 1 15 …

N 0 1 15 … N 0 1 15 …

N 0 1 15 … N 0 1 15 …

… … … … …

4bit

4bit

4bit

(a) Prefix Tree (k′ = 4).

4KB 4KB 4KB 4KB … 4KB 4KB

4KB Physically mapped Page 4KB Virtual Page

0 1 63 0 1 63

26bit

6bit … …

(b) KISS-Tree.

Figure 2: Index Structures Deployed in QPPT.

Cooperative Operators
Based on the previous point, each operator takes a set of
clustered indexes as input and provides a new indexed table
as output. Our second concept is called cooperative op-
erators and enables a more efficient data handling within
a query execution plan. An operator’s output index is al-
ways indexed on the attribute(s) requested by the subse-
quent operator. Thus, the complete set of indexed interme-
diate tuples can be transfered from one operator to another
by passing a single index handle; exchanging plain tuples,
which would be used eventually to build internal indexes in
the next operator anyway, is not required anymore. A selec-
tion operator, for example, takes a base index as input that
is indexed on the operators selection predicate and outputs
an intermediate table that is indexed on the join predicate
of a successive join operator.

Composed Operators
The set of operators is usually small using the first two con-
cepts. We can omit all non-index operators and keep only
operators that can exploit indexes as input, i.e., that make
use of efficient range scans and point accesses within the in-
dexed data. Also some base operators like sorting/grouping
and aggregation are not necessary anymore, because each
operator already indexes its output.
The indexed table-at-a-time processing model allows fur-

ther composed (n-ary) operators, which additionally per-
form sorting/grouping or aggregation on the data being out-
putted. Using our composed operators, we are able to reduce
expensive materialization costs and data exchange between
operators to a minimum, which is highly benefical as pre-
sented by recent compilation based approaches [12]. For
this reason, composed operators form the core components
of our novel processing model.

Query Processing on Prefix Trees
One important aspect of our indexed table-at-a-time pro-
cessing model is the output index generation within each
operator. It amounts to a large fraction of an operator’s
execution time and thus must be fast. Previous research re-
vealed that prefix trees [5] offer all the necessary character-
istics (i.e., they are optimized for in-memory processing and
achieve high update rates) for our approach. Additionally,
we employ the KISS-Tree [9] as a more specialized version
of the prefix tree, which offers a higher read/write perfor-
mance than hash tables and allows even more effective batch
processing schemes. Based on these data structures, we in-

troduce Query Processing on Prefix Trees (QPPT), which is
a realization of the indexed table-at-a-time processing model.
Figure 1 shows a QPPT overview. Leaf-operators, like

the selection, access the base data via a base index and
build an intermediate prefix tree as output. The successive
multi-way/star join operator uses the intermediate indexes
of child operators and one base index. Here, the multi-
way/star join as an example of an composed operator ex-
ecutes a synchronous index scan, which is an efficient join
algorithm that works on unbalanced trees, like the prefix
tree. As result, the multi-way/star join builds an index that
contains already grouped and aggregated values.

Structure of This Paper
The following section gives a short introduction in prefix
trees as prerequisite for our novel query processing model.
Moreover, this section demonstrates the advantages of prefix
trees over hash tables in terms of insert and lookup perfor-
mance. A general overview on our novel query processing
on prefix trees as a realization of the indexed table-at-a-time
processing model is presented in Section 3. The aspects of
cooperative and composed operators are discussed in Sec-
tion 4, followed by an exhaustive evaluation in Section 5.
The paper closes with related and future work (Section 6
and 7) as well as a conclusion (Section 8).

2. QPPT PREREQUISITES
The performance of our indexed table-at-a-time process-

ing model heavily depends on the index structures that are
deployed for query processing. Traditional index structures
like B+-Trees [4] and its main memory optimized version,
the CSB+-Tree [14], are not suitable because they achieve
only a low update performance. Instead, we employ prefix
trees [5], because

1. Prefix trees are optimized for a low number of memory
accesses per key, which results in a high key lookup
performance and

2. They offer a balanced read/write performance, which
is essential for our indexed table-at-a-time approach.

Additionally, we deploy a modified KISS-Tree [9], which is
a better performing version of the prefix tree, but is lim-
ited to 32bit keys. In the following, we briefly discuss both
data structures in the context of QPPT. Moreover, we intro-
duce the concept of batch processing on prefix trees and an
efficient way of handling duplicates to allow an even more

0

50

100

150

200

250

300

350

1M 16M 64M

Ti
m

e
 p

e
r

K
ey

 [
µ

s]

Number of Keys

PT4 GLIB BOOST KISS KISS Batched

(a) Insert/Update Performance.

0

50

100

150

200

250

300

350

1M 16M 64M

Ti
m

e
 p

e
r

K
ey

 [
µ

s]

Number of Keys

PT4

GLIB

BOOST

KISS

KISS Batched

(b) Lookup Performance.

Figure 3: Performance of Prefix Trees compared to Hash Tables.

effective query processing on those prefix tree-based struc-
tures. Finally, we compare the insert/lookup performance
of our indexes to different hash table implementations, be-
cause traditional join or group operators usually create hash
tables—when its is beneficial—internally.

2.1 Prefix Tree
The employed prefix tree is an order-preserving and—

contrary to the B+-Tree—an unbalanced tree1. It works
by splitting the binary representation of a key into frag-
ments of an equal prefix length k′. The fragments are used
to navigate within the tree and thus a key itself has a fixed
position in the tree. Figure 2(a) shows the structure of a
prefix tree with the parameter k′ = 4. Each node of the tree
consists of 2k′

= 16 with k′ = 4 buckets, each containing a
pointer to the next node, which takes the next 4 bits of the
key for locating the corresponding bucket inside this node.
This tree traversal scheme continues until the point, where
the pointer in the bucket points to a content node or zero.
Because of the dynamic expansion feature [5] of the prefix
tree, the key can not always be reconstructed from the path
through the tree. Thus, the content node has to store the
complete key for comparison.
The selection of the parameter k′ has a huge impact on the

insert/lookup performance, which is directly related to the
number of memory accesses per key, as well as the memory
consumption. Setting k′ to a high value like eight, halves
the maximum number of memory accesses per key, but in-
creases the memory consumption, if the key distribution is
not dense. A lower value of k′ causes the opposite effect.
Thus, the prefix length should be set according to the key
distribution of the indexed data. For the standard case,
k′ = 4 turned out to offer the best trade-off between perfor-
mance and memory consumption. There are also further op-
timizations possible like a variable prefix length (per level)
and node compression, which are employed in the KISS-
Tree.

1Unbalanced trees do not require comprehensive tasks for
tree balancing, which involves complex locking schemes for
parallel operations.

2.2 KISS-Tree
The KISS-Tree is a prefix tree-based index structure for

32bit keys and inherits all of the prefix tree characteristics
as presented before. The difference between both is that
the KISS-Tree needs less memory accesses for a key lookup.
For instance, a 32bit key lookup in a prefix tree issues up to
9 memory accesses, whereas the KISS-Tree requires only 3
memory accesses. The KISS-Tree structure is visualized in
Figure 2(b). Here, the key is split in exactly two fragments
of 26bit for the first level and 6bit for the second level. The
first fragment is used to calculate the bucket position on
the first level, which consists of 226 buckets each containing
a 32bit compact pointer to the corresponding second level
node. To avoid the complete physical allocation of the root
node, which consumes 256MB of main memory, it is only
allocated virtually. Only if a pointer is written to a bucket,
the memory becomes allocated on-demand by the operating
system at a 4KB granularity.
While prefix trees support keys of an arbitrary length, the

KISS-Tree is limited to 32bit keys, which is mostly sufficient
for join attributes. Thus, our QPPT decides at query com-
pile time, which index structure should be used for storing
the intermediate result. The original KISS-Tree uses a bit-
mask compression for second level nodes to save memory
and preserve data locality. When the indexed column con-
tains a dense value range, QPPT disables this compression
to avoid the high RCU [11] copy overhead for updates. This
optimization increases the update performance and paral-
lelism.

2.3 Batch Processing
As soon as the size of the prefix tree respectively KISS-

Tree exceeds the available CPU cache resources, the number
of memory accesses per key becomes the most important fac-
tor for insert/lookup performance. Since each memory ac-
cess depends on the previous memory access, a key lookup
spends most of the time for waiting on main memory trans-
fers, which wastes CPU resources. A way to hide that mem-
ory latency is to process batches of keys to allow software
pipelining and memory prefetching. This batch processing
approach collects multiple insert/lookup operations before
executing them in a single batch operation. Algorithm 1
shows the pseudo code for such a batch lookup operation.
The algorithm receives the batch structure as input, which

Algorithm 1 Batch Lookup
procedure batchlookup(batch)

done← false
while not done do

done← true
for all job in batch do

if job.done then
continue

job.node← getchild(job.node,job.key)
prefetch(job.node)
if iscontent(job.node) then

job.done← true
...

if not iscontent(job.node) then
done← false

is an array of job structures each consisting of the lookup
key, the leaf node, and a field, which indicates that the job
is done. To process the batch, the algorithm starts on the
root tree level and calculates the memory address of each
job’s child node, followed by a prefetch instruction of that
child node address. This prefetch instruction is important,
because it fetches the next node into the L1 cache of the
CPU. Thus, the child nodes can be processed without mem-
ory latency, when the algorithm moves on to the next level.
The level-by-level processing scheme continues until each job
found its content/leaf node and performed the associated
operation on it.
QPPT makes extensive use of batch processing. On the

one hand, join operators buffer their lookups to prefix trees
to reduce the function call overhead and to hide memory la-
tency. On the other hand, inserts into intermediate indexes
are buffered to achieve the same goals. Moreover, batching
prefix tree operations has a positive impact on code and data
locality, because operators work a longer amount of time on
the same data structures.

Key Value

64Byte

Value
Value

128Byte

Value
Value
Value

…

4KB

Value Value

Physical Memory (4KB Pages)
Hardware Prefetching Boundary

Value Value
Value Value
Value Value

Growing Segment Size Page Size Limit

Figure 4: Duplicate Handling.

2.4 Duplicate Handling
Duplicate handling is an important point when processing

queries on large indexes. Simply storing duplicates as linked
lists usually results in random memory accesses, which add
a lot of memory latency to the query execution. To improve
the scan performance, duplicates must be stored sequentially
in the main memory. This way, the duplicate scan benefits
from hardware prefetching mechanisms of modern CPUs.
An important characteristic of those hardware prefetchers

is that they only work inside of a memory page (usually
4KB), which is related to the virtual to physical address
mapping. Figure 4 depicts the duplicate handling that we
employed for QPPT. The first value for a key is stored in
a dedicated memory segment, which includes a pointer to
the duplicate list. The duplicate list starts with a mem-
ory segment of 64Byte. If this piece of memory is full, the
next segment gets allocated, which is twice the size of the
previous segment and is put in front of the duplicate list.
Memory segments grow only until they reached the page
size of 4KB, because it makes no difference for the hardware
prefetching, whether 4KB duplicate segments are stored se-
quentially or not. The memory management subsystem has
to take care of the correct alignment to 4KB page bound-
aries. We decided to use this kind of duplicate handling
because it poses a good trade-off between scan performance
and memory consumption.

2.5 Performance Evaluation
In this section, we evaluate the insert/update and lookup

performance for the prefix tree (k′ = 4), the GLib hash
table, the Boost hash table, and the uncompressed KISS-
Tree. For the KISS-Tree, we also evaluated the performance
with batch processing. All experiments were run on an In-
tel i7-3960X, running Ubuntu 12.04 as operating system.
Figure 3(a) shows the time it takes to insert/update a key
that is randomly picked from a sequential key range for dif-
ferent index sizes (x-axis). As can be seen, the KISS-Tree
shows the best performance of all index structures, followed
by the hash table implementations. The measurements also
reveal that indexing benefits from batch processing, espe-
cially for large trees, where operations are memory-bound.
The worst performance, we measured for the standard pre-
fix tree, which is related to the high number of memory
accesses per key. Configuring the prefix tree with a higher
k′ and adding batch processing will result in a performance
better than the hash tables.
Figure 3(b) shows the corresponding measurements for the

lookup performance per key. Here, we observe a behavior
similar to the insert/update performance. The major differ-
ence is that the performance of the non-batched KISS-Tree
gets closer to the performance of the hash table implemen-
tations in the memory-bound case. This is a result of the
increasing memory latency impact on the KISS-Tree, which
can be compensated with batch processing.

2.6 Summary
Prefix Trees [5] including the KISS-Tree [9] are an suitable

data structures for our indexed table-at-a-time query pro-
cessing model. As this section showed, the insert/update
and lookup performance outperforms hash tables as par-
tially used in various operators today. Furthermore, prefix
trees are order-preserving in contrast to regular hash tables.
This order-preserving property can be efficiently exploited
in almost all database operators (e.g., join, selection, and
sorting). Therefore, we decided to design an indexed table-
at-a-time processing model on top of prefix tree-based in-
dex structures. The following section introduces our Query
Processing on Prefix Trees (QPPT) as a realization of the
indexed table-at-a-time processing model in more detail.

select sum(lineorder.revenue), date.year, part.brand1
from lineorder, date, part, supplier

where lineorder.orderdate = date.datekey
and lineorder.partkey = part.partkey

and lineorder.suppkey = supplier.suppkey
and part.brand1 = 'MFGR#2221'

and supplier.region = 'EUROPE'
group by date.year, part.brand1
order by date.year, part.brand1;

lineorder part supplier date

partkey brand1 region datekey

σ σ

partkey suppkey

⋈

 suppkey
 orderdate
 revenue

 partkey  suppkey  year

 brand1

⋈ / ϒ

orderdate

 brand1
 revenue

year & brand1

 sum(revenue)

region=‘EUROPE’ brand1=‘MFGR#2221’

partkey and suppkey
orderdate=datekey
group by year, brand1
order by year, brand1

Star Schema Benchmark Query 2.3

Figure 5: QPPT Execution Plan for Star Schema Benchmark Query 2.3.

3. QPPT OVERVIEW
In this section, we give an overview of QPPT execution

plans. We do this with the help of query 2.3 of the Star
Schema Benchmark (SSB) [13], which is depicted on the
right of Figure 5 in SQL. This query comprises all impor-
tant SQL features like selections, joins, grouping, and sort-
ing. The SSB uses a standard star schema; it is derived
from TPC-H snowflake schema and consists of the huge fact
table lineorder surrounded by the dimension tables part,
supplier, customer and date. Essentially, query 2.3 joins
the fact table with the dimension tables part, supplier,
and date. Afterwards, a selection is applied to part.brand1
and supplier.region. Finally, the result is grouped and
sorted by date.year and part.brand1 with the sum of
lineorder.revenue as aggregation.
A possible QPPT execution plan for SSB query 2.3 is vi-

sualized in Figure 5. The starting point of the execution
plan are four prefix tree-based indexes—one for each rela-
tion (we will refer to them as base indexes). These indexes
are either already present or are created once and remain
in the data pool for future queries. There are two different
options for the kind of payload that is stored inside the base
indexes. The first option is to store only the record identifier
(rid). This option realizes a pure secondary index. Another
way is to additionally store partial records besides the rid
in the payload, which realizes a partially clustered index.
This approach dramatically increases query execution per-
formance, because operators do not have to randomly access
records during processing. Indeed, the costs for random ac-
cesses can be reduced with the help of prefetch instructions,
but they will never achieve the performance of sequential ac-
cess. Thus, it is reasonable to store relevant join, selection,
and grouping predicates inside the payload of base indexes.
However, partially clustered indexes consume more memory
and complicate the index selection problem. Moreover, there
are also combinations of partially clustered and secondary
indexes possible.
The first operator that is executed in query 2.3 is the se-

lection on the brand1 attribute of the relation part. This
operator takes the base index that is indexed on the brand1
column and searches the index for the key ’MFGR#2221’. The
resulting tuples of this index lookup are now inserted in the
output index that is indexed on the partkey attribute. As
already mentioned, a partially clustered base index speeds
up the indexation process, because the key for the new in-
termediate index is already stored inside the payload of the
base index. The payloads of this intermediate index store all
attributes that are necessary for successive operators of the

query plan. As base indexes have to care for transactional
isolation, intermediate indexes do not have to, because they
are private for the query. In parallel to the selection on
table part, the second selection on the relation supplier
is performed. This selection operator works analog to the
first selection, but uses a different input index and builds an
index on attribute suppkey as output.
After both selections finished and created their respective

intermediate index, the first join operator is executed. This
3-way/star join operator joins the part and the supplier di-
mension tables on the fact table lineorder. Therefore, the
operator takes the lineorder index on attribute partkey
and both resulting intermediate indexes of the previous
selection operators as input. The reason for doing a 3-
way/star join is to reduce the tuple cardinality of the output
index. In this way, we save memory as well as index insertion
costs. We will describe the internal functioning of the join
operator in Section 4 in detail. The output of the 3-way/star
join operator is an index on the attribute orderdate that
contains the individual values for the columns brand1 and
revenue inside the payload.
Finally, a simple 2-way join operator outputs an already

aggregated index. For that, it joins the date table on the
orderdate column. Because the indexed table-at-a-time pro-
cessing model creates indexes as output for each operator,
the grouping happens automatically as a side effect. Thus,
no separate grouping operator is necessary for the query ex-
ecution plan. The output index of the join is indexed on
the composed key of the attributes year and brand1. If the
insertion of such a composed key detects that the key is al-
ready present in the index, it only applies the aggregation
function—a sum in this specific case—on the existing value
and the new one. The result of the query is an index that is
indexed on year and brand1 and stores the sum of revenue
as payload. Because the resulting index is physically a pre-
fix tree, it is already sorted. At last, the query execution
engine has to iterate over the index while transferring the
results to the client.

4. COMPOSED OPERATORS
In this section, we describe the internal functioning of

QPPT plan operators. As already mentioned, QPPT uses
composed operators as a core component for query process-
ing. Contrary to traditional operators, a composed opera-
tor executes the work of multiple logical operators and thus
omits high tuple materialization costs. We distinguish be-
tween three levels of operator integration:

Figure 6: QPPT ’s 3-Way/Star Join Operator for Star Schema Benchmark Query 2.3.

Level 1: The lowest level of integration is inherent to the
indexed table-at-a-time processing model, which de-
fines that each QPPT operator automatically does
simple operations like the sorting/grouping or aggre-
gation when building the output index.

Level 2: On the next level, we combine homogeneous op-
erators. For instance, subsequent join operators are
combined to a single multi-way/star join operator.

Level 3: The highest level of optimization composes het-
erogeneous operators like a multi-way/star join and a
selection to a single operator. This way, we are able
to execute large parts of a complex OLAP query with
only a single composed operator that omits the mate-
rialization of large intermediate results.

In the following, we describe operators at the specific inte-
gration levels. We start with the selection/having operator,
that has the lowest level of integration. Afterwards, we move
on to the multi-way/star join operator, which is a represen-
tative of composed homogeneous operators. Finally, we dis-
cuss the select-join as a composed heterogeneous operator.

4.1 Selection/Having
The logical selection and having operators are physically

the same operator. For a simple selection predicate, the op-
erator expects an index on the selection attribute as input.
The operator scans the input index for qualifying tuples in
the same way as traditional databases do. The main dif-
ference is that the selection inserts all the qualifying tuples
into a new index on the key requested by the successive op-
erator. To process conjunctive combinations of predicates,
the selection operator prefers to operate on a multidimen-
sional index as input. In this case, the processing scheme
does not differ from the selection of a simple predicate. Be-
cause operators sometimes request multidimensional keys as
input, each QPPT operator is also capable of producing a
multidimensional index as output.
Operators at the beginning of the query plan do not al-

ways have multidimensional base indexes available, because
it is mostly not feasible to provision all required combina-
tions of attributes as multidimensional indexes. In that case,
each predicate of the conjunctive or disjunctive combina-
tion is processed by a separate selection operator. Each of
those operators builds an index on the record identifier of
the qualifying tuples. Afterwards, intersect and/or distinct

union operators process those indexes and the last set oper-
ator builds a suitable index for the following operator. Set
operators use the same efficient synchronous index scan as
the join operator does; it is introduced in the next section.

4.2 Multi-Way/Star Join
The basic 2-way join operator takes only two indexes

(main indexes) as input. The multi-way/star join as a com-
posed operator, takes a set of additional indexes (assisting
indexes) as input. We explain the standard join and the
multi-way/star join with the help of the 3-way/star join op-
erator of SSB query 2.3 depicted in Figure 5. Figure 6 gives
a closer view of the internal processing of the 3-way/star
join. In this specific case, the index on lineorder.partkey
and the index on part.partkey (output of the selection on
part) are the main indexes. The result of the selection on
supplier is the assisting index for this 3-way/star join.
Since both main indexes are prefix tree-based (KISS-

Trees) and are therefore unbalanced, they are joined us-
ing the synchronous index scan. This processing ap-
proach works by scanning the root nodes of both main
indexes synchronously from the left to the right. Only
if the synchronous scan encounters a bucket that is used
in both indexes, the scan suspends on the root node
and starts with synchronously scanning both child nodes
in the same fashion. As both main indexes of our 3-
way/star join example are KISS-Trees, the scan on the
root level starts at max(left.min, right.min) and ends at
min(left.max, right.max). This way, we avoid scanning the
entire root nodes, which are each 256MB in size, for dense
keys. The main advantage of the synchronous index scan
is that it only descends to child or content nodes that are
in use by both indexes. Thus, we are able to skip a lot of
tree descents, which results in a better scan performance.
The arrows in Figure 6 show the synchronous scan path for
our example. Here, the scan was able to skip the scan of an
entire child node and a content node. We use this efficient
synchronous index scan for all operators that work on two
input indexes (i.e., set operators). This processing scheme
is also possible for the standard prefix trees.
During our example, the scan encountered two content

nodes that are present in both main indexes. Each time,
such content nodes are hit, the join builds the cross product
of the tuples in the left and right hand content node in a
nested-loop manner. In the example, the 3-way/star join has
one assisting index on suppkey. Thus, it extracts the corre-
sponding key either from the storage layer or from the index

payload and executes a read operation on the assisting
index. If the key is not present, the combination is removed
from the cross product. Otherwise, all tuples returning from
this operation are added to the cross product. For our exam-
ple, the index on suppkey is unique and contains no payload.
Therefore, the join just has to probe for the key existence.
Finally, each combination of the cross product is material-
ized and inserted into the output index using the proper key
for the next operator. We mainly use those multi-way/star
joins, if the expected cardinality of the output can be re-
duced to avoid a high memory consumption as well as tuple
and index materialization costs.
Since multi-way/star joins usually join a high number of

indexed tables, we face two problems that have a negative
impact on the join performance: First, joining multiple ta-
bles is a recursive operation and thus requires a lot of func-
tion calls. Second, a high number of point accesses in large
indexes adds a lot of memory latency to the execution time
of an operator. To circumvent these issues, composed oper-
ators use a joinbuffer respectively selectionbuffer. Thus, the
operator is able to buffer index lookups, which reduces the
number of function calls and allows efficient batch lookups
as described in Section 2.3.

4.3 Select-Join
The select-join operator offers a high degree of operator

composition. Such operators are usually necessary, if a sin-
gle select operator would materialize a huge amount of data.
In those cases, index creation and tuple materialization costs
dominate the overall execution time of the select operator.
We are able to reduce these costs with the help of selec-
tionbuffers and batched index insertions, but costs for in-
termediate result materialization are still to high. For this
reason, it is feasible to integrate such a selection operator
with the successive operator (e.g., a multi-way/star join).
This combination does not allow the application of a syn-
chronous index scan which profits from the data locality,
because both indexes are sorted on the join predicate. How-
ever, prefix trees offer a high point read performance and
thus the composition of selection and multi-way/star join
operators is very useful. We will demonstrate the impact of
the different operator composition levels in Section 5.

5. EVALUATION
To evaluate our QPPT plans, we measured the execu-

tion times for the entire set of SSB queries. We set the
scale factor (SF) for all experiments to 15; we tried also
other SFs with similar results. To compare our results to
existing DBMSs, we ran the same experiments on Mon-
etDB (column-at-a-time) and a commercial DBMS (vector-
at-a-time). For fairness reasons, we ran those DBMSs in
single-threaded mode, because our QPPT implementation
supports currently no intra-operator parallelism. All nec-
essary indexes were created for the specific SSB queries on
all systems except for MonetDB, which manages indexes on
its own. We implemented the QPPT operators as well as
the corresponding index structures in our DBMS prototype
DexterDB [1]. DexterDB is an in-memory database system
that stores tuples in a row-store and uses MVCC [3] for
transactional isolation. Our evaluation machine is an Intel
i7-3960X (3.3GHz, 15MB LLC) CPU equipped with 32GB
of main memory. The running operating system is Ubuntu
Linux 12.04.

141

679

2839

756

1355

4367

842

1845

7902

21

330

980

24

353

980

141

561

1499

1314

1476

3976

11

569

1344

53

699

1627

259

608

2693

37

60

1884

37

66

1853

151

156

2058

0 500 1000 1500 2000

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

DexterDB

Commercial DBMS

MonetDB

Q
 4

.3
Q

 4
.2

Q
 4

.1
Q

 3
.4

Q
 3

.3
Q

 3
.2

Q
 3

.1
Q

 2
.3

Q
 2

.2
Q

 2
.1

Q
 1

.3
Q

 1
.2

Q
 1

.1

Execution Tme [ms]

Figure 7: SSB (SF=15) Query Performance.

In Figure 7, we visualize the execution times of all SSB
queries on the different DBMSs. As can be seen, DexterDB
outperforms MonetDB as well as the commercial database
system on each SSB query. The performance gain compared
to the other DBMSs highly depends on characteristics of the
respective query. For instance, queries 1.x include only a sin-

gle join operation. Here, the results are close to each other,
because the query plans are very simple and do not offer a
high optimization potential in terms of composing operators.
However, those queries are suited for evaluating the index
scan and simple join performance of the database systems.
DexterDB benefits from its efficient duplicate handling and
index lookup performance and is thus able to keep pace with
an efficient column-store implementation. Contrary to the
simple 1.x queries, the 4.x queries join all five tables of the
SSB. When processing such complex queries, column-store-
based systems reveal their major weakness: the overhead for
tuple reconstruction. With more and more join columns,
column-stores have to reconstruct more columns of a tu-
ple, which results in a degrading performance. In a row-
oriented DBMS, tuples are stored as physical units and do
not need to be reconstrcuted for query processing. How-
ever, this concept of passing entire tuples between operators
increases output materialization costs for each operator, be-
cause tuples have to be unpacked, interpreted, and packed
again. QPPT omits this materialization overhead with the
help of composed operators. Therefore, DexterDB is able
to process complex queries more efficiently than a column-
oriented database system.

Listing 1: SSB Query 1.1
select sum(lo_extendedprice * lo_discount

) as revenue from lineorder , ‘date ‘
where lo_orderdate = d_datekey
and d_year = 1993
and lo_discount between 1 and 3
and lo_quantity < 25;

2059

156 151

1709

0

500

1000

1500

2000

2500

MonetDB Commercial DBMS DexterDB w/ Select-
Join

DexterDB w/o Select-
Join

Q 1.1

Ex
ec

u
ti

o
n

 T
im

e
 [

m
s]

Figure 8: SSB Query 1.1 with and without Select-Join.

Figure 8 shows the execution times of query 1.1 (cf. List-
ing 1) for two different execution plans of DexterDB as
well as both other DBMSs. The first configuration uses a
composed select-join-group operator. The second one uses
a simple select and a separate join-group operator. This
experiment shows the advantage of a composed select-join
operator, which skips the costly tuple materialization step
for passing the selection result to the join-group operator.
About 95% of the execution time of the query plan without a
composed operator is spend for the selection operator, which
needs the most time for tuple materialization and indexing
of its output. However, the successive join-group operator is
able to process data more efficiently, because it is provided
with two indexes on its input, which avoids random prefix
tree lookups. But the advantage is low in this scenario, be-
cause the result of the date selection fits easily into the CPU

cache. Our investigations revealed that it is mostly benefi-
cial to use select-join operators, if the single selection would
materialize a large intermediate index as output.

Listing 2: SSB Query 4.1
select d_year , c_nation , sum(

lo_revenue - lo_supplycost) as
profit from ‘date ‘, customer ,
supplier , part , lineorder

where lo_custkey = c_custkey
and lo_suppkey = s_suppkey
and lo_partkey = p_partkey
and lo_orderdate = d_datekey
and c_region = AMERICA
and s_region = AMERICA
and (p_mfgr =MFGR #1 or p_mfgr =MFGR #2)
group by d_year , c_nation
order by d_year , c_nation

7902

1845

842 1091

1595

4939

0

2000

4000

6000

8000

10000

MonetDB Commercial
DBMS

DexterDB 5-
Way Join

DexterDB 4-
Way Join

DexterDB 3-
Way Join

DexterDB 2-
Way Join

Q4.1

Ex
e

cu
ti

o
n

 T
im

e
 [

m
s]

Figure 9: SSB Query 4.1 for Different Multi-Way/Star Join
Configurations.

In our final experiment, we quantified the advantage of
integrating join operators with each other. Figure 9 shows
the respective results of SSB query 4.1 (cf. Listing 2). We
measured the worst execution time for the execution plan
that consists only of traditional 2-way joins. Building a
composed 3-way join operator out of the first two 2-way
joins results in much better execution time. Again, this
performance increase is a direct result of the skipped tuple
materialization and the high lookup performance of prefix
trees. The step from the 2-way to the 3-way join is the
most beneficial one, because the first join materializes the
largest intermediate result. If we integrate more joins to one
composed operator, execution time decreases even more, but
the difference is not as high as before.

6. RELATED WORK
The related work of this paper can be roughly classified

into (1) template-based database system and (2) compile-
based database systems.
The template-based database systems—where DexterDB

belongs to—cover all systems that rely on operator tem-
plates used for building query plans. This includes most of
the current commercial systems (e.g., VectorVise [17]) and
many research prototypes (e.g., C-Store [15], MonetDB [6]).
A large number of the template-based systems use the vol-
cano iterator model [8]—possibly including optimizations
like buffers between the operators [16] or block-wise pro-
cessing [2]. As mentioned previously, this tuple-at-a-time

processing model suffers from high costs for copying tuples,
interpreting tuples, and virtual function calls. MonetDB [6]
avoids most of these costs by employing the column-at-a-
time processing model. Each operator in the query plan
processes a full column before the next operator is invoked.
A query plan itself is composed from a rich set of BAT alge-
bra operators. VectorVise [17] (formerly MonetDB/X100)
employs the vector-at-a-time processing model where small
batches that fit into the processors caches rather than full
columns are processed. Processing takes place using vec-
torized primitives, which can also be combined to obtain a
higher performance. Although the newer processing models
allow to exploit the capabilities of modern hardware, but
they suffer from disadvantages of the column-wise process-
ing like the expensive tuple reconstruction. Our processing
model does not require such a tuple reconstruction but keeps
the advantages of the newer models.
Our composed operator approach is related to compile-

based database systems [12, 10], where query execution plans
are translated into compact and efficient machine code. In
this approaches, several query compilation strategies (e.g.,
composing several operators) are proposed to change the
operator centric processing to a data centric processing.
Generally, the operator boundaries are blurred to reduce
expensive intermediate data materialization costs and data
exchange between operators to a minimum. The achieved
performance gain of the data centric processing compared
to the operator centric processing is remarkable. However,
the query compilation time massively increases for each sin-
gle query because an in-depth query execution plan anal-
ysis, rewriting, code compilation, and linking have to be
conducted. Especially code compilation and linkage costs
increase with a growing complexity of the DBMS core func-
tionality. Moreover, using specialized code for each different
query, pollutes the CPU’s instruction cache when running
queries in parallel. Our processing model with the available
composed operators avoids those drawbacks.

7. FUTURE CHALLENGES
The transition to the indexed table-at-a-time processing

model opens up a huge research field. As main challenge,
we identified the physical plan optimization, which has lots
in common with traditional plan optimization, but offers
additional optimization opportunities. For instance, the re-
duction of the output materialization costs of an operator
remains as one of the core optimization targets. To reach
this optimization goal, QPPT offers additional tools (e.g.,
batch inserts and composed operators).
When looking at current hardware trends, we identify

an increasing degree of parallelism in terms of Hyper-
Threading, cores per CPU, and Sockets per Machine, as well
as heterogeneous Coprocessors (e.g., GPUs, FPGAs). To
scale with the high number of processing units, our QPPT
operators need to support intra-operator parallelism. We
are currently investigating static and dynamic concepts for
building such operators and got first promising results. The
main advantages of the QPPT processing model—in con-
cerns of parallel processing—are the characteristics of the
underlying prefix tree index structure. First, the prefix tree
is a latch-free index structure that is synchronized via atomic
compare-and-swap instructions and second, the determinis-
tic nature of unbalanced trees offers an easy way of splitting
the tree into subtrees, which can be assigned to different

threads. Contrary, if a balanced tree is modified while it
is processed by an operator, the balancing operation may
moves already processed data to another threads subtree.
Another challenge is the classic index selection problem.

Because QPPT relies heavily on base indexes, we have to
select those indexes. Additionally, we have to decide which
attributes are stored clustered inside an index. Currently,
we are working on a fully automatic approach that creates
and drops those base indexes on its own. This approach is
also able to dynamically grow and shrink indexes depending
on the workload. This finer decision granularity offers much
more potential compared to binary decisions that either keep
an index or not. For instance, if a workload only reads a
certain key range of an index, the subtrees outside of this
key range are evicted and are restored on-demand.
Finally, we are also looking into the direction of hybrid

storages (row- and column-stores) and hybrid processing
models, to check whether performance benefits from those
hybrid systems.

8. CONCLUSION
OLAP systems have to handle and process large amounts

of data that are growing every day. To keep pace with this
growing data amounts, in-memory DBMSs start to domi-
nate the analytical market. Compared to traditional disk-
based databases, in-memory systems store all data in the
main memory to reach higher throughput and lower la-
tency. Those in-memory systems usually use column-stores
for OLAP queries, to exploit the sequential main memory
access performance. Thus, they also deploy a column-at-a-
time processing model, which passes entire columns between
operators, instead of a tuple-at-a-time processing model,
which was developed for disk-based row-stores. Databases
that are considered to be state-of-the-art use a vector-at-a-
time approach, which splits the passed column into vectors
that fit in the CPU’s cache.
In our paper, we introduced the very different row-

oriented indexed table-at-a-time processing model, which
passes entire tables that are stored as clustered indexes be-
tween operators. Thus, each operator always gets suitable
indexes as input and generates one output table that is in-
dexed on the column(s) requested by the following operator.
To minimize the intermediate index materialization costs,
we proposed prefix tree-based index structures, which are
known to be main memory optimized and offer a balanced
read/write performance. Moreover, we presented QPPT op-
erators that work very efficiently on prefix trees using the
synchronous index scan. As another core component, the
indexed table-at-a-time processing model allows composed
operators, which avoid the materialization of large interme-
diate results and thus dramatically speed up query execu-
tion, as our evaluation revealed.
All in all, the indexed table-at-a-time-based QPPT pro-

cessing model gave very good results during our SSB exper-
iments. Those results emphasize the high potential of the
processing model compared to the existing ones. Since this
are only the first results, we have to investigate the perfor-
mance on the more complex TPC-H benchmark and real
world scenarios. Moreover, we work on the complementary
technology for intra-operator parallelism, plan optimization,
and automatic index management.

9. ACKNOWLEDGMENTS
This work is supported by the German Research Foun-

dation (DFG) in the Collaborative Research Center 912
“Highly Adaptive Energy-Efficient Computing”.

10. REFERENCES
[1] DexterDB.

http://wwwdb.inf.tu-dresden.de/dexter.
[2] Block Oriented Processing of Relational Database

Operations in Modern Computer Architectures. In
ICDE, pages 567–, Washington, DC, USA, 2001.
IEEE Computer Society.

[3] R. Bayer, H. Heller, and A. Reiser. Parallelism and
Recovery in Database Systems. ACM Trans. Database
Syst., 5(2):139–156, June 1980.

[4] R. Bayer and E. McCreight. Organization and
Maintenance of Large Ordered Indexes, pages 245–262.
Software pioneers, New York, NY, USA, 2002.

[5] M. Böhm, B. Schlegel, P. B. Volk, U. Fischer,
D. Habich, and W. Lehner. Efficient In-Memory
Indexing with Generalized Prefix Trees. In BTW,
pages 227–246, 2011.

[6] P. A. Boncz, M. L. Kersten, and S. Manegold.
Breaking the memory wall in MonetDB. Commun.
ACM, 51(12):77–85, Dec. 2008.

[7] P. A. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: Hyper-Pipelining Query Execution.
In CIDR, pages 225–237, 2005.

[8] G. Graefe. Volcano - An Extensible and Parallel
Query Evaluation System. IEEE Transactions on
Knowledge and Data Engineering, 6:120–135, 1994.

[9] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner.
KISS-Tree: Smart Latch-Free In-Memory Indexing on
Modern Architectures. In DaMoN, pages 16–23, 2012.

[10] K. Krikellas, S. Viglas, and M. Cintra. Generating
Code for Holistic Query Evaluation. In ICDE, pages
613–624, 2010.

[11] P. E. McKenney and J. D. Slingwine. Read-Copy
Update: Using Execution History to Solve
Concurrency Problems.

[12] T. Neumann. Efficiently Compiling Efficient Query
Plans for Modern Hardware. PVLDB, 4(9):539–550,
2011.

[13] P. O’Neil, B. O’Neil, and X. Chen. Star Schema
Benchmark.
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF.

[14] J. Rao and K. A. Ross. Making B+-Trees Cache
Conscious in Main Memory. SIGMOD Rec.,
29:475–486, May 2000.

[15] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik. C-store: a column-oriented DBMS. In
VLDB, pages 553–564. VLDB Endowment, 2005.

[16] J. Zhou and K. A. Ross. Buffering Database
Operations for enhanced Instruction Cache
Performance. In SIGMOD, pages 191–202, 2004.

[17] M. Zukowski, P. A. Boncz, N. Nes, and S. Héman.
MonetDB/X100 - A DBMS In The CPU Cache. IEEE
Data Eng. Bull., 28(2):17–22, 2005.

APPENDIX
In the appendix, we give a short proposal for our QPPT
demonstration that we would like to give at the CIDR con-
ference.

A. DEMONSTRATION DETAILS
We implemented QPPT plan operators and prefix tree-

based indexes in our row-store-based in-memory database
system DexterDB, which uses MVCC for transactional iso-
lation. For demonstration purposes, we build a front-end
application to interactively help the audience to understand
QPPT execution plans. This demonstrator includes a set of
predefined OLAP queries from the Star Schema Benchmark.
After selecting a specific query, the demonstrator navigates
to the query details view where we are able to manipulate
query optimization parameters of the connected DexterDB
instance. Afterwards, the generated execution plan is vi-
sualized in the demonstrator and as soon as query execu-
tion finished, execution statistics are transferred from the
database to the demonstrator and get visible in the query
plan. In the following, we describe the interactive options
and visualizations in more detail.
After launching the demonstrator, the query selection

view is displayed to the audience. Here, we have the option
to select a predefined OLAP query of interest. A click on
the query of choice opens the query details view. We include
the complete set of queries of the benchmark in our demo,
because each query has different characteristics, which influ-
ence query execution performance. Queries of the selected
benchmark comprise a different number of join operations
and different restrictions on the dimension tables and the
fact table, which results in a varying size of intermediate
results and operator complexities. More simple queries like
query 1.x are better suited to demonstrate index scan per-
formance, whereas queries 4.x are better suited for showing
the benefit of multi-way/star joins.
The query details view for SSB query 2.3 is depicted in

Figure 10. On the left-hand side of this view are the indi-
vidual optimization options located, which can be changed.
One set of options are the physical plan optimization op-
tions. With the first option, we can decide whether Dex-
terDB should integrate selection operators with join oper-
ators, if possible. Setting this option to off requires that
the select operator has to materialize an intermediate index,
which mostly has a negative impact on the execution time,
but for some queries this option is beneficial. If this option
is set to on, the optimizer generates a single select-join oper-
ator, which can skip the materialization step of the selection
and each tuple of the selection is directly processed by the
included join operator. The second physical optimization
setting is the joinbuffer or selectionbuffer size. This buffer
can be set to size 1(none), 64, 512, or 2048. If the joinbuffer
is activated, the database system is able to profit from batch
lookups in prefix trees. The other advantage is that the us-
age of a joinbuffer also enables operators to do batch insert,
when materializing the intermediate index. Regarding the
size of the joinbuffer, different settings result in a changing
execution performance, because a too low or a too high size
affects the performance negatively. The last offered setting
influences the logical plan optimization. Here, we included
an option to limit the generation of multi-way/star joins,
which can be set to 2-way, 3-way, 4-way, or multi-way join.

http://wwwdb.inf.tu-dresden.de/dexter
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

Figure 10: Query Details View.

The 2-way join only generates traditional join operators that
join two tables with each other whereas the multi-way join
allows the join of multiple tables with a single operator that
is able to skip costly materialization steps. When joining
dimension tables on fact tables, the size of intermediate re-
sults usually gets smaller. Thus, we use this option to show
the point where a materialization is again beneficial.
On the right of the setting panel is the query plan visu-

alization located. As soon as DexterDB finished the query
execution plan generation, the plan becomes visualized in
the demonstrator. The orange circles in the picture are
plan operators, which are—based on the chosen optimiza-
tion settings—either classic operators or composed opera-
tors. For instance, the rightmost operator in the figure is
a 3-way-select-join that does the selection on part.brand1
and directly joins results with the lineorder and supplier
table. The result of this composed operator is materialized
as an intermediate prefix tree; it is passed to the succes-
sive operator, which is a 2-way-join-group. During query

execution, DexterDB collects execution statistics, which are
visualized in that execution plan right after the execution
finished. Those statistics comprise:

• The total execution time of the query and the portion
of time that is spend for the individual operators.
• The size of base indexes and intermediate indexes,
which have to be generated during query execution by
the single operators.
• The type of input indexes and the output index.
• Internal operator statistics that reveal, what amount of
time was taken for tuple materialization and the output
indexing.

With the help of those execution statistics, the audience
gets a deeper insight into QPPT execution plans. Moreover,
we can demonstrate which parts of the query plan consume
the most time.

	Introduction
	QPPT Prerequisites
	Prefix Tree
	KISS-Tree
	Batch Processing
	Duplicate Handling
	Performance Evaluation
	Summary

	QPPT Overview
	Composed Operators
	Selection/Having
	Multi-Way/Star Join
	Select-Join

	Evaluation
	Related work
	Future Challenges
	Conclusion
	Acknowledgments
	References
	Demonstration Details

