
LogKV: Exploiting KeyValue Stores
for Event Log Processing

Zhao Cao1 Shimin Chen1 Feifei Li2 Min Wang1 X. Sean Wang3

1HP Labs, China

{zhao.cao, shimin.chen,
min.wang6}@hp.com

2School of Computing,
University of Utah

lifeifei@cs.utah.edu

3School of Computer Science,
Fudan University

xywangCS@fudan.edu.cn

ABSTRACT

Event log processing and analysis play a key role in applica-
tions ranging from security management, IT trouble shoot-
ing, to user behavior analysis. Recent years have seen a
rapid growth in system scales and the corresponding rapid
increase in the amount of log event data. At the same
time, as logs are found to be a valuable information source,
log analysis tasks have become more sophisticated demand-
ing both interactive exploratory query processing and batch
computation. Desirable query types include selection with
time ranges and value filtering criteria, join within time win-
dows, join between log data and reference tables, and various
aggregation types. In such a situation, parallel solutions are
necessary, but existing parallel and distributed solutions ei-
ther support limited query types or perform only batch com-
putations on logs. With a system called LogKV, this paper
reports a first study of using Key-Value stores to support
log processing and analysis, exploiting the scalability, reli-
ability, and efficiency commonly found in Key-Value store
systems. LogKV contains a number of unique techniques
that are needed to handle log data in terms of event inges-
tion, load balancing, storage optimization, and query pro-
cessing. Preliminary experimental results show that LogKV
is a promising solution.

1. INTRODUCTION
Event log processing and analysis play a key role in ap-

plications ranging from security management [3,8], IT trou-
ble shooting [1, 3, 12], to user behavior analysis [14]. Event
records are generated by a wide range of hardware devices
(e.g., networking devices) and software systems (e.g., oper-
ating systems, web servers, database servers), reporting in-
formation about system status, configurations, operations,
warnings, error messages, and so on. Security analysts pro-
cess event logs to detect potential security breaches. System
admins or software developers analyze event logs to find root
causes of errors or system crashes. Since logs (e.g., web
server logs) also provide valuable information about appli-
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cation workloads and user behaviors, application designers
can analyze logs to improve the efficiency and quality of
applications.

1.1 Requirements for Event Log Processing
Recent years have seen rapidly growing system scales, and

accordingly a rapidly increasing amount of log event data.
For the purposes of auditing and data analysis, it is often
required to store important event log data for several years.
The growing system scales put significant pressures on the
storage and processing of event logs.

Moreover, event logs from different hardware devices and
software systems usually have different formats. There may
even be multiple types of event records in a single log (as
seen in, e.g., unix syslog). Records of different formats may
contain different kinds of information, making it difficult to
design a uniform schema for all logs.

Furthermore, log analysis tasks can be sophisticated. From
a processing perspective, both interactive exploratory queries
and batch computations are crucial. The former is useful
when users look into a specific problem or try to gain new
insights, and the latter can be adopted when the processing
task is well defined. Desirable query types include selec-
tions on specified time ranges and with categorical filtering
criteria, joins among event log data in time windows (e.g.,
detecting user sessions, looking for correlated events), joins
between event log data and reference tables (e.g., user pro-
files), and aggregations.

Finally, many analysis tasks require the flexibility of in-
corporating user implemented algorithms [8]. It is quite a
challenge to design a high-throughput, scalable, and reli-
able log management system to support the wide range of
log formats and log analysis tasks.

1.2 Related Work
Existing distributed solutions for log processing either sup-

port limited query types or perform only batch computa-
tions on logs. Commercial event log management prod-
ucts [3] provide distributed search capability, but only sup-
porting selection queries. Map/Reduce has been used to
process large web logs [4] and network logs [8]. However, it
works poorly with interactive exploration of data.

Moreover, event log processing considered in this paper
is related to but different from data streams processing [6].
While the latter focuses on real-time processing of pre-defined
operations on data streams, the focus of this paper is on stor-
ing and processing a large amount of log event data in both
interactive and batch modes. The two types of systems are
complementary and may be combined in practice.



Furthermore, previous work [10] proposes a centralized
data streams warehouse system for archiving and analyzing
data streams, with an emphasis on the maintenance of com-
plex materialized views. Because of the centralized setting,
the system can support an ingestion throughput of about
10MB per second. In comparison, we aim to support or-
ders of magnitudes higher event ingestion throughput with
a scalable solution based on Key-Value stores.

1.3 Our Solution: LogKV
Key-value stores (e.g., Dynamo [9], BigTable [5], Sim-

pleDB [2], Cassandra [11], PNUTS [7]) are widely used to
provide large-scale highly-available data store in the cloud.
We find that the characteristics of key-value stores are a
good fit for the requirements of an event log management
system. First, the reliability and scalability requirements
match those for key-value stores well. Second, event fields
extracted from raw event records can be naturally repre-
sented as key-value pairs. In a key-value store that supports
row keys and column keys [5, 11], we can represent every
event record as a row, and use column key-value pairs to
store the extracted event fields. Since we can store differ-
ent number of column key-value pairs for event records with
different formats, this method is capable of accommodating
the wide range of log formats. Finally, by using a key-value
store, it is straightforward to apply filtering criteria on key-
value pairs, which forms the basis for implementing efficient
log processing operations. However, directly using existing
Key-Value stores will suffer from low ingestion throughput,
large storage overhead, and low query performance for log
processing (c.f. Section 5).
Thus we propose LogKV, a log management system that

exploits the scalability, reliability, and efficiency of key-value
stores for log processing. Based on our experience, we set up
our goal to store and process 10 PB of log data, and handle
up to a peak of 100 TB of incoming log data per day. To
achieve this goal, we face a number of significant challenges:

• Storage overhead: We would like to use as fewer machines
as possible for achieving the goal. To reliably store 10 PB
of data, LogKV will maintain three data copies, i.e. stor-
ing 30 PB of data in total. Suppose every machine node
has 10TB of local disk space1. Then, 3000 machines are
required to store the 30 PB of data. To reduce storage
overhead, we will investigate log compression techniques.
5:1, 10:1, and 20:1 compression ratios will lead to 600,
300, and 150 machines, respectively.

• Efficient query processing: It is critical to minimize inter-
machine network communications in order to achieve
good query performance on the stored log data. The
main challenge lies in the join queries, which usually re-
quire shuffling data across machines. Among the two
types of join queries that we consider, we decide to op-
timize data layout for joins among log data in time win-
dows because both join data sources can be very large.
(In the other join type, i.e., joins between log data and
reference tables, reference table size is relatively small.)

1
Presently, a blade server can have two disks of 4TB each. As

hard disk capacity doubles roughly every two years, 8TB hard
disks are expected to appear in a couple of years. Moreover,
customized data center machine designs or data-intensive servers
can have four or even eight disk slots. Therefore, it is reasonable
to assume that a machine node will have 10–20TB of local disk
space.
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Figure 1: LogKV overview.

LogKV will co-locate log data in a time range on the
same machine so that most computation can be per-
formed locally.

• High-throughput log ingestion: Suppose data are to be
kept for 3 years, which is slightly over 1000 days. Then
10 PB log data in total means about 10 TB log data
per day. However, the daily log traffic may be well be-
yond the computed average storage size per day because
of two factors. First, there could be sudden bursty log
traffic. For example, a faulty component may generate
significantly more messages than usual [12]. An exter-
nal popular event (e.g., Olympics) can significantly in-
crease system usage, such as web site visits. Second,
log data may not be equally important. System admins
may make decisions on the time length for keeping each
type of log data. Some data may be deleted earlier than
the other. Given these considerations, we set our goal to
support 10x of the daily average, i.e. 100 TB of incoming
log data per day, or 1.2 GB per second.

Figure 1 depicts the overall architecture of LogKV. There
are a coordinator node and a set of worker nodes connected
through the data center network in the same data center.
Worker nodes receive log event records from a wide range
of log sources (i.e., hardware devices or software systems
generating log event records), store log data, and support
query processing. The coordinator node maintains meta-
information about the mapping of log sources to worker
nodes, and the layout of stored log data on worker nodes.
Log sources and query clients may reside in the same data
center as LogKV does or may be located outside of the
LogKV’s data center.

There are two components on every worker node. In-
gestKV stores incoming log event records for high-throughput
log ingestion, while TimeRangeKV provides the main stor-
age for log data. At initialization time, system admins set
a Time Range Unit (TRU) configuration parameter. Time is
conceptually divided into TRU-sized buckets. TimeRangeKV
will co-locate log data in each TRU bucket on the same ma-
chine. Without delving into details (cf. Section 4), the
choice of TRU should consider the common window size of
join queries. However, sending all incoming log events to
a single TimeRangeKV (associated with the current TRU)
will create a performance bottleneck. IngestKV addresses
this problem by appending incoming events at all worker



Table 1: Terms used in this paper.

Term Description

TRU Time Range Unit
N Number of LogKV nodes
S Number of log sources
li Ingestion bandwidth of log source i

Bingest Total log ingestion bandwidth Bingest =
S∑

i=1

li

Bnode Network bandwidth of a single LogKV node
M Number of concurrent receivers
f Log compression ratios, e.g., 10

Algorithm 1 Assign individable log sources

Require: Throughput of individable log sources are
l1, l2, ..., ld

Ensure: Aggregate throughput assigned to worker k is
w[k], where k = 1, 2, ..., N

1: Set all w[k] to 0, where 1 ≤ k ≤ N
2: Sort l1, l2, ..., ld in descending throughput order
3: for i = 1→ d do

4: k = argmin{w[k]}, 1 ≤ k ≤ N
5: Assign log source i to worker k
6: w[k]← w[k] + li

nodes and intelligently shuffling log data to achieve the co-
location property at TimeRangeKV.

The rest of the paper is organized as follows. Section 2
presents how IngestKV supports log ingestion and shuffles
log data into TimeRangeKV. Section 3 describes data com-
pression and storage in TimeRangeKV. Section 4 illustrates
LogKV’s support for the desired query types. Section 5 re-
ports preliminary evaluation of the LogKV idea. Finally,
Section 6 concludes the paper.

2. HIGHTHROUGHPUT LOG INGESTION
LogKV obtains log event data using either pull or push

based methods from log sources. Incoming log data will first
reside in IngestKV, then be shuffled to TimeRangeKV. The
system maintains reliability through data replication. In the
following, we describe the different aspects of this process.
Table 1 summarizes the terms used in this paper.

2.1 Log Source Mapping to Worker Nodes
LogKV obtains log event data from a log source in one

of the following three ways. First, the ideal case is that a
LogKV agent can run on the log source machine, extracting
and sending log events to LogKV. This method is preferred
to the remaining two when this is a possible option in a log
source. Second, log sources (e.g., syslog) may be configured
to forward log events to a remote host, i.e. a LogKV worker
node. Finally, a log source stores log events to local files,
and LogKV uses ftp/scp/sftp to obtain the log data. The
coordinator of LogKV records the log extraction method for
every log source.
Suppose the average throughput of the log sources are

l1, l2, ..., lS , and the total incoming throughput is Bingest.

That is, Bingest =
S∑

i=1

li. LogKV aims to balance the log

ingestion throughput across the N worker nodes, ideally

Algorithm 2 Assign dividable log sources

Require: Throughput of dividable log sources are
ld+1, ..., ls

Ensure: Aggregate throughput assigned to worker k is
w[k], where k = 1, 2, ..., N

1: Compute divTotal =
s∑

i=d+1

li

2: Sort worker nodes in descending throughput order so
that w[ord[k]] ≤ w[ord[k + 1]], where ord[.] is an index
array, and 1 ≤ k < N

3: t← divTotal
4: for k = 1→ N do {Compute targetMin }

5: t← t+ w[ord[k]] {t = divTotal +
k∑

j=1

w[ord[j]]}

6: if (k == N) OR (t/k ≤ w[ord[k + 1]]) then
7: targetMin← t/k
8: break
9: i← d+ 1
10: for j = 1→ k do {Assign log sources}
11: diff ← targetMin− w[ord[j]]
12: while diff > 0 do

13: if diff ≥ li then
14: Assign the rest of li to worker ord[j]
15: diff ← diff − li
16: li ← 0
17: i← i+ 1
18: else

19: Assign diff from li to worker ord[j]
20: li ← li − diff
21: diff ← 0
22: w[ord[j]]← targetMin

achieving an average node throughput of Bingest/N . Note
that log sources supporting the first extraction method are
dividable in that they can divide their log traffic among mul-
tiple worker nodes. The other log sources are individable,
and must each be assigned to a single worker node.

We assign log sources to worker nodes in two steps. In the
first step, we assign individable log sources using a greedy
algorithm as shown in Algorithm 1. The algorithm sorts all
individable log sources in descending order of their through-
put (Line 2). Then it goes into a loop to assign every individ-
able log source (Line 3). An iteration in the loop computes
the worker with the least log ingestion throughput that has
been assigned in previous iterations (Line 4), and assigns the
next log source in the sort order to the worker (Line 5–6).

In the second step, we assign dividable log sources in order
to balance the assigned throughput across worker nodes as
much as possible, as shown in Algorithm 2. divTotal is
the aggregate throughput of all dividable log sources. The
algorithm sorts all the worker nodes in the ascending order
of the current assigned throughput (Line 2).

We would like to reduce the difference between the maxi-
mum and minimum assigned throughput for individual work-
ers. Conceptually, we can assign log ingestion throughput to
worker ord[1], which has the current minimum throughput.
When its throughput is increased to the same as w[ord[2]],
both of worker ord[1] and ord[2] have the minimum through-
put. Then we will need to assign throughput to both worker
ord[1] and ord[2] in order to increase the minimum through-
put among all workers. Similarly, when the assigned through-



put of worker ord[1] and ord[2] is equal to w[ord[3]], we will
need to increase the throughput of three workers together.
In general, suppose the final minimum throughput among all
workers is targetMin. Then k workers (ord[1], · · · , ord[k])
will have targetMin as their throughput, while the through-
puts of the other workers remain unchanged. Since the
newly assigned throughput is equal to divTotal, we have
the following:

k∑
j=1

(targetMin− w[ord[j]]) = divTotal

k == N ∧ targetMin ≤ w[ord[k + 1]]

(1)

Using Equation 1, Algorithm 2 computes targetMin as

(divTotal +
k∑

j=1

w[ord[j]])/k (Line 3–8). Finally, it assigns

dividable log sources to worker ord[1], · · · , ord[k] to increase
their throughput to targetMin (Line 9–22).
After the computation, the coordinator configures the map-

ping from log sources to worker nodes accordingly.

Analysis. In Algorithm 1, the sort operation in Line 2 takes
O(dlogd) time. A heap can be used to efficiently obtain the
worker with the current minimum throughput in Line 4 with
O(logN) cost per iteration. Therefore, the time complexity
of Algorithm 1 is O(d(logN + logd)).
Moreover, we can prove that after Algorithm 1,

w[k] <
1

N

d∑

i=1

li + max
1≤i≤d

{li}, 1 ≤ k ≤ N (2)

Suppose w[k] has the maximum assigned throughput after
Algorithm 1, and lj is the last log source assigned to worker

k. It must satisfy that w[k]− lj < 1

N

d∑
i=1

li. Otherwise, there

must have been some other worker with lower throughput at
the time of assignment. Then lj would have been assigned
to this other worker. Since lj ≤ max

1≤i≤d
{li}, we can derive

Equation 2.
In Algorithm 2, sorting takes O(NlogN) time, while the

two loops have linear costs. Therefore, the time complexity
of Algorithm 2 is O(NlogN). The algorithm will reduce the
gap between the maximum and minimum assigned through-
put as much as possible. It is easy to see that if none of the
worker nodes exceeds Bingest/N after Algorithm 1, then the
algorithm will achieve the ideal assignment.

2.2 Log Parsing
Worker nodes perform event log parsing in a fully dis-

tributed fashion. On a worker node, IngestKV runs a log
source adapter module. It maintains a log source table,
registering the type and parsing rules of every assigned log
source. When an incoming log event arrives at a worker
node, the adapter module parses the log event to extract
important information as key-value pairs. There are also
special key-value pairs representing the log source, the ar-
rival timestamp, and if required, the raw event. IngestKV
maintains log event records in time order on a worker node.
The above description assumes that log parsing rules exist.

However, in practice, it is challenging to manually generate
the log parsing rules for all different types of log sources. The
number of log sources increases as the number of hardware
devices and software systems increase. A manual solution is
difficult to keep up. An automatic solution will be desirable,
but is beyond the scope of the current paper.
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Figure 2: Log ingestion in LogKV.

Algorithm 3 Log shuffling

Require: Receiver i must obtain event log data from
worker 1, ..., N

1: list← {1, ..., N}
2: for i = 1→ N do

3: k ← random(list)
4: if Worker k is busy then

5: k ← random(list)
6: Transfer event log data from worker k
7: Remove k from list

2.3 Log Shuffling
IngestKV shuffles log events to TimeRangeKV. Figure 2

illustrates the log shuffling idea. There are N LogKV worker
nodes, each with an ID from 0 toN−1. N = 16 in the figure.
In TimeRangeKV, a TRU bucket is mapped to a worker
node if the start timestamp of the time range satisfies the
following:

nodeID = ⌊StartTimeStamp/TRU⌋ modulo N (3)

Note that i = ⌊StartTimeStamp/TRU⌋ uniquely identifies
the TRU bucket. We say that the node is the owner of TRUi.
During log shuffling, we use receivers to denote worker nodes
receiving shuffled events. Suppose TRU of the current time
is mapped to node j. If the log events were immediately
forwarded to node j, node j would be overwhelmed by a
shuffling bandwidth of Bingest.

In order to reduce the shuffling bandwidth, we exploit the
property of data center network that non-conflicting network
connections can often achieve the maximum bandwidth at
the same time. IngestKV performs shuffling in rounds. A
round takes M · TRU time. M = 4 in Figure 2. Up to two
rounds of incoming event log data are kept in IngestKV on
a worker node. In round r, IngestKV buffers the incoming
event log data for the current round, and shuffles the event
log data arrived in round r − 1 to M receivers. At the end
of round r, the event log data of round r−1 is removed, and
the event log data of round r will be shuffled in the next
round. In this design, the average shuffling bandwidth of a
receiver is reduced to Bingest/M . This is because the same
amount of event log data are shuffled to the receiver, while
the shuffle time is increased by a factor of M .

Now we face the problem of shuffling event log data from
N nodes to M receivers. To avoid hot spots, we design a
randomized shuffle algorithm as shown in Algorithm 3. A
receiver maintains a to-do list, which is initialized with all
worker nodes (Line 1). Then the receiver goes into a loop.
In every iteration, it randomly selects a node from the to-do
list (Line 3), transfers event log data from the node (Line 6),
then updates the to-do list by deleting the node (Line 7). As



shown in Figure 2, there are four receivers, node 0, 1, 2, and
3. Event log data will be transferred from all 16 nodes to the
4 receivers as shown by the thin lines. In a certain iteration,
the receivers choose different nodes to transfer event log data
from using the randomized algorithm as illustrated by the
bold red arrows.
This algorithm works well when N >> M . The to-do list

shrinks at every iteration. After N −K iterations, the to-do
list contains K nodes. A node appears in P = KM

N
lists on

average. If a node is selected by a receiver, the probability
that it is chosen by another receiver is (1 − (1 − 1

K
)P−1).

This is roughly equal to 1 − e
M
N when K is large. Clearly,

when N >> M , the probability is low.
To deal with cases where M is close to N , the algorithm

checks whether the chosen node is already serving another
receiver (Line 4). If yes, then it can randomly choose another
node in the to-do list (Line 5).

2.4 Replication for Reliability
Both IngestKV and TimeRangeKV replicate log data for

high availability. IngestKV buffers incoming log data for a
short amount of time, while TimeRangeKV is supposed to
store log data for up to several years. Consequently, data
in TimeRangeKV are expected to experience more failures
compared to IngestKV. Therefore, we maintain two copies
of log data in IngestKV, while producing three data copies
in TimeRangeKV.
Figure 2 shows the replication strategy for TimeRangeKV.

A node j will replicate its log data to node j + 1 and node
j + 2 modulo N . (We can easily adapt existing Key-Value
stores, e.g., Cassandra, to support this replication strategy.)
Note that three adjacent TRU buckets will be present on a
single node due to the replication strategy. This facilitate
window join queries (cf. Section 4).
For IngestKV, the coordinator will balance the network

traffic by choosing an appropriate replication strategy. In
the simplest case, every two nodes are organized into a repli-
cation pair, forwarding incoming log events to each other.
However, if the log source assignment does not achieve ideal
balance, the coordinator can decide to divide the replicating
traffic intelligently in order to balance the overall log inges-
tion traffic including replication. Moreover, the replication
efficiency in IngestKV may be improved if log sources are
capable of re-sending recent log events (e.g., with the sup-
port of LogKV agent). Suppose the coordinator knows that
log source A can re-send last t seconds of log events. Then,
rather than forwarding every individual event, IngestKV will
forward a batch of A’s log events every t seconds to reduce
network cost.
A node failure is detected when a network connection (for

replication, shuffling, or query processing) times out. When
a node i fails, the coordinator will remap the TRUs owned
by node i temporarily to node i + 1 modulo N . In the
meantime, it will obtain and initiate another machine in
the data center to replace the failed node. We use Apache
ZooKeeper to ensure the reliability of the coordinator.

2.5 Parameter Selection
We discuss the choice of M . The overall network traffic

of a receiver must be lower than its available bandwidth.
Log ingestion and replication consumes 2Bingest/N band-
width. Log shuffling takes Bingest/M bandwidth. Suppose
the log compression ratio is f . Replicating two data copies

in TimeRangeKV takes 2Bingest/(Mf) bandwidth. There-
fore, we have the following constraint:

(
2

N
+

1

M
+

2

Mf
)Bingest ≤ Bnode (4)

We would like to minimize the amount of log data buffered in
IngestKV for query efficiency. Window joins on data in In-
gestKV require expensive data shuffling operations (cf. Sec-
tion 4). Therefore, we can compute M as follows:

M = ⌈(1 +
2

f
)

1
Bnode

Bingest
− 2

N

⌉ (5)

Suppose Bingest=1.2GB/s, Bnode=100MB/s, N=150 nodes,
f=20. Then M=16 concurrent receivers.

2.6 Coping with Bursty Log Data
We already consider 10x higher log ingestion throughput

than average in our design goal, as discussed in Section 1.
The coordinator can also try balancing event log ingestion
traffic when a subset of log sources suddenly experience high
traffic. If a dividable log source sees a dramatic throughput
increase, the coordinator can divide this log source and re-
assign it easily. If an individable log source sees a sudden
increase in throughput, the coordinator can re-assign the log
source in the same spirit as Algorithm 1. After removing
the old throughput of this log source, it can compute the
worker node with the minimum assigned throughput, and
then assign the individable log source to it. The coordinator
can periodically check the gap between the maximum and
minimum assigned log ingestion throughput among worker
nodes. If the gap is above a threshold, the coordinator can
re-compute the log source mapping using Algorithm 1 and
Algorithm 2.

3. LOG STORAGE IN TimeRangeKV
The TimeRangeKV provides persistent storage for LogKV

through a key-value store. As explained in Section 2, it uses
the time range (in multiple of the TRU) as the row key to
partition incoming log records. This design is motivated by
the observations that most if not all query processing tasks
in log analysis is time-dependent; furthermore, most query
tasks access log records within a user-specified, contiguous
time range, i.e., there is strong temporal locality in terms of
the query accessing patterns in log analysis.

That said, all records within a time range in [ℓ ·TRU, (ℓ+
1)TRU) of length TRU (∃ℓ ∈ [0, ⌈Now/TRU⌉ − 2M)) are
stored in one worker node, running a TimeRangeKV in-
stance (except the most recent 2M · TRU records that will
be buffered in IngestKV, or being shuffled from IngestKV to
TimeRangeKV). During log shuffling, the log events trans-
ferred from each IngestKV instance are in time order. A
receiver node j will store the log data shuffled from an In-
gestKV instance temporarily in a file. When node j receives
the log data from all N IngestKV instances, it will perform
a multi-way merge operation on the N temporary files, and
store the sorted records into the underlying key-value store.

There can be multiple ways to store the data. In LogKV,
we exploit the following design, as shown in Figure 3, to
maximize the compression ratio and the query performance.
Suppose the log records in a time range of length TRU com-
ing into node j are an ordered set R = {r1, r2, . . . , ru} for
some integer value u, ordered by their timestamps. Note



record timestamp a1 · · · ad

r1 t1 v1,1 · · · v1,d
r2 t2 v2,1 · · · v2,d

· · ·

ru tu vu,1 · · · vu,d

· · ·

ti ∈ [ℓ · TRU, (ℓ+ 1) · TRU)

column a1, V1 = {v1,1, . . . , v1,d}
V ′

1 = {v1,2, v1,5, . . .}, b1 = [0, 1, 0, 0, 1, . . .]

column ad, Vu = {vu,1, . . . , vu,d}
V ′

u = {vu,1, vu,4, . . .}, bu = [1, 0, 0, 1, . . .]

row key: k = ti/TRU

Figure 3: Local storage in LogKV.

that each log record is converted from a log event in the raw
data by IngestKV, consisting of a timestamp and a set of
key-value pairs (c.f. Section 2). For example, a log record
from a network traffic log may look like {t, (source IP, value),
(destination IP, value)}. Without loss of generality, we as-
sume that each record has a format of {t, (a1, v1), . . . , (ad, vd)};
and the jth value of the ith record in R is denoted as vi,j .
Since different records may not have the same set of key-
value pairs, value vi,j may simply be a NULL value, e.g.,
if there is no parsing rule on extracting the value of key aj

for a record ri. Hence, d denotes the total distinct number
of keys for which IngestKV has parsed and extracted any
values from raw log events in a time range.
All records in R is stored in a single row with the row

key k = ⌊t/TRU⌋. We call the ith key-value pair (ai, vi)
for all records in R as the ith column of these records. We
organize the ith column from all records of R into an array
Ai. Array Ai is stored as a column key-value pair under
row key k, where the column key is ai, and the value Vi

contains all the values from the entire column i. That is,
Vi = {v1,i, . . . , vu,i}. By doing so, we end up with d columns
for row key k, which will be stored into the underlying key-
value store.
Before inserting row key k and the columns into the under-

lying key-value store, TimeRangeKV compresses the data in
order to reduce storage overhead, and hence improve query
efficiency as well. A straightforward solution is to simply
compress the value Vi of a column ai at its entirety. How-
ever, a critical observation that we have made is that Vi

often has a lot of NULL values, since log events are of dif-
ferent types, and some log events with certain attributes
occur only infrequently (e.g., when an exception did occur).
As a result, compressing Vi directly might not lead to the
best compression ratio.
An improvement is to compress Vi after removing its NULL

values. To do so, we introduce a bitmap index bi of size u for
Vi, where bi(j) = 0 if vj,i =NULL and 1 otherwise. After
which, we produce a vector V ′

i that consists of only non-
NULL values from Vi (the order is still preserved). Clearly,
given V ′

i and bi one can easily reconstruct Vi. We then
compress V ′

i and bi separately for column ai and store the
two compressed values into the underlying key-value store
(under the column ai for the row key k). This process is
repeated for each column, from a1 to ad in turn.
When a time range contains a large number of records, we

can refine the above process by introducing smaller “rows”
locally. The idea is to further partition a time range into
a number of smaller, but contiguous, time ranges in a local

node j. Then, within each smaller time range, the above
process is applied. This will achieve better query efficiency
for point queries because only the smaller time range of data
are fetched from disk and uncompressed.

Lastly, we highlight that since we are using a key-value
store as the underlying storage layer, the replication of records
in a time range from a TimeRangeKV instance to other
TimeRangeKV instances on neighboring nodes can be auto-
matically taken care of by leveraging the replication mech-
anism of the underlying key-value store, which is a basic
service in most key-value stores, such as Cassandra.

4. QUERY PROCESSING ON EVENT LOGS
TimeRangeKV stores event log data that arrive 2M ·TRU

time ago, while more recent log events reside in IngestKV.
For simplicity, we do not use the log data being shuffled in
query processing. According to a query’s time range predi-
cate (or any time if not specified), LogKV executes the query
either on TimeRangeKV or on IngestKV or on both if the
time range spans the timestamp (now −2M · TRU).

In the following, we discuss the important design consid-
erations for query processing.

4.1 Supporting Important Query Types
We discuss query processing for TimeRangeKV and In-

gestKV, respectively.

• Selection/Projection Queries in TimeRangeKV and In-
gestKV: Selections and projections can be efficiently pro-
cessed in a distributed fashion on worker nodes. In
IngestKV, a row key corresponds to an event record,
and extracted event fields are stored as column key-
value pairs. Therefore, selections and projections are
performed on the row records. In TimeRangeKV, se-
lections use bitmap indexes to extract qualified records,
and projections directly take advantage of the column
representation. As all columns are stored in the same
order, it is straightforward to reconstruct event records.

• Window Joins between Event Log Data in TimeRangeKV:
The replication strategy in TimeRangeKV ensures that
∀i, TRUi’s owner also stores a replica of TRUi−1 and
TRUi−2 (cf. Section 2), thus it contains any time win-
dow ending in TRUi and with a size up to 2TRU. What
this means is that window joins with window size ≤
2TRU can be handled efficiently by performing local
joins on worker nodes.

Larger window sizes require communication among worker
nodes. For window size ∈ (2TRU, 5TRU], TRUi’s owner
needs to communicate with TRUi−3’s owner so that event
log data in TRUi−5, ..., TRUi will be available for the
join. In general, a worker node must communicate with
k other worker nodes for a join query if its window size
∈ ((3k-1)TRU, (3k+2)TRU], k = 1, ..., ⌈N

3
⌉.

• Window Joins between Event Log Data in IngestKV: In
contrast to TimeRangeKV, IngestKV must perform log
data shuffling for window joins. This can be imple-
mented with a Map/Reduce framework (e.g., Hadoop).

• Joins between Event Log Data and Reference Tables in
TimeRangeKV and IngestKV: Previous study [4] com-
pares join algorithms for joining event log data and ref-
erence tables in Hadoop when input data are stored on
HDFS. We reference this work in our design. However,



we note that compared to HDFS, LogKV has much bet-
ter selection support. It will be interesting future work to
re-evaluate the join algorithms in the context of LogKV.

• Group-by/Aggregation Queries in TimeRangeKV and In-
gestKV: Group-by/aggregation queries can be processed
using the Map-Reduce framework (e.g., Hadoop).

4.2 Choice of TRU
The choice of TRU impacts the query performance of both

TimeRangeKV and IngestKV. Smaller TRU leads to smaller
amount of data stored in IngestKV. Consequently, window
join queries spanning both IngestKV and TimeRangeKV
would shuffle less data in IngestKV, thereby obtaining bet-
ter performance.
In TimeRangeKV, larger TRU means that window joins

with larger time windows can be efficiently handled. On
the other hand, a time range predicate may be mapped
to fewer number of worker nodes. This will affect neither
large analysis queries spanning long time ranges nor point
queries focusing on very short time periods. However, selec-
tion queries with medium sized time range predicates may
see fewer computation nodes when TRU gets larger.
In summary, we find that the choice of TRU is workload

dependent. A rule of thumb is to choose TRU to be half of
the most common time window size in window joins.

4.3 Discussions

Approximate Query Processing. Providing fast approx-
imate estimations is a promising strategy to support inter-
active data explorations. LogKV is amenable to sampling
based approximate query processing. For analysis queries
on large time ranges, we can sample a subset of TRUs for
estimations. If necessary, a finer-grain sample can be gen-
erated by sampling events in every related TRU. The latter
mainly reduces network communications, while the former
reduces, local I/O, computation, and network cost.

Secondary Indices. If a particular event attribute often
appears in the filtering criteria of queries, one may want to
create a secondary index on this event attribute to speed up
query processing. We consider how to support secondary in-
dices on individual TimeRangeKV. There can be two design
choices. First, we can create a secondary index on all the
event log data in a TimeRangeKV. Second, we can create a
secondary index for every TRU in the TimeRangeKV. We
prefer the latter because an index in a TRU can be created
once then read only, which significantly simplifies the index
implementation and reduces index maintenance overhead.
Various types of indices can be employed. For example, if
the number of distinct values of the event attribute is low,
we can employ a bitmap index [13], and store a bitmap for
every value. Each bitmap can be stored efficiently using the
scheme as in Section 3.

Other Joins. LogKV is optimized for joins with time win-
dows. From our experience, we expect that it is rare to
process other types of joins between event log data that do
not use time windows. However, if it is desirable to op-
timize event log data layout for other types of joins (e.g.,
location window joins), the same optimization strategy can
be applied. One can also take advantage of data replication
so that one replica is optimized for one type of joins (e.g.,
time window joins), while the other replica is optimized for
another type of joins (e.g., location window joins). In such

situation, the log shuffling step will need to perform both
types of shuffling.

5. EXPERIMENTAL EVALUATION
In this section, we present preliminary evaluation results

for understanding the performance of LogKV. We study (1)
log ingestion throughput, (2) storage cost, (3) selection query
performance, and (4) window join query performance.

5.1 Experimental setup

Implementation. We implemented an initial prototype in
Java, supporting the basic functionality of LogKV. It con-
sists of the following five modules:

• IngestKV, which receives log events and sends buffered
TRUs to TimeRangeKV.While receiving an event record,
IngestKV first serializes the event and then stores it to
a log structured file, which is created per TRU on a
node. IngestKV maintains the TRU meta-data (such as
TRU id, and the location of the log structured file) in
a memory structure. Once the log ingestion of the cur-
rent TRU completes, the TRU’s meta-data structure is
added to a waiting list to be shuffled to the destination
TimeRangeKV. After the shuffling of a TRU is done, In-
gestKV removes the TRU meta-data structure and the
log structured file.

• Shuffle Receiver in TimeRangeKV, which receives shuf-
fled TRUs, merges them, compresses merged log events,
and inserts the compressed events into the underlying
key-value store (i.e. Apache Cassandra 1.0.6 in our im-
plementation). Shuffle receiver first de-serializes each re-
ceived log structured TRU and stores the TRUs in mem-
ory. When it has received all the local TRUs from all
the worker nodes, it merges the local TRUs into a global
TRU using the sort merge algorithm.

• Query Proxy, which runs on every worker node, accepts
queries from clients, divides queries into sub-queries, and
sends sub-queries to their corresponding query proces-
sors on worker nodes.

• Query Processor in TimeRangeKV, which processes sub-
queries in the local worker node and returns results to
the Query Proxy.

• Coordinator, which maps the log source to worker nodes,
and manages the replication operation. We use Apache
ZooKeeper (ZK) to protect the coordinator against node
failures. The coordinator data is stored in an ZK in-
stance, which is distributed, consistent and highly avail-
able. There is one active coordinator and multiple stand-
by coordinators in LogKV. The active coordinator cre-
ates an ephemeral node in ZK. If the active coordinator
fails, the ephemeral node will be automatically deleted
after a configurable timeout. When the other standby
coordinators detect the failure of the active coordinator,
they will attempt to acquire a lock. If a standby coor-
dinator successfully creates the lock, it will become the
new active coordinator. ZK guarantees that at most one
coordinator is active at any time.

To improve the efficiency of TRU serialization for trans-
mission, the class TimeRangeUnit implements a Writable
interface. Shuffle Receiver implements compression using
java.util.zip package.



Figure 4: Log ingestion throughout.

Figure 5: Compression ratio in TimeRangeKV.

In addition to the above modules, we are still working on
the Query Processor in IngestKV. The reported experimen-
tal results do not contain this module.

Evaluation Environment. We perform the experiments
on a cluster of 10 nodes by default. To evaluate the scala-
bility of LogKV, we use a cluster of 20 nodes. Every node is
an HP ProLiant BL460c blade server equipped with two In-
tel Xeon X5675 3.06GHz CPUs (6 cores/12 threads, 12MB
cache), 96GB memory, and a 7200rpm HP SAS hard drive.
The blade servers are connected through a 1Gb ethernet
switch. The blade servers are running 64bit Red Hat Linux
2.6.32-220 kernel. We use Oracle Java 1.7 in our experi-
ments.

Workload Generation. We use a real-world log event
trace from a popular web site in our experiments. We em-
ulate high-throughput log sources by running a log event
generator on every worker node that sends log events to In-
gestKV on the same node. In the storage cost evaluation,
we use the original real-world log data. In the other ex-
periments, for generating a large number of log events, we
generate synthesized data based on the real-world log (by
repeatedly using the data). An event includes the following
fields: event ID, timestamp, source IP, and i other fields
(i = 0, 1, ..., 8). The average event size is 100 bytes.

5.2 Experimental results

Log Ingestion Throughput. Figure 4 measures the max-
imum sustained log ingestion throughput varying the num-
ber of worker nodes (N) from 1 to 20 in LogKV. We set
M = N to obtain the maximum ingestion throughput. To
reach stable performance fast, we set TRU to be 10 seconds
in this experiment. As shown in Figure 4, the Y-axis is
the number of ingested events per second. We see that the
log ingestion throughput increases linearly as the number
of worker nodes grows. The randomized shuffling algorithm
works well. When N=1, the per-node throughput is higher

Figure 6: Selection query performance.

Figure 7: Time window join query performance.

than the other points. This is because there is actually no
shuffle in this case.

From the figure, we estimate that LogKV achieves an in-
gestion throughput of about 0.28N million events per sec-
ond, where N is the number of cluster nodes. As an event
record size is about 100 bytes, LogKV can sustain about
28 MB/s maximum log ingestion bandwidth per worker node.
Therefore, the design goal of 1.2 GB/s aggregate log inges-
tion throughput can be achieved with about 43 machines
that are fully devoted to log ingestion. This gives a lower
bound of the actual number of nodes in a design, whose
choice must also consider query performance.

Storage Cost. We load 409 MB of log events into a single
LogKV node. Figure 5 reports the compression ratio mea-
sured as input log size divided by the storage size used by
the log. We compare plain Gzip implementation and our
column-based compression scheme. We use the GZIPInput-
Stream and GZIPOutputStream of java.util.zip in both im-
plementations. Figure 5 shows two sets of bars. The left
set of bars show the compression ratios for the entire log.
We see that the compression ratios of Gzip and column-
based compression are quite similar. This is because the
cookie fields in the log events contain almost distinct long
strings that results in very low compression ratios. The right
set of bars compare the two schemes when the cookie fields
are removed. We see that our column-based compression
schemes achieve significant improvement over plain Gzip,
and it achieves about 15:1 compression ratio.

Selection Query Processing Latency. In the next ex-
periment, we use the selection query which selects events
whose given attribute is greater than a specified value (θ)
in 1 or more randomly selected TRUs. We vary θ to obtain
different selectivity, which is one minus the ratio of returned
records to the number of total records. In this and all the fol-
lowing experiments, N is fixed to 10. Figure 6 compares the
query response time varying the selectivity. The response



time decreases as the selectivity increases. This is because
with higher selectivity, fewer records are returned to the
client, which results in lower network cost and computation
overhead. Overall, the selection query processing latency is
quite low because of the following two features in our de-
sign : (1) the column based store scheme in TimeRangeKV,
which supports retrieving and processing only the columns
used in a query; and (2) distribution of TRUs across worker
nodes, which support parallel processing.

Window Join Query Processing Latency. In the next
experiment, we compare the efficiency of a window join oper-
ation across three schemes: (1) MapReduce when event log
data are stored in Apache Cassandra; (2) MapReduce on
Hadoop distributed file system (HDFS); and (3) our solu-
tion LogKV. The query conducts a self-join using the source
IP field as the join key within 10-second time windows. For
(1), we directly store events in Cassandra. The event ID is
used as the key and the other fields are stored as separate
columns. For (2), there will be one HDFS file per worker
node, and events are naturally stored in an HDFS file in
time order. Note that it is non-trivial to merge all the events
into a single HDFS file upon receiving the events, which will
require the same log shuffling mechanism in LogKV. We
implemented the map-reduce repartition join [4] in Apache
Hadoop 1.0.0 for (1) and (2). We use the Cassandra Colum-
nFamilyInputFormat as the input format of the self-join for
(3), and the TextInputFormat as the input format for (2).
In (3), LogKV performs the self join per TRU using a hash
join based algorithm. As shown in Figure 7, LogKV reduces
the latency of Cassandra and HDFS by a factor of 15 and
11, respectively. This is because LogKV reduces event data
shuffling in a time window based join by storing all event
records within a time range in a TRU.

6. CONCLUSION
This paper presents the LogKV system that leverages a

key-value store for supporting the storage and query pro-
cessing of massive log data. Our design is motivated by the
observations that numerous analytics tasks and query pro-
cessing jobs in log data are executed via extracting key-value
pairs from the raw log events as a first step (e.g., the pop-
ular log management system in ArcSight [3]). Thus, it is
only a natural choice to use existing key-value stores as the
underlying storage engine, and design a log-data manage-
ment system on top of it based on a cluster of commodity
machines. Our design also considers important problems
such as fault tolerance, durability, reliability, robustness,
bursty data-arrival rates, and load-balancing among differ-
ent nodes. We have also explored effective buffering and
data compression techniques to improve the overall perfor-
mance in LogKV. Experimental results on large log data
have verified the effectiveness of our approach in supporting
flexible log data storage and efficient query processing for
different types of query workloads.
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9. APPENDIX: DEMONSTRATION
We demonstrate the LogKV system using real-world log

data of different formats and query workloads. In particular,
our demonstration focuses on (1) user interface; (2) load-
balancing in LogKV; (3) the throughput rate in IngestKV;
(4) the storage cost in TimeRangeKV; (5) the efficiency of
query processing for different query workloads; and (6) the
reliability and durability of LogKV.

Our current implementation of the LogKV system is based
on Cassandra, which we use in our demonstration as well.
Note that the design of the LogKV system can be easily
migrated to any other key-value stores. We use web server
logs, Unix system logs, and other log data (available from
HP ArcSight Logger) during our demonstration. To simu-
late the bursty ingestion, we use an event generator as log
source in each worker node.



User Interface. We demonstrate a graphical user inter-
face (GUI) of LogKV. The main part of GUI consists of:
(1) Data source section, which shows the status and statis-
tics of each log data source; (2) Worker node section, which
shows the status and statistics of each worker node; (3) Shuf-
fling process animation, which animates the real-time data
shuffling process; (4) System statistics dashboard; and (5)
Query interface, where a user could input query, view the
query execution process and the results.

Load Balancing in LogKV. To show the effectiveness of
LogKV in processing incoming log events, we will display the
network and CPU usage of each cluster node to demonstrate
that our design indeed avoids “hot spot”. We demonstrate
this in the following three ways:

• Add an event log source. We add a new event log source
using the menu in the data source section. It will display
a log source configuration dialog, where we can specify
the log parser, ingest rate, whether it is dividable, etc.
After configuring the new log source, LogKV will map
the log source to worker node(s). The newly added log
source and its associated worker node(s) will be high-
lighted in the data shuffling animation panel. In this
panel, each rectangle node represents a cluster node; and
each circle node represents a log source. We will add a
batch of log sources to the system one by one, including
both dividable and individable log sources. We could see
the difference of the mapping schemes between dividable
log sources and individable log sources.

• Real-time dashboard. It shows the real-time network
bandwidth and CPU usage of each node using a bar
chart. Each bar group consists of two bars, which repre-
sent the network bandwidth usage and the CPU utiliza-
tion of a worker node, respectively.

• Statistics. After adding several log sources, the statistics
panel shows the historical network bandwidth usage and
the CPU usage of each node in every time interval.

We will also show the effect of the parameterM by varying
it from 2 to N . While a new M is configured, the LogKV
needs to be restarted, we then repeat the aforementioned
step to add the data sources one by one. We could see the
load balancing status both in the real-time dashboard and
in the statistics panel. We could also export the dashboard
bar chart for each M for comparison purpose.

Throughput Rate in LogKV. We will vary the incoming
event log rates and the number of nodes in the cluster, to
demonstrate the high ingestion throughput rate that LogKV
can achieve. In this process, we use the log event generator
in Section 5 to simulate different ingestion rate.

• Vary incoming rates. We change the incoming rates us-
ing the menu in the log source section. We will show the
throughput of the system and each worker node using
the dashboard and the statistics panel.

• Vary number of nodes in the cluster. We change the
number of nodes in the cluster and then restart LogKV.
We will show the throughput of the system and each

worker node using the dashboard and the statistics panel.

In this process, we will also examine the effect of the pa-
rameter M (i.e., how much data we buffer locally at a node).
While a new M is configured, LogKV is restarted, we then
repeat the aforementioned approach varying the number of
nodes in the cluster and varying the incoming rates.

Storage Cost in TimeRangeKV. The next component in
our demo is to illustrate how TimeRangeKV stores incom-
ing records (transferred from IngestKV instances) into the
underlying key-value store, and how well our compression
scheme performs.

• The storage part of the dashboard panel shows the total
size of used storage. By selecting a node in the worker
nodes section, we could see the used storage size of this
worker node.

• For comparison purpose, we will setup another key-value
store instance, where log events are directly inserted into
the store. We calculate the storage cost of this key-value
store instance in each worker node.

Query Processing in LogKV. We will use both synthetic
and real query workloads to demonstrate the query efficiency
in LogKV. We compare LogKV with a näıve approach that
stores event log data in a key-value store directly (see our
discussion in Section 5). We will demonstrate selections and
window-joins. Audience will have the opportunity to issue
queries of their choices, and interact with the system during
this part of the demonstration.

After a query is input for processing, the animation panel
will show the query execution process, such as which worker
nodes are involved and the processing progress of each node.
The statistic panel will also show the detailed execution cost.
We will issue the same query to another key-value store in-
stance, which directly stores the log events, for comparing
its execution time with that of LogKV.

Reliability and Durability in LogKV. Lastly, we will
demonstrate the reliability and durability of LogKV by pur-
posely disabling some node while LogKV is running. Our de-
sign leverages data replication, and the underlying key-value
store for handling system failures. We will demonstrate the
following two cases:

• Failure of a coordinator node. We will disable the ac-
tive coordinator node. One of the standby coordinators
will become active soon. The service keeps alive in this
failover process.

• Failure of a worker node. The audience will have the op-
portunity to select a worker node to disable. We will see
that: (1) LogKV keeps working; and (2) the log source
mapping is automatically changed to meet the replica-
tion and load balance requirements.

We will also demonstrate that the query result is correct
even if a node fails. We first issue a query and remember
the result. Then, we disable a worker node, and issue the
same query again. We will see the same result.


