
Querying Without Keyboards

Arnab Nandi
Computer Science and Engineering

The Ohio State University
arnab@cse.osu.edu

ABSTRACT
Computing devices that use non-traditional methods to in-
teract with data are becoming more popular than those that
use keyboard-based interaction. Applications and query in-
terfaces for such devices pose a fundamentally different set
of workloads on the underlying databases. We characterize
these differences and show how today’s query representa-
tion and evaluation techniques are not well-suited to these
new non-keyboard interaction modalities. We propose a new
database architecture to address these issues, and demon-
strate that it can be built using already existing components.

1. INTRODUCTION
The proliferation of next-generation computing devices such
as tablets, smartphones, gesture-based systems such as the
Kinect, and eye-tracking-based systems such as Google Glass
have ushered us into a new age of end-user access to data.
In 2011, over 550 million smartphones and tablets were sold
– 1.5 times that of the number of desktops, laptops, and net-
books combined [5] for the same period. In the last quarter
of that year, this ratio jumped to 1.9 times. Given this
trend, it is clear that both the size and the heterogeneity of
non-keyboard interaction is growing rapidly, and soon will
be a dominant mode of interaction.

Users are also performing a immensely wide variety of fairly
advanced tasks through these interfaces: from making flight
reservations (e.g., a third of frequent flyers use tablets and
smartphones to make reservations[2]) to big data analyt-
ics [21]. The plethora of new applications built for such en-
vironments also introduces a wide vocabulary of interaction
paradigms, such as direct manipulation [22], multi-touch,
gestures, and multi-user input. Applications are increasingly
communicating more data to the user, featuring visualiza-
tions such as sparklines and heatmaps as core parts of the
user interface, and allowing for fluid interactions with large
amounts of data both of which involve an increasing reliance
on the underlying data layer.

The current generation of data interfaces – forms, reporting

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6–9, 2013, Asilomar, California, USA.

tools, and query workflows – are all powered by backends
that are built around the Query→Result paradigm. For
example, applications extract all information needs from a
user, prepare a query for the database using SQL directly
or through an ORM, and then communicate the query to a
database which executes the query and returns the results.
The design of such interfaces can be traced back to text-
based console input, involving a back-and-forth dialog with
the computer. In traditional interfaces, there is no activity
during the query construction process. Interactive tools of
today that use different interaction paradigms, such as di-
rect manipulation, are being shoehorned into typical access
patterns built for keyboards and mice, which can no longer
be assumed as the sole way to access data.

New paradigms to data interaction are orthogonal to the
user’s skill levels. Graphical user interfaces have typically
been perceived as being an “easier” but less powerful ap-
proach to interacting with databases. In contrast, our efforts
are independent of user proficiency: we see the new inter-
action patterns as an opportunity to efficiently issue more
advanced queries than possible with a purely text-oriented
approach.

2. CHALLENGES
A primary challenge with modern data-driven applications
is the change in user expectations of query latency. Due
to the popularity of web services, querying is expected to
be near-instantaneous. In the case of direct manipulation,
a paradigm adopted by most non-keyboard interfaces, fluid
interactivity relies on instant feedback: calls to the under-
lying data layer are considered blocking factors. The cur-
rent model of database querying, however, does not place a
bound on execution time of queries, possibly breaking the
interaction flow due to a long-running query.

Second, modern application layers, especially those from
non-traditional interfaces, issue a significantly different work-
load than what is currently expected by the database. As
an example, consider the browsing of result sets. In tradi-
tional scenarios, the result set is materialized and stored in
a (temporary) relation. The user is presented with a pagi-
nated tabular display, showing the first n tuples of the result
set using extensions such as TOP or LIMIT . The user then
clicks the “Next” button to jump to the next n results and
“Previous” to go back, which then trigger additional SQL
queries, lazily loading pages as they come into view. Adap-
tations of this interfaces for mouse-based interfaces overload
the scrolling mechanism, with scroll up and scroll down de-
noting the previously mentioned actions.

The advent of accelerated scrolling for touch-driven inter-
faces poses an interesting challenge to this setup. A simple
swipe can trigger an accelerated scroll on a relation, effec-
tively issuing a large number of queries (one for each “page”
of information) to the database backend. Worse, continued
swiping accelerates the scrolling speed, issuing a superlinear
number of queries, overloading the query queue. Ironically,
due to the high speed of scrolling, most of these result pages
are ignored by the user. The lack of responsiveness on an
interface due to an unresponsive backend will typically cause
the user to attempt more interactions (and hence triggering
more queries), exacerbating the problem.

The scheduling of queries from a scrolling interface is an in-
teresting challenge: Since a user will typically be interested
in the current page, do we kill all old queries and priori-
tize all new queries? Further, due to the ephemerality of
some results, can we get away with approximate, partial an-
swers? [23] Clearly, a cohesive answer to these questions is
a highly desirable goal.

A third challenge is the inherent exploratory nature of non-
keyboard interfaces. As we will see in Section 3.1, feedback
on a prospective join is shown for the most proximal pair of
attributes in a multi-touch interface. In contrast to tradi-
tional textual input where queries are executed when “En-
ter” is pressed, each finger movement could possibly trigger a
different join (in the worst case, all possible attribute combi-
nations could be valid joins). Each join is executed and then
post-processed to display a summary of the results, such as
participation cardinality, and a (post-processed) preview of
the data. Executing such queries to completion would be
prohibitively expensive without careful optimization. For
significantly large datasets, providing perceivably instanta-
neous feedback (i.e. in the 100ms range) would not be pos-
sible. As is the case with most exploratory interfaces, a ma-
jority of the queries are simply “what-if” questions posed by
the user; who is simply trying to articulate an explicit query
by trial-and-error – a majority of the complete materialized
results will be ignored by the user anyway. Thus, a method
to prioritize information that aids in fulfilling the user’s final
information need, would reduce unnecessary exploration.

The fourth challenge is that of providing feedback for non-
keyboard interaction. Unlike textual interfaces where we
can use the input directly, feedback will need to be gen-
erated using a combination of interface state/context (e.g.
“which items have been touched so far?”), gestural cues (e.g.
“can we recognize that the user made a pinch-out gesture
on a resultset?”), and positional information (e.g. “what is
the distance between dragged items X and Y, and what are
their velocities and direction?”). Providing feedback to users
during such input or gesture is critical. Many of these in-
puts (such as position), unlike text, can change rapidly over
time, which the feedback generation mechanisms should sup-
port.

Outline: In the following section we describe the QWiK
system, where we begin with an example user interaction.
We describe our Query Model and System Architecture in
Sections 3.3 and 3.2, followed by a walkthrough of the ex-
ample query through our system. We conclude with Related
Work in Section 4.

3. A QWIK DATABASE
Based on the motivation and challenges, we now propose
the QWiK (Querying Without Keyboards) database sys-
tem. This system is designed to serve touch, gesture, and
other natural user interfaces which have workloads similar
to our motivating example, described below. The user inter-
face (one possible interface – others can be built on top of
our system) allows interaction with databases using multi-
touch gestures. While the interface is capable of performing
more complex compositions, for this paper, we focus on the
interactive join gesture, which allows users to perform a join
on two relations.

3.1 Motivating Example
Consider an equijoin between two relations Employee (E)
and Project (P), as shown in Figure 1. Based on the at-
tributes, there are four valid (based on key relationships in
the schema) joins between the two relations:E.projectId =
P.id, E.projectId = P.parentProjectId, E.id = P.supervisorId
and E.id = P.managerId. Each join yields a different, valid
result with different participation and tuple cardinalities.

projectId	
loca-on	

	 Employee	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	

id	

deptId	

parentProjectId	
supervisorId	

Project	
id	

managerId	

	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	

⋈	 1:2
n=1200

John	 SF	 Audit	 Tax	 Fin	 Joe	
John	 LA	 Review	 Acc	 Fin	 Jen	

Figure 1: User Interface for an interactive join oper-
ation, with feedback on prospective joins. Current
systems encounter several challenges when catering
to workloads from such interfaces.

Interface Behavior: As the user brings the tiles for the
two relations close to each other, the interface detects the
movement and begins suggesting possible query actions. It
arranges the attributes such that they are amenable to join-
ing together. Further, the most likely pair of attributes to be
joined are depicted using a dashed connector. Cardinality
information of the participating tuples is presented, and a
preview of the candidate results are shown as well. If this is
the intended choice, the user simply moves the tiles in closer
till the attributes touch, confirming the join. If this is not
the intended join, the user moves tiles towards the intended
attribute pair. This causes the connector to switch to the
next attribute combination. All feedback from the system is
fully interactive – the system reacts to each pixel movement
of the user, responding instantaneously.

This feedback allows the user to compose relations in a fluid
and intuitive manner. All user movements are responded
to with instantaneous insights to the result of the possible
query, thereby guiding the user towards constructing the
query originally intended by the user, with no dependency
on prior knowledge of the schema, data or even the query
language. While our current example schema is fairly articu-
late in its naming and structure, the user would benefit a lot
more from this interface given a database with no predefined
key constraints or well-named relations / attributes.

3.2 Query Model
We now introduce our query model, that builds upon the
relational database model.

Query Intent: Users issue queries by focusing on their
query intent, going from a vague information need to an
exact query formulation. The query intent is a probability
distribution over a space of valid relational queries. Ini-
tially, the user provides no information to the system, thus
the query intent is a uniform distribution over all possible
queries to the database. Given sufficient information from
the gesture and the query context (described below), the sys-
tem can narrow down this distribution, bounding the space
of possible queries. At the completion of a gesture, the query
intent space is that of a single query with 100% probabil-
ity: an explicit query. The process of narrowing the query
space and arriving at an explicit query is called an query in-
tent transition. A single user session will comprise multiple
query intent transitions, each building on the previous one.

Query Context: All interactions take place within a query
session. Due to the directly manipulable nature of the inter-
face, the system maintains a list of all query intent transi-
tions, and all recent intermediate results and feedback. This
allows the system to infer and narrow the space of possible
queries. Further, the query context can be used to prioritize
the surfacing of feedback to the user, as we will discuss in
the forthcoming paragraphs.

Query Gesture: Each set of user gestures is codified as a
search pattern, with a “likelihood score”. Each gesture maps
to one or many parameterized queries. When the likelihood
score for a certain gesture goes above a fixed threshold, the
system attempts to populate the parameters of the parame-
terized query using the gesture information (e.g., which re-
lations are being dragged) and the query context, building a
query template. This query template is used to infer query
intent space (described above). In the event that multiple
gestures are inferred at the same time, the intent space is
the union of all corresponding query templates.

Intent Feedback: The goal of the user interface is to ac-
celerate the narrowing of the intent space, allowing the user
to quickly reach an explicit query. To do this, the system
provides feedback to the user during the entire interaction
loop. Since the amount of feedback possible is quite large,
and there is a cost of overburdening the user with too much
information. This leads to an interesting problem: How do
we rank feedback such that it causes the user to narrow the
intent space? To do this, we attempt to maximize the en-
tropy of the feedback, in the hope that this will cause the
user to polarize opinions on a certain type of query, keep-
ing in mind the size of the feedback and the probability of
query:

Feedback = arg max
r⊂RU

 1

|r| ·H(r) ·
∑

q∈Q(r)

P (q)

Where H is the entropy of a resultset. RU is the combined
set of results from all queries in the intent space. Q(r) is
the set of queries in the intent space whose results contain
r. P (q) is the probability of query q in the query intent.

While user input such as touch movement may change rapidly,
it causes a slower change in the intent space, most likely just
a re-weighting of the probability distribution. Results are

generated in an online fashion, allowing for time-bounded
computation of feedback. The feedback loop runs incremen-
tally, reusing computations (stored in the context) from the
previous iteration. This allows our query model to success-
fully tackle all challenges discussed in Section 2.

3.3 System Architecture
We now describe the various components of the QWiK sys-
tem, as illustrated in Figure 2. The user interacts with the
user interface, that connects over the network to the QWiK
backend. The query context is maintained both at the fron-
tend and the backend for performance reasons. The Gesture
Mapping module maps interactions in the user interface to
corresponding database query templates. It should be noted
that while the user interface and gesture mapping compo-
nents are a critical part of the end-to-end system, they are
orthogonal to the core QWiK architecture, and can be re-
placed with other interfaces. In the backend, the system is
divided into two parts. The Intent Interpretation module
uses the candidate queries from the incoming gestures, the
query context and the database to infer the query intent
space. The Feedback Generation module then generates an
optimized set of insights to present to the user, by execut-
ing queries, leveraging index and catalog information from
the database, and considering intent history from the query
context. Generation is done in an online manner, returning
a “best-so-far” feedback in bounded time. Resultsets typi-
cally get reused through a query intent transition, and can
be improved across feedback computations.

Intent	 	
Interpreta)on	

Feedback	 	
Genera)on	 DB	

User

Co
nt
ex
t	

Ca
ch
e	

U
se
r	 I
nt
er
fa
ce
	

Context	
Cache	 Gesture	

Mapping	

N
et

w
or

k

Figure 2: QWiK System Architecture that can be
used to power non-keyboard interfaces, e.g. Fig-
ure 1. Feedback Generation and Intent Interpretation
tackle database challenges critical to our use case.

Query Walkthrough: To explain the architecture, we
provide a walkthrough our interactive join example. The
user interface is implemented as an multi-touch application,
which connects over the network to the QWiK backend. The
join action, when looked at carefully, is a combination of
three gestures: touching the first relation, then the second,
followed by dragging the relations towards each other till the
participating attributes are in contact.

The user first selects a tile representing a single relation
on the user interface by touching it on the screen. This is
recognized as the “select relation” gesture on the EMPLOYEE

relation, based on the nature of the tile, and the touch ac-
tion and returns the filled query template SELECT * FROM

[relation:EMPLOYEE], where EMPLOYEE was filled in by the
module. The Intent Interpretation module then observes an
empty context cache. Based on the current gesture, the in-
tent space is clearly a single query, with probability 1.0. The
work of the feedback module is thus simple: it simply returns
a preview of the relation by issuing the following queries:
SELECT * FROM EMPLOYEE LIMIT 10 and SELECT COUNT(*)

FROM EMPLOYEE . Both results are stored in the query cache
along with the explicit query. The results are then sent to
the frontend, which populates the cache in the frontend, and
updates the display by “opening” the relation’s tile into the
set of attributes, as shown in Figure 1. The preview area
shows sample tuples and cardinality of the relation.

The same action takes place upon touching the second rela-
tion, PROJECT, with the difference that the context contained
the previous query. However, due to the fact that the prior
touch event was not in motion (i.e. the user was not drag-
ging it), and hence not the primary focus, the probability of
that query was set to zero by the interface, thus constraining
the query intent space, and allowing the feedback module to
return only results from the PROJECT table.

The third action is the dragging motion. Once the tiles
are within a certain distance, the join gesture is recognized,
and the SELECT * FROM [relation:EMPLOYEE] JOIN [re-

lation:PROJECT] ON [attribX = attribY] is returned. The
Intent Interpretation module uses the schema information
in the query context (populated from the prior queries) to
rewrite this as the set of four possible joins, listed in Sec-
tion 3.1. The normalized proximity between corresponding
attribute pairs is used to assign probabilities to each query in
the intent. The feedback module now uses the database cat-
alog information and indexes to estimate participation car-
dinalities for each possible join, and attempts to materialize
preview tuples. The feedback (however much has material-
ized in the bounded time) is then sent to the frontend. At
the frontend, the feedback information for the most proximal
pair is displayed. As the user moves the relations to align
the correct attributes close to each other, the probability of
the intended pair is increased, and hence the feedback loop
shows more tuples from that join in the preview area (tuples
are postprocessed by joining against fact relations for read-
ability). Since the dragging motion is merely a reweighting
of probabilities in the intent space, most feedback computa-
tions are cached. Upon deciding which attribute pair to pick,
the user then brings the attributes in contact, confirming the
join at the user interface level. This updates the probability
of that join to 1.0, triggering a full materialization by the
feedback module, and the corresponding postprocessing and
transfer of summarized results to the frontend.

4. RELATED WORK
Work in the HCI community, specifically with natural user
interfaces [4] and direct manipulation [22] have discussed
methods to interact with data in non-keyboard contexts.
While we are motivated and inspired by these bodies of work,
we recognize that the database layer that powers such
interfaces poses several challenges, which we address
in this paper. A common current solution is to map direct
manipulation actions to a query algebra [24] offloading the
burden of computation on the database. There are several
aspects in which such a mapping is impractical, motivating
our rethinking of the database layer itself. Efforts in using
gestures to interact with databases [10, 20] are fairly prim-
itive and simply map gestures to isolated query commands,
with no consideration of database query context or feedback
being used as part of the gesturing process.

Efforts towards making databases more usable [12] range
from automatic generation and evolution of query forms [7,

13] to modeling databases as spreadsheets [3, 16], or as auto-
completion input [17]. These efforts rely heavily on textual
input; which is infeasible in our context.

Example-based query interfaces [25] and the recommenda-
tion of queries using prior logs [6, 15] has also been ex-
plored. Exploration and mining of datasets using visual
methods [8, 14] can be considered applications on top of our
database architecture. We have previously proposed design
principles to expose insights from the database in a guided
manner [18]. Such ideas are substantially more important
in non-keyboard query environments where the cost of ar-
ticulating the query is high.

The prioritization of insights and their inclusion in the feed-
back loop is a common problem in HCI and has been dis-
cussed at length in the context of mixed-initiative user in-
terfaces [11]. In databases, priority scheduling in real-time
databases [19] focuses on utilizing an objective that mini-
mizes the number of missed deadlines. Research in online
and approximate query execution [1, 9] focuses on early sur-
facing of answers for explicit queries. We consider these
ideas foundational work for our vision. Developing execu-
tion strategies for imprecise, interaction-oriented workloads
is a promising area of future research.

References
[1] S. Acharya et al. Aqua: Decision Support Systems us-

ing Approximate Query Answers. In VLDB, 1999.
[2] Amadeus IT Group. How Mobile Will Transform the

Future of Air Travel. 2011.
[3] E. Bakke. Schema-independent DB UI. CIDR, 2011.
[4] A. Câmara. Natural User Interfaces. In IFIP, 2011.
[5] Canalys. Worldwide Smartphone and Client PC Ship-

ment Estimates. 2012.
[6] G. Chatzopoulou et al. Query Recommendations for

Interactive Database Exploration. In SSDBM, 2009.
[7] K. Chen, H. Chen, et al. Usher: Improving Data Qual-

ity With Dynamic Forms. In ICDE, 2010.
[8] F. de Oliveira et al. From Visual Data Exploration to

Visual Data Mining. IEEE VCG, 2003.
[9] J. Hellerstein, M. Franklin, et al. Adaptive Query Pro-

cessing: Technology in Evolution. IEEE Data Engi-
neering Bulletin, 2000.

[10] S. Hirte, A. Seifert, S. Baumann, and D. Klan. Data3

– A Kinect Interface for OLAP. In ICDE, 2012.
[11] E. Horvitz. Principles of Mixed-Initiative User Inter-

faces. In CHI, 1999.
[12] H. Jagadish et al. Making Database Systems Usable.

In SIGMOD, 2007.
[13] M. Jayapandian and H. Jagadish. Automating the De-

sign and Construction of Query Forms. TKDE, 2009.
[14] D. Keim. Visual Exploration of Datasets. CACM, 2001.
[15] N. Khoussainova et al. SnipSuggest: Context-aware

Autocompletion for SQL. VLDB, 2010.
[16] B. Liu and H. Jagadish. A Spreadsheet Algebra for a

Direct Manipulation Interface. In ICDE, 2009.
[17] A. Nandi and H. Jagadish. Assisted Querying Using

Instant-Response Interfaces. In SIGMOD, 2007.
[18] A. Nandi and H. Jagadish. Guided Interaction: Re-

thinking the Query-Result Paradigm. VLDB, 2011.
[19] H. Pang, M. Carey, and M. Livny. Multiclass Query

Scheduling in RTDBMS. TKDE, 1995.
[20] S. Patney et al. SQL Server Kinection. PASS, 2011.
[21] Roambi Inc. Roambi Analytics.
[22] B. Shneiderman et al. Dynamic Queries: Database

Searching by Direct Manipulation. In CHI, 1992.
[23] M. Singh, A. Nandi, and H. Jagadish. Skimmer: Rapid

Scrolling of Relational Query Results. SIGMOD, 2012.
[24] C. Stolte. Visual Interfaces to Data. In SIGMOD, 2010.
[25] M. Zloof. Query by Example. In NCCE, 1975.

