
A Social Network Database that Learns How to
Answer Queries∗

Sara Cohen
Dept. of Computer Science

and Engineering
Hebrew University of

Jerusalem
sara@cs.huji.ac.il

Lior Ebel
Dept. of Computer Science

and Engineering
Hebrew University of

Jerusalem
lior.ebel@mail.huji.ac.il

Benny Kimelfeld
IBM Research-Almaden

San Jose, CA 95120
kimelfeld@us.ibm.com

ABSTRACT
Social networks are ubiquitous, with online networks garner-
ing a large portion of Web traffic. Both online and offline, so-
cial networks structures are an interesting data source whose
importance has been recognized for over a hundred years.
Research on social network analysis has dealt with proper-
ties of entire networks, in addition to properties of nodes or
sets of nodes.

A user queries a social network in pursuit of a desired
outcome, such as an expert on a specific medical condition,
a set of influential people to promote a new product, or a
well-balanced group of database experts to form a program
committee. The user may know what the desired outcome
is, and may even be able to express it in a formal query
language, given the right abstract predicates to represent
typical social-network measures (e.g., the importance of a
node or its relevance to some keywords). However, choosing
the best implementations for these predicates, as well as op-
timal ranking functions for the results, will often be beyond
the abilities of a standard user. In fact, even an expert may
experience difficulty with such a task, as the quality of so-
lutions may depend on the precise query at hand, the user
preferences, and the nature of the network.

This paper suggests a novel vision of a social network
database system. This system incorporates abstract predi-
cates relevant to social networks as primitive building blocks
in the query language, and uses machine learning, as an in-
tegral part of the query processor, to select and improve
upon the predicate implementations. The paper discusses
the main features of such a system, as well as the implemen-
tation challenges.

1. INTRODUCTION
Online social networks are becoming extremely pervasive,

serving as a common method of communication and collabo-
ration. Although such networks are a relatively recent devel-
opment, offline social networks (i.e., real-life social networks)

∗Sara Cohen and Lior Ebel were partially supported by the
Israel Science Foundation (Grant 143/09) and by the Min-
istry of Science and Technology (Grant 3-8710).

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA..

have been recognized as an important data source for over
one hundred years. There has been extensive research on
analyzing social networks, stemming from diverse fields in-
cluding psychology, anthropology, mathematics, and, more
recently, computer science.

As social networks are huge, interesting and diverse datasets,
the problem of querying social networks has received much
attention both in the industry and in academia. Facebook
has introduced FQL (Facebook Query Language) which pro-
vides an SQL-like language for querying network informa-
tion. Twitter has advanced search capabilities, allowing
users to search based on words, specific people, places, and
additional tweet properties. LinkedIn provides job and peo-
ple search functionalities. Each of these query or search
options is rather limited, and provides a solution only for a
single social network.

Many software tools are available for network analysis
of arbitrary social networks. In fact, Wikipedia [13] lists
close to 80 social-network analysis tools. Roughly speak-
ing, these tools usually focus on one or more of the follow-
ing aspects: visualization, analysis, mining, and database
querying and/or manipulation. From a database perspec-
tive, social networks can be viewed simply as graphs. Graph
databases have been studied extensively [2]. Many query
languages for graph databases have been proposed [14], most
of which are based on common building blocks such as reg-
ular expressions and graph patterns. Queries are generally
interpreted in a precise manner (requiring complete satisfac-
tion); however, there has also been work allowing for some-
what looser interpretations of the queries [5, 6].

Databases specifically designed for social networks have
also been developed. SoQL [9], is a social-network query
language that is based on SQL. SociQL [11], another social-
network query language, is also SQL-based, and contains
some built-in functions for computing social-network cen-
trality measures. SNQL [8] is based on GraphLog and in-
cludes both querying and data manipulation features. So-
cialScope [1] allows ranking of query results based on social
relations. Finally, Dries et al. [3] combine social-network
querying, data mining and clustering capabilities.

With so many languages and systems already developed, it
is perhaps surprising that this paper introduces yet another
vision of a social-network database system (and even dares
to label such an idea “outrageous”). Actually, when looking
over current work, it seems that there is quite a chasm be-
tween the types of queries easily expressible in graph (or
social-network) databases, and natural queries that arise

n5

n2

n3

n4

n1

e1

e2

e3

e4
e5

n1 Name = Alice
Age = 32

n2 Name = Bob
High-school = LVHigh

n3 Name = Cindy

n4 Name = Dan
Age = 35

n5 Name = Erica
Hobby = Bungee jumping

e1 ({n1},{n2}) Label = follows

e2 {n2,n3} Label = friends

e3 {n3,n4,n5} Label = co-authors
Title = Bungee for Fun
ISBN = 12345

e4 {n3,n4} Label = friends

e5 ({n3},{n1,n2}) Label = email
Content = Check out my
new book…

Nodes Edges

Figure 1: A tiny portion of a social network

from the field of social-network analysis.
Current proposals focus mostly on precise, database style

queries (e.g., find all common co-authors of two specific au-
thors, find people 2-hops away from a specific node, find
pairs of nodes whose connecting path matches a specific reg-
ular expression), without the capability to express richer im-
precise queries that are more in the spirit of social-network
analysis.1

On the other hand, typical social-network questions in-
clude expert search, friend recommendation and community
recognition. Each of these problems, along with many oth-
ers, has been studied individually (e.g., [7,15]) and quite ex-
tensively. Often, there are specific network properties that
seem to contribute positively towards preferable solutions to
these problems. For example, expert recommendation may
take into consideration centrality of target nodes, and friend
recommendation may take into consideration the closeness
of the source and target nodes (to leverage common social-
network properties, such as triadic closure and homophily).
However, the optimal interpretation of such properties is of-
ten unknown, as it is not obvious how one should best mea-
sure centrality or closeness. Therefore, for each new social-
network problem, many different instantiations of ranking
functions for network properties are considered, often to-
gether with a machine-learning mechanism, to determine
the parameters of these functions as well as the effective
amalgamation of their outputs.

The database system envisioned in this paper will bridge
the gap by bringing together (1) a declarative query lan-
guage, (2) abstract social-network ranking functions, along
with efficient instantiations and (3) a learning mechanism,
that allows the best instantiations to be learned, per query
(from user feedback), if so desired. Such a system will ac-
commodate a variety of social-network-oriented questions.
It will also be extensible, to allow for new implementations
of social-network measures to be seamlessly integrated into
the system, allowing all types of queries to take advantage,
immediately, of such advances.

In the remainder of this paper, we introduce the main
underlying ideas of our system, by focusing on the query-
ing mechanism. We also briefly discuss some of the many

1SociQL [11] allows some limited filtering by specific cen-
trality measures as part of a special FILTER BY clause.

challenges that will arise in actually implementing such a
social database system, which require rethinking many core
database issues.

2. QUERY LANGUAGE

Data Model. A social network is simply a graph. The
nodes represent people, and can have a variety of attributes,
associated with attribute values. Edges are labeled, and may
be directed or undirected, and weighted or unweighted. In
addition, to easily represent groups of people and interac-
tions, edges may be (directed or undirected) hyper-edges.
Edge weights can be user defined, or system generated (e.g.,
based on frequency of communication). As edges represent
various types of relationships and interactions among people
they can also be associated with attributes and values.

To demonstrate, Figure 1 depicts a tiny portion of a social
network N . Nodes n1, . . . , n5 are associated with attributes
and values. For example, n1 is associated with the attribute-
value pairs “Name = Alice” and “Age = 32”. In our system,
we also assume that each node has an identifier (which may
be system generated), assigned to the attribute named “id.”
The network N also contains five edges. Observe that all
edges are labeled, and some edges are associated with ad-
ditional attribute-value pairs. Edges also have identifiers
(again, associated with an “id” attribute). There are several
different types of edges in N : e1 is a directed edge, e2, e4
are undirected edges, e3 is an undirected hyper-edge and e5
is a directed hyper-edge.2

Queries. Due to space limitations, we do not provide a
complete description of syntax or semantics. Instead, we
explain the main features of our language, and present sev-
eral illustrating examples.

Our query language uses an SQL-style syntax. Query vari-
ables can range over nodes, sets of nodes or edges. Since a
social network may contain a variety of types of relationships
(i.e., edges), not all of which may be of interest for a partic-
ular query, queries have special PROJECT clauses that define
the sub-network of interest. Within the WHERE clause, we
use a dot-notation to access attribute values of nodes/edges.
For convenience, we use labels of edges as boolean predicates

2Of course, all edges are simply special cases of directed or
undirected hyper-edges.

within our queries, as will be apparent below. Queries may
also have RANK BY and LIMIT clauses.

A unique aspect of the language is the presence of special
built-in functions, used as building blocks for expressing in-
teresting queries over the social network:3

• imp: measures the importance of a node;

• sim: measures the similarity of a set of nodes;

• cls: measures the closeness of a set of nodes;

• infl: measures the influence of a set of nodes on the
rest of the network;

• dscr: measures the strength of the relationship be-
tween a set of nodes and given text.

There are many different ways to implement these functions.
For example, imp can be implemented using any one of many
different centrality measures [4]. As another example, cls
can be implemented using functions such as Adar/Adamic,
rooted PageRank, the Katz measure, or others [7]. In fact,
as discussed above, we expect a system to include several
different implementations of each built-in function.

Our built-in functions return a numerical value that can
be used for ranking. However, we will also use these func-
tions as boolean predicates within a WHERE clause. The
query processor will interpret these predicates by choosing
a threshold for the minimal return value of the function.
(Choosing a threshold, as well as choosing an implemen-
tation of a function and parameters thereof, can be done
manually through user customization or automatically by
means of machine learning, as we discuss later on.)

We demonstrate the main features of our language by
a series of examples. Each example expresses a standard
social-network analysis problem within our simple declara-
tive language. Note that we steer clear of queries that have
a classical relational database flavor, as they are not of spe-
cial interest in this language. However, such queries can be
easily expressed in the language.

Example 1 (Link Prediction [7]). Given a node n ∈
N , the link prediction problem is to find nodes that n is cur-
rently not friends with, who are likely to become friends with
n in the near future. The ability to find such nodes is useful
for friend recommendation.

The following query finds the top-10 best results for pre-
dicting new links for node 17. Note the use of the FROM

clause to state that n and m range over nodes. Note also
that friends is used as a boolean predicate (as mentioned
earlier) which returns true if the set of nodes in its argu-
ment is an edge labeled friends in the graph.

SELECT m

FROM NODE n, NODE m

WHERE n.id = 17 and not friends({n,m})

LIMIT 10

RANK BY sim({n,m})

Example 2 (Expert Search [15]). Given some string
of text t, the expert search problem is to find a node that is an
expert on the topic t. In order to return interesting results,

3Additional functions, measuring other social-network prop-
erties, are also possible.

the following query ranks by a combination of the expertise of
the node on t, and its general graph importance. The WHERE

clause uses the built-in function dscr in a boolean fashion
to require some minimal expertise in the topic “XML”, and
again uses dscr in the RANK clause as a ranking factor.

SELECT n

FROM NODE n

WHERE dscr({n},"XML")

LIMIT 10

RANK BY {imp({n}), dscr({n},"XML")}

Example 3 (Program Committee). In the final ex-
ample, we consider the problem of forming a program com-
mittee. All members should be experts in the topic, should be
people of importance, and should be somewhat diverse. We
use NODESET in the FROM clause to declare a variable ranging
over sets of 15 nodes. Note also the use of PROJECT to re-
strict ourselves to the portion of the graph containing edges
that indicate authorships.

SELECT N

FROM NODESET(N,15)

PROJECT ON EDGES WHERE label = "co-authors"

WHERE dscr(N,"ACID, views...")

LIMIT 10

RANK BY {imp(N), dscr(N,"ACID, views..."),-sim(N)}

In summary, the main unique aspects of this query lan-
guage are that it combines a declarative style with built-in
social-network predicates (which allow a variety of interest-
ing queries to be expressed), while decoupling the implemen-
tation of these predicates from the query declarations.

Answering Queries. In principle, query processing should
proceed in a manner similar to processing queries in other
languages, such as SQL. However, the use of our special
built-in functions gives rise to three distinct problems.

• First, there are many different possible useful imple-
mentations for each function. Assuming that there are
several implementations, which should be chosen for
use during the evaluation of a specific query?

• Second, when using a built-in function as a boolean
predicate within a WHERE clause, what threshold should
be chosen to determine satisfaction of the predicate?

• Third, when several functions are specified within the
RANK BY clause, what should be the precise combina-
tion to be used when ranking results?

A minimal requirement from the system is to allow the
user to tune her query by specifying the answers to all three
questions, that is, choosing function implementations from
among those available, setting a threshold, and determining
the precise ranking function. Thus, the user can have com-
plete control on the interpretation of her query by the query
processor.

We envision a system that goes significantly beyond this
minimal requirement. When the user does not know how to
choose the best implementation of her query, she can request
the system to make default choices for her, and then, to learn
from feedback about the answers that the system returns.4

4In some circumstances the user feedback may be implicit,
as in the case of link-prediction queries.

Using machine learning, the databases system can attempt
to improve upon the query results (i.e., improve the three
choices above), when the query is rerun. We note that there
is an inherent time/effectiveness tradeoff, as learning of each
query by the system is quite costly. For queries that will be
run often, and for which extremely effective result ranking
is important, a learning process is highly useful. Thus, in
a nutshell, our vision is of a social-network database system
with a declarative query language including social-network
functions, that can also learn how to answer queries.

We note that the problem of learning queries from query
results has received quite a bit of attention lately (e.g., [10]).
Such work generally assumes that the user provides some
(positively and/or negatively) labeled answers, and the query
(in a given query language) is learned. In contrast, in our
system the basic structure of the query is known. Instead,
the best implementation of the built-in predicates (among
those available), as well as their combinations within the
ranking functions, are learned.

3. MAIN CHALLENGES
Implementing a database system for social networks that

learns how to answer queries is extremely challenging. In
fact, such a system requires rethinking many core database
issues. We detail some of the main issues.

Efficient Query Evaluation. First, and foremost, enabling
efficient query evaluation is a huge challenge. At the very
least, this requires the built-in functions to be efficiently
computed. However, previously considered methods of mea-
suring centrality of a node, closeness, etc., are often quite
costly. For example, there have been several works [12]
which have studied the efficient implementation of path dis-
tance for pairs of nodes within a social network. Thus, even
this simplest implementation of closeness (and even for only
two nodes) is already a challenge due to the mammoth sizes
of social networks, and their constant evolutions.

Learning Mechanism. Effectively learning from user ex-
amples is another challenge. Queries may have several dif-
ferent parameters that must be learned, and users may pro-
vide only limited feedback. Choosing an effective learning
mechanism, and integrating it efficiently within the query
processor, is already a non-trivial task. Additionally, pro-
viding guarantees, such as eventual convergence on the op-
timal solution, is even more challenging. Determining how
to solicit user feedback on specifically chosen examples, in
order to speed up the learning process, is also an interest-
ing problem in the given setting. Finally, while learning is
typically performed for a specific query, an interesting and
important problem is to leverage the results of one learning
process to speed-up the learning of parameters for a different
query.

Privacy. Standard online social networks provide a very
limited array of privacy controls for their users. For ex-
ample, Facebook users can choose the allowed audience for
various information (including public, friends, only me or a
custom specified list). However, we envision a richer pri-
vacy mechanism to be of importance. For example, the user
may want to allow herself to be found within specific con-
texts, or by specific people. As a simple example, a den-

tist who participates in a social network may desire to be
a possible result for queries relating to dentistry (but may
wish to remain anonymous for other types of queries). As
another example, a database researcher may be willing to
be found by any other person who is of importance in the
database field, but not by others. Developing a formalism
for such privacy controls is a challenge, as is determining
how to evaluate the built-in functions without inadvertently
exposing private information.

Advanced Features. There are many advanced features
that would be invaluable within the context of our social-
network database. One such feature is the ability to ask
hypothetical questions (e.g., what will be the effect on the
network if Bob and Alice are no longer friends). Another is
the effective management of time and provenance within the
network (e.g., why did we suggest Bob as a friend for Alice).
Finally, integrating aggregation into the query language, and
allowing efficient computation of various statistics over the
network (and updating them as the network evolves), is also
an interesting challenge.

4. REFERENCES
[1] S. Amer-Yahia, L. V. S. Lakshmanan, and C. Yu.

Socialscope: Enabling information discovery on social
content sites. In CIDR, 2009.

[2] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Comput. Surv., 40(1):1–39, 2008.

[3] A. Dries, S. Nijssen, and L. De Raedt. A query
language for analyzing networks. In CIKM, 2009.

[4] L. Freeman. Centrality in social networks: Conceptual
clarification. Social Networks, 1979.

[5] G. Grahne and A. Thomo. Regular path queries under
approximate semantics. Ann. Math. Artif. Intell.,
46(1-2):165–190, 2006.

[6] Y. Kanza and Y. Sagiv. Flexible queries over
semistructured data. In PODS, 2001.

[7] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In CIKM, 2003.

[8] M. S. Mart́ın, C. Gutierrez, and P. T. Wood. Snql: A
social networks query and transformation language. In
AMW, 2011.

[9] R. Ronen and O. Shmueli. Soql: A language for
querying and creating data in social networks. In
ICDE, 2009.

[10] S. Staworko and P. Wieczorek. Learning twig and
path queries. In ICDT, pages 140–154, 2012.

[11] D. F. S. Suarez. SociQL: A Query Language for the
Social Web. PhD thesis, University of Alberta, 2011.

[12] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B.
Golgher, D. d. C. Reis, and B. Ribeiro-Neto. Efficient
search ranking in social networks. In CIKM, 2007.

[13] Wikipedia. Social network analysis software —
Wikipedia, the free encyclopedia, 2012. [Online;
Accessed July 2012].

[14] P. T. Wood. Query languages for graph databases.
SIGMOD Rec., 41(1):50–60, Apr. 2012.

[15] J. Zhang, J. Tang, and J. Li. Expert finding in a social
network. In Advances in Databases: Concepts, Systems
and Applications, volume 4443. Springer, 2007.

