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ABSTRACT

Ranked data is ubiquitous in real-world applications. Rankings
arise naturally when users express preferences about products and
services, when voters cast ballots in elections, when funding pro-
posals are evaluated based on their merits and university depart-
ments based on their reputation, or when genes are ordered based
on their expression levels under various experimental conditions.
We observe that ranked data exhibits interesting local structure,
representing agreement of subsets of rankers over subsets of items.
Being able to model, identify and describe such structure is im-
portant, because it enables novel kinds of analysis with the poten-
tial of making ground-breaking impact, but is challenging to do
effectively and efficiently. We argue for the use of fundamental
data management principles such as declarativeness and incremen-
tal evaluation, in combination with state-of-the-art machine learn-
ing and data mining techniques, for addressing the effectiveness
and efficiency challenges. We describe the key ingredients of a so-
lution, and propose a roadmap towards a framework that will enable
robust and efficient analysis of large ranked datasets.

1. INTRODUCTION
Ranked data is ubiquitous in real-world applications. Rankings

arise when users express preferences about products and services,
when voters cast ballots in elections, when funding proposals are
evaluated based on their merits and university departments based
on their reputation, or when genes are ordered based on their ex-
pression levels under various experimental conditions. A ranking
represents a statement about the relative quality, or relevance, of
the items being ranked.

When multiple rankings are present, these must be aggregated
by the system to facilitate analysis. For example, aggregated opin-
ions of Computer Science faculty may serve as basis for a ranking
of CS departments, while aggregated user opinions may be used
for content recommendation, or in support of data exploration. Fi-
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nally, aggregated rankings of genes may be used for coexpression
analysis, providing evidence that groups of genes are involved in a
common biological pathway [1, 12, 24].

It has been observed that ranked datasets exhibit interesting struc-
ture [19], reflecting agreement of all, or a subset, of the rankers
(also called judges) with respect to the items. We argue here that
aggregation of rankings is most meaningful in presence of structure
(i.e., of agreement), and, conversely, that structure must be identi-
fied before meaningful aggregation can take place. Intuitively, an
aggregated ranking is only meaningful if it is representative of the
rankings it aggregates.

Rank aggregation has been studied in a variety of fields. A no-
table example is the theory of social choice [4], where the (unattain-
able) goal is to arrive at a “correct” collective preference given in-
dividual choices. A well-known result, which serves as basis of
modern social choice theory, is Kenneth Arrow’s impossibility the-
orem [3]. According to this theorem, it is not possible to convert
ranked preferences of individuals over three or more items into a
consensus ranking, while meeting certain natural criteria. Arrow’s
work has been very influential, earning him the 1972 Nobel Prize
in Economics. One of Arrow’s collaborators, Amartya Sen, makes
the following statement in his 1998 Nobel Prize acceptance speech:

If there is a central question that can be seen as the
motivating issue that inspires social choice theory, it
is this: how can it be possible to arrive at cogent ag-
gregative judgments about the society (for example,
about “social welfare”, or “the public interest”, or “ag-
gregate poverty”), given the diversity of preferences,
concerns, and predicaments of the different individu-
als within the society?

Understanding and modeling the diversity of preferences, and
being able to efficiently derive a representation of such preferences,
motivates our vision.

Another domain where rank aggregation is of central importance
is biology. Ranked lists are a very natural, and common, way to
represent results of genome-wide studies, particularly for the pur-
pose of meta-analysis [12]. Results from different studies may
not be directly comparable, i.e., it may not be possible to normal-
ize gene expression levels that were measured using different plat-
forms, and under different experimental conditions. Rank aggrega-
tion has been used to, e.g., find gene co-expression networks [24],
identify genes implicated in particular diseases [1, 10], and com-
bine results of differential expression analysis obtained with dif-
ferent algorithms [6]. The main challenge in these applications is
in picking up statistical signal from ranked datasets that are large,
sparse and noisy, and in understanding robustness of this signal.



This paper proposes a framework for effective modeling and effi-

cient identification of local structure in ranked datasets. This struc-
ture is of independent interest, and can serve as basis for rank ag-
gregation, enabling novel kinds of data analysis in economics, bi-
ology, and beyond. It is precisely through locality that we intend
to model the diversity of preferences of members of a society to
which Amartya Sen refers. And it is through locality (and the as-
sociated dimensionality reduction techniques) that we intend to ad-
dress the challenge of picking up statistical signal in complex high-
dimensional biological datasets. We now illustrate local structure
in ranked data with an example.

Consider Jane, a resident of Williamsburg, Brooklyn, who is an
active user of a popular shopping website. Jane maintains a de-
tailed profile of her likes and dislikes of styles, looks, designers,
and products. She also rates and ranks products based on her cur-
rent preferences. Many of Jane’s friends are also avid users of the
site. Jane and her friends look to the site to provide them with
recommendations of boutiques, designers, and events.

Like most users’, Jane’s interests are diverse, as reflected in her
fashion sense. Jane represents an increasing fraction of Williams-
burg residents who are financial analysts by day and hipsters by
night. A natural way to produce a ranking of items for Jane is to
retrieve all items that were ranked by Jane’s friends, and by other
users with interests similar to Jane’s, and to compute an aggregate
ranking. However, this may not produce an informative result, for
the following reasons:

• Domain diversity: Different sets of items may be ranked by
different groups of users. For example, one group of users
may rank only high-end stilettos, while another may rank
only tennis shoes. In this case, it is not helpful to aggre-
gate all rankings into a single list, while aggregating rankings
within groups may be appropriate.

• Diversity of opinion: Even when the same set of items is
ranked by two groups of users, these groups may express
conflicting opinions over the items, e.g., ranking them in the
opposite relative order. Jane’s hipster friends will strongly
dislike Armani suites and Jimmy Choo shoes and will strongly
like vintage clothing and TOMS shoes, while Jane’s co-workers
will have the opposite preference. Aggregating rankings in
which items are ranked similarly, producing two ranked lists,
one for hipsters and one for yuppies, will give rise to two con-
sensus rankings and is desirable, while aggregating divergent
rankings into a single list is not.

• Locality of agreement: Users may rank some items in com-
mon, but not others, and they may rank some items similarly,
giving rise to a consensus ranking, and others — dissimilarly,
producing divergent rankings. User opinions should thus be
aggregated only over the items on which they agree. In our
example, Jane’s ranking of evening clothes should be aggre-
gated with rankings by her hipster friends, and her ranking
of business attire — with rankings by her yuppie friends.

Figure 1 illustrates local structure in ranked data, with fruits and
vegetables representing items. Understanding nutritional choices
is another application domain for the techniques described here,
one that is no less important than shopping, and is a bit easier to
represent pictorially.

Outline. In this paper we present our vision for a framework for
the analysis of local structure in ranked datasets. We outline the
challenges (Sec. 2), describe our ongoing work on effective model-
ing (Sec. 3) and efficient identification (Sec.4) of local structure in
ranked datasets, and briefly survey related work (Sec. 5).
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Figure 1: An illustration of local structure in ranked data.

2. CHALLENGES AND ROADMAP
The following inter-related challenges must be addressed to make

modeling ranked data practical.
Challenge 1: size and sparseness. Typical applications deal

with hundreds, or even thousands of items (genes, books, movies,
restaurants), giving rise to a potentially intractable space of possi-
ble rankings. This is because there are m! possible ways to order
m items. Furthermore, because the space is so large, we expect
the set of actual observations to be sparse. Thus, when reasoning
over the full space of possible rankings, we cannot expect to derive
sufficient statistical power from the observations when m is large.
That is, size and sparseness make it difficult to learn robust models
from the data.

Challenge 2: handling partial rankings. Observed rankings
will be partial (or incomplete), as it is unreasonable to expect that,
e.g., each user states a preference with respect to each item, or that
expression levels of all genes are measured in each experiment. No-
tably, even if it were possible to compel the user to provide a rank-
ing of all items, this would likely lead to noisy data, because, from
the user’s point of view, not all items may be directly compara-
ble. One option is to remove partial rankings from considerations,
however, this was shown to decrease model quality [7, 15].

Challenge 3: efficiency. Size of the state space and sparse-
ness of the observed data bring efficiency considerations front-and-
center. Efficiency here refers both to the running time of data anal-
ysis algorithms and to requirements in terms of sample size. Partial
rankings exacerbate this problem, since reasoning about them typ-
ically corresponds to reasoning over their (many) completions [2,
8, 19]. Because of efficiency considerations, most datasets ana-
lyzed in the statistics and machine learning literature are limited to
m ≤ 20, and usually even m ≤ 5 items. Notable exceptions are
the work of Lebanon and Mao [15], who demonstrate scalability
to over 1500 items for particular classes of rankings, and the work
of Lu and Boutilier [17], who handle pair-wise preference data and
show scalability to about 200 items.

We see potential for addressing these challenges in leveraging
important insights developed in the data management community.
In particular, the approach we envision will (1) declaratively spec-
ify properties of the desired model; (2) use semantic information
encoded by attributes to define and navigate the state space; (3)
focus on scalability and efficiency.

Locality is key! Our focus on local structure in ranked data is
both novel from the point of view of modeling, and will alleviate
the efficiency concerns discussed above. Ours is a point of view
of dimensionality reduction, a family of techniques that have been
successful due to their ability to reduce the size of the state space.
The main technical novelty of the approach discussed here is pre-



cisely in the development of rank-aware dimensionality reduction

methods. Looking for multiple local models, rather than fitting a
single global model to the data, effectively breaks up the problem
into smaller sub-problems. Such models have the potential of fit-
ting the data better, are more computationally tractable, and have
reasonable sample size requirements.

3. MODELING LOCAL STRUCTURE
Modeling ranked data. Consider a dataset in which m items

are being ranked. We use permutations to represent rankings of
items. A permutation is a bijective function π : {1, . . . ,m} →
{1, . . . ,m}, associating with each item i ∈ {1, . . . , m} a rank
π(i). π(i) denotes the rank of item i and π−1(i) denotes the item
at rank i. Consider items Apple (id = 1), Broccoli (id = 2),
Cherry (id = 3), Tomato (id = 4). A ranking in which Apple
is liked best, followed by Cherry, then by Tomato, and finally by
Broccoli, corresponds to permutation π(1) = 1, π(2) = 4, π(3) =
2, π(4) = 3. We represent this permutation using the vertical bar
notation π−1(1)|π−1(2)|π−1(3)|π−1(4) as 1|3|4|2.

There are m! possible permutations of m items, and we denote
by Sm the space of permutations. A dataset Y will consist of n

observations, drawn iid from the probability distribution associated
with Sm. The central question in modeling ranked data is: what are
the assumptions regarding the probability distribution over Sm?

A natural starting point is to assume that all rankings in Sm are
equally likely: H0 : Y ∼ Uniform(Sm). We may then con-
sider the sample Y and either support or reject the null hypothesis.
Several basic statistics have been developed for testing uniformity,
with stringent sample size requirements.

Another possibility is that there exists a modal ranking σ ∈ Sm,
around which the observations in Y cluster. To represent this case,
i.e., to give semantics to clustering, we need a notion of distance

over the space Sm. A variety of distances have been proposed in
the statistics literature [19]. Perhaps the most commonly used is
the Kendall distance, which, for a pair of permutations π and π′,
counts the number of discordant pairs, i.e., the number of pairs of
items that appear in the opposite relative order in π and π′. For
example, Kendall distance between 1|3|4|2 and 1|4|2|3 is 2.

Distance-based models are popular in statistics and in machine
learning, and particular attention has been paid to Mallows mod-

els [18], which are essentially distance-based models parameter-
ized by a modal ranking σ ∈ Sm, a dispersion parameter λ ∈ R+,
and a distance function with metric properties, e.g., Kendall dis-
tance. Distance-based models are commonly used for clustering,
e.g., for identifying k modal rankings and dispersion parameters
that provide the best fit to the data, for a given k. For example,
given a sample Y in which a third of the rankings correspond to
π = 1|2|3|4, another third to π′ = 4|3|2|1 (dKendall(π, π

′) = 4),
and the remaining rankings are within Kendall distance 1 from ei-
ther π or π′, a clustering algorithm based on the Mallows model
will have no trouble discerning the structure.

Handling partial rankings. We argued in the introduction that
observed rankings will often be partial, particularly when m is rea-
sonably large. Rankings may be partial for two reasons. First, a full
set of preferences may not be available, e.g., a user who has never
tasted dragon fruit cannot rank it relative to other fruit. Second, not
all items may be directly comparable, e.g., a judge may prefer to
give one ranking for fruits and another for vegetables.

In the machine learning literature it is often assumed that a par-
tial ranking is a top-t ranking, i.e., that judges have ranked their t
favorites out of a large number of r items. For example, [7] make
this assumption. In [11] the authors work with partial observations
that can be decomposed (factored). This class corresponds to top-t

observations, including also the desired / less desired dichotomy ( t
items are preferred to the remaining items), when ties are allowed.
A more general model of incomplete rankings is presented in [15],
where the goal was to efficiently learn a model from heterogeneous
ranked datasets. Here, heterogeneity refers to rankings being in-
complete in different ways.

Leveraging attributes. Importantly, we observe that rankings
of items often correlate with item attributes, such as designer and
price for clothing, cuisine and ambiance for restaurants, or biolog-
ical annotations for genes. That is, how items are ranked depends
on what they are. Furthermore attributes of the judges such as age,
income, and profession of a user in a shopping application, or a de-
scription of experimental conditions in the genetics example, may
also correlate with rankings. That is, how items are ranked depends
on who, or what, is ranking them.

Leveraging attributes has two important advantages. The first is
computational: attributes may be used to limit the search space,
and to guide its systematic exploration. The second advantage is
equally as important, and is one of usability: if attributes are used
to guide the search for structure, then the identified structure can be
naturally described using these attributes. Returning to our exam-
ple, if two consensus rankings are identified for Jane, these may be
shown to her together with an explanation of the items they contain,
and of the judges whose opinions were aggregated to produce them.
The first ranking may be of vintage boutiques that are well-liked by
Jane’s neighbors in the 30-35 age group, while the second ranking
may be of high-end fashion stores on Madison Avenue, well-liked
by people with an annual income in the $150K-$200K range.

Combining multiple models. We envision a system that uses
local models as building blocks. A local model M(I) represents
the probability distribution over a subset of items I , i.e., is defined
over a projection of Sm onto I . Considering structure in projections
of Sm is a natural way to address partial rankings, and to handle
the related efficiency concerns. The model M may be parametric,
and may correspond to, e.g., a Mallows model, or it may be non-
parametric as in [15].

Multiple local models are defined over Sm, and together form a
meta-model M. Importantly, models in M are defined over pos-
sibly overlapping subsets of items. For example, one model may
represent the rankings of fruits, another — the rankings of iron-
rich foods (which include certain fruits, vegetables and meats), yet
another — the rankings of sweet foods, etc. To accommodate di-
versity of opinion (see Figure 1), we allow multiple models to
be defined over the same set of items. So, we may have models
M1(I1),M2(I2) ∈ M, with I1 = I2. Another important ingredi-
ent is our representation of a population of judges J , encoded using
a probability distribution over M. A meta-model is associated with
a population of judges J , parameterized by J : M(J).

4. IDENTIFYING LOCAL STRUCTURE
Efficiency is of central importance for the work discussed here,

yet, as argued in the introduction, is difficult to achieve due to the
size of the state space, the complexity of the models, and the need to
handle heterogeneous partial rankings. Efficiency concerns in the
modeling of ranked data have recently come into focus in the ma-
chine learning community, and important progress has been made
in [15, 17]. Nonetheless, the state of the art is still far from being
able to accommodate datasets in which the number of items is in
the millions of items, which is realistic by today’s standards.

To achieve scalability, we plan to use the declarative paradigm.
We aim to develop a declarative framework that will incorporate,
and possibly combine, different kinds of local models as building
blocks. The choice of a particular model will be based on two re-



lated criteria: robustness and cost. Robustness refers to statistical
guarantees, goodness of fit, or generalization properties. An inter-
esting and important question, which we will address as part of this
work, is how robustness of individual local models translates to ro-
bustness of the over-all meta-model, i.e., how to guarantee that the
combined model is consistent. Cost refers to sample size require-
ments, and to the running time of fitting the model to the data.

We plan to leverage our recent work on rank-aware clustering [21,
22], where the idea was to identify correlations that hold between
item attributes and ranking. We instantiated our model in scope
of the Bottom-up Algorithm for Rank-Aware Clustering (BARAC).
We demonstrated scalability on real datasets with millions of items,
showing that structure can be identified in interactive time. The
technique that allowed for efficient running time was based on a

bottom-up search strategy that identified local correlations in sub-
space projections of high-dimensional datasets. We plan to build
on this insight, and to consider how bottom-up techniques can be
incorporated into the framework proposed here.

Rankings form a partial order, more precisely, a join semi-lattice,
expressing more general, more specific, or inconsistent orderings
of items. For example, 1|2, 3 represents a partial ranking in which
1 is preferred to both 2 and 3, and there is no relative preference
between 2 and 3. The full ranking 1|2|3 is compatible with the par-
tial ranking 1|2, 3, and so 1|2|3 is a descendant of 1|2, 3 in the
semi-lattice. In [15] the authors relied on the partial order to
develop efficient algorithms for learning a non-parametric model
from heterogeneous rankings. In our own recent work we devel-
oped an efficient method for learning a collection of local models
from structured datasets with missing values [23]. The models,
called meta-rules, encoded conditional independence assumptions,
and were used in scope of an ensemble, called a meta-rule semi-
lattice. We demonstrated that this model can be learned efficiently,
and that it provides accurate probability estimates with reasonable
sample size requirements and running times.

In [23] we were able to realize efficiency in terms of both sam-
ple size and running time due to lazy evaluation and sharing of
computation, techniques that are characteristic of declarative ap-
proaches. Specifically, in our case lazy evaluation corresponded to
on-demand sampling from the parts of the probabilistic space in
which there was not enough data available to guarantee robustness.
Sharing of computation was enabled by the partial order over the
tuples (items) in the workload. We will build on the insights of [23]
to develop efficient algorithms as part of a declarative framework.

5. RELATED WORK
Towards the goal of understanding the structure of ranked data, a

variety of models have been developed in the statistics literature [5,
8, 9, 19]. In recent years, there has been increased interest in an-
alyzing ranked data in the machine learning [7, 11, 14, 15, 17],
information retrieval [16], and bioinformatics [1, 12, 24] communi-
ties. To the best of our knowledge, none of the previously proposed
approaches directly model the local structure of ranked data.

Learning to rank is an active area of research in information re-
trieval [16], where the objective is to predict a ranking of unseen
items based on their features. While there may be some com-
mon technical insights linking learning to rank and the approach
described here, the goals of the two lines of work are essentially
different. Our goal is to identify structure in datasets containing
observed items, to explain the structure using attributes (features)
of items and of judges, and to produce multiple representative rank-

ings. In contrast, in learning to rank the goal is to predict a single

global ranking for unseen items, based on their features. Nonethe-
less, we plan to explore deeper connections between our proposed

approach and learning to rank as our work progresses.
Our proposed approach builds on insights from data mining, in

particular on subspace clustering [13, 20]. We build on our own
prior work on rank-aware clustering [21, 22].
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