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ABSTRACT
Scaling large iterative graph processing applications through paral-
lel computing is a very important problem. Several graph process-
ing frameworks have been proposed that insulate developers from
low-level details of parallel programming. Most of these frame-
works are based on the bulk synchronous parallel (BSP) model in
order to simplify application development. However, in the BSP
model, vertices are processed in fixed rounds, which often leads
to slow convergence. Asynchronous executions can significantly
accelerate convergence by intelligently ordering vertex updates and
incorporating the most recent updates. Unfortunately, asynchronous
models do not provide the programming simplicity and scalability
advantages of the BSP model.

In this paper, we combine the easy programmability of the BSP
model with the high performance of asynchronous execution. We
have designed GRACE, a new graph programming platform that
separates application logic from execution policies. GRACE pro-
vides a synchronous iterative graph programming model for users
to easily implement, test, and debug their applications. It also con-
tains a carefully designed and implemented parallel execution en-
gine for both synchronous and user-specified built-in asynchronous
execution policies. Our experiments show that asynchronous exe-
cution in GRACE can yield convergence rates comparable to fully
asynchronous executions, while still achieving the near-linear scal-
ability of a synchronous BSP system.

1. INTRODUCTION
Graphs can capture complex data dependencies, and thus pro-

cessing of graphs has become a key component in a wide range
of applications, such as semi-supervised learning based on random
graph walks [20], web search based on link analysis [7, 14], scene
reconstruction based on Markov random fields [9] and social com-
munity detection based on label propagation [19], to name just a
few examples. New applications such as social network analysis
or 3D model construction over Internet-scale collections of images
have produced graphs of unprecedented size, requiring us to scale
graph processing to millions or even billions of vertices. Due to
this explosion in graph size, parallel processing is heavily used;
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for example, Crandall et al. describe the use of a 200-core Hadoop
cluster to solve the structure-from-motion problem for constructing
3D models from large unstructured collections of images [9].

Recently, a number of graph processing frameworks have been
proposed that allow domain experts to focus on the logic of their ap-
plications while the framework takes care of scaling the processing
across many cores or machines [8, 11, 15, 23, 24, 28, 37, 38]. Most
of these frameworks are based on two common properties of graph
processing applications: first, many of these applications proceed
iteratively, updating the graph data in rounds until a fixpoint is
reached. Second, the computation within each iteration can be per-
formed independently at the vertex level, and thus vertices can be
processed individually in parallel. As a result, these graph process-
ing frameworks commonly follow the bulk synchronous parallel
(BSP) model of parallel processing [32]. The BSP model organizes
computation into synchronous “ticks” (or “supersteps”) delimited
by a global synchronization barrier. Vertices have local state but
there is no shared state; all communication is done at the synchro-
nization barriers by message passing. During a tick, each vertex in-
dependently receives messages that were sent by neighbor vertices
during the previous tick, uses the received values to update its own
state, and finally sends messages to adjacent vertices for process-
ing during the following tick. This model ensures determinism and
maximizes data parallelism within ticks, making it easy for users to
design, program, test, and deploy parallel implementations of do-
main specific graph applications while achieving excellent parallel
speedup and scaleup.

In contrast to the synchronous execution policy of the BSP model,
asynchronous execution policies do not have clean tick and inde-
pendence properties, and generally communicate using shared state
instead of—or in addition to—messages. Vertices can be processed
in any order using the latest available values. Thus, there is no guar-
antee of isolation between updates of two vertices: vertices can read
their neighbor’s states at will during their update procedure. Asyn-
chronous execution has a big advantage for iterative graph process-
ing [6, 22]: We can intelligently order the processing sequence of
vertices to significantly accelerate convergence of the computation.
Consider finding the shortest path between two vertices as an il-
lustrative example: the shortest distance from the source vertex to
the destination vertex can be computed iteratively by updating the
distances from the source vertex to all other vertices. In this case,
vertices with small distances are most likely to lead to the shortest
path, and thus selectively expanding these vertices first can signifi-
cantly accelerate convergence. This idea is more generally referred
as the label-setting method for shortest/cheapest path problems on
graphs, with Dijkstra’s classical method the most popular algorithm
in this category. In addition, in asynchronous execution the most re-
cent state of any vertex can be used directly by the next vertex that



is scheduled for processing, instead of only using messages sent
during the previous tick as in the BSP model. This can further in-
crease the convergence rate since data updates can be incorporated
as soon as they become available. For example, in belief propa-
gation, directly using the most recent updates can significantly im-
prove performance over synchronous update methods that have to
wait until the end of each tick [12].

Although asynchronous execution policies can improve the con-
vergence rate for graph processing applications, asynchronous par-
allel programs are much more difficult to write, debug, and test than
synchronous programs. If an asynchronous implementation does
not output the expected result, it is difficult to locate the source of
the problem: it could be the algorithm itself, a bug in the asyn-
chronous implementation, or simply that the application does not
converge to the same fixpoint under synchronous and asynchronous
executions. Although several asynchronous graph processing plat-
forms have been proposed which attempt to mitigate this problem
by providing some asynchronous programming abstractions, their
abstractions still require users to consider low-level concurrency is-
sues [17, 21]. For example in GraphLab, the unit of calculation is a
single update task over a vertex [21]. When an update task is sched-
uled, it computes based on whatever data is available on the vertex
itself and possibly its neighbors. But since adjacent vertices can be
scheduled simultaneously, users need to worry about read and write
conflicts and choose from different consistency levels to avoid such
conflicts themselves. In Galois, different processes can iterate over
the vertices simultaneously, updating their data in an optimistic par-
allel manner [17]. Users then need to specify which method calls
can safely be interleaved without leading to data races and how
the effects of each method call can be undone when conflicts are
detected. Such conflicts arise because general asynchronous exe-
cution models allow parallel threads to communicate at any time,
not just at the tick boundaries. The resulting concurrent execution
is highly dependent on process scheduling and is not deterministic.
Thus, asynchronous parallel frameworks have to make concurrency
issues explicit to the users.

For these reasons, a synchronous iterative model is clearly the
programming model of choice due to its simplicity. Users can fo-
cus initially on “getting the application right,” and they can eas-
ily debug their code and reason about program correctness without
having to worry about low-level concurrency issues. Then, hav-
ing gained confidence that their encoded graph application logic is
bug-free, users would like to be able to migrate to asynchronous ex-
ecution for better performance without reimplementing their appli-
cations; they should just be able to change the underlying execution
policy in order to switch between synchronous and asynchronous
execution.

Unfortunately, this crucially important development cycle — go-
ing from a simple synchronous specification of a graph process-
ing application to a high-performance asynchronous execution —
is not supported by existing frameworks. Indeed, it is hard to imag-
ine switching from the message-passing communication style of a
synchronous graph program to the shared-variable communication
used in an asynchronous one without reimplementing the applica-
tion. However, in this paper we show such reimplementation is
unnecessary: most of the benefit of asynchronous processing can
be achieved in a message-passing setting by allowing users to ex-
plicitly relax certain constraints imposed on message delivery by
the BSP model.
Contributions of this Paper. In this paper, we combine synchronous
programming with asynchronous execution for large-scale graph
processing by cleanly separating application logic from execution
policies. We have designed and implemented a large scale par-

allel iterative graph processing framework named GRACE, which
exposes a synchronous iterative graph programming model to the
users while enabling both synchronous and user-specified asyn-
chronous execution policies. Our work makes the following three
contributions:

(1) We present GRACE, a general parallel graph processing frame-
work that provides an iterative synchronous programming model
for developers. The programming model captures data dependen-
cies using messages passed between neighboring vertices like the
BSP model (Section 3).

(2) We describe the parallel runtime of GRACE, which follows
the BSP model for executing the coded application. At the same
time GRACE allows users to flexibly specify their own (asynchro-
nous) execution policies by explicitly relaxing data dependencies
associated with messages in order to achieve fast convergence. By
doing so GRACE maintains both fast convergence through cus-
tomized (asynchronous) execution policies of the application and
automatic scalability through the BSP model at run time (Section 4).

(3) We experiment with four large-scale real-world graph pro-
cessing applications written in a shared-memory prototype imple-
mentation of GRACE (Section 5). Our experiments show that even
though programs in GRACE are written synchronously, we can
achieve convergence rates and performance similar to that of com-
pletely general asynchronous execution engines, while still main-
taining nearly linear parallel speedup by following the BSP model
to minimize concurrency control overheads (Section 6).

We discuss related work in Section 7 and conclude in Section 8.
We begin our presentation by introducing iterative graph processing
applications in Section 2.

2. ITERATIVE GRAPH PROCESSING
Iterative graph processing applications are computations over

graphs that update data in the graph in iterations or ticks. During
each tick the data in the graph is updated, and the computation
terminates after a fixed number of ticks have been executed [9] or
the computation has converged [13]. We use the belief propagation
algorithm on pairwise Markov random fields (MRFs) as a running
example to illustrate the computation patterns of an iterative graph
processing application [26].
Running Example: Belief Propagation on Pairwise MRF. The
pairwise MRF is a widely used undirected graphical model which
can compactly represent complex probability distributions. Con-
sider n discrete random variables X = {X1, X2, · · · , Xn} taking
on values Xi ∈ Ω, where Ω is the sample space.1 A pairwise MRF
is an undirected graph G(V,E) where vertices represent random
variables and edges represent dependencies. Each vertex u is as-
sociated with the potential function φu : Ω 7→ R+ and each edge
eu,v is associated with the potential function φu,v : Ω×Ω 7→ R+.
The joint distribution is proportional to the product of the potential
functions:

p(x1, x2, · · · , xn) ∝
∏
u∈V

φu(xu) ·
∏

(u,v)∈E

φu,v(xu, xv)

Computing the marginal distribution for a random variable (i.e.,
a vertex) is the core procedure for many learning and inference
tasks in MRF. Belief propagation (BP), which works by repeat-
edly passing messages over the graph to calculate marginal distri-
butions until the computation converges, is one of the most popular
algorithms used for this task [12]. The message mu→v(xv) sent

1In general, each random variable can have its own sample space.
For simplicity of discussion, we assume that all the random vari-
ables have the same sample space.



Algorithm 1: Original BP Algorithm

1 Initialize b(0)
u as φu for all u ∈ V ;

2 Calculate the message m(0)
u→v using b(0)

u according to Eq. 2 for
all eu,v ∈ E ;

3 Initialize t = 0 ;
4 repeat
5 t = t+ 1 ;
6 foreach u ∈ V do
7 Calculate b(t)u using m(t−1)

w→u according to Eq. 1 ;
8 foreach outgoing edge eu,v of u do
9 Calculate m(t)

u→v using b(t)u according to Eq. 2 ;
10 end
11 end
12 until ∀u ∈ V, ||b(t)u − b(t−1)

u || ≤ ε ;

from u to v is a distribution which encodes the “belief” about the
value ofXv fromXu’s perspective. Note that since MRFs are undi-
rected graphs, there are two messages mu→v(xv) and mv→u(xu)
for the edge eu,v . In each tick, each vertex u first updates its
own belief distribution bu(xu) according to its incoming messages
mw→u(xu):

bu(xu) ∝ φu(xu)
∏

ew,u∈E

mw→u(xu) (1)

This distribution indicates the current belief about Xu’s value. The
message mu→v(xv) for its outgoing edge eu,v can then be com-
puted based on its updated belief distribution:

mu→v(xv) ∝
∑
xu∈Ω

φu,v(xu, xv) · bu(xu)

mv→u(xu)
(2)

Each belief distribution can be represented as a vector, residing in
some belief space B ⊂ (R+)|Ω|; we denote all the |V | beliefs as
b ∈ B|V |. Hence the update procedure of Equation (2) for a vertex
v can be viewed as a mapping fv : B|V | 7→ B, which defines the
belief of vertex v as a function of the beliefs of all the vertices in
the graph (though it actually depends only on the vertices adjacent
to v). Let f(b) = (fv1(b1), fv2(b2), · · · , fv|V |(b|V |), the goal
is to find the fixpoint b∗ such that f(b∗) = b∗. At the fixpoint,
the marginal distribution of any vertex v is the same as its belief.
Thus BP can be treated as a way of organizing the “global” compu-
tation of marginal beliefs in terms of local computation. For graphs
containing cycles, BP is not guaranteed to converge, but it has been
applied with extensive empirical success in many applications [25].

In the original BP algorithm, all the belief distributions are up-
dated simultaneously in each tick using the messages sent in the
previous tick. Algorithm 1 shows this procedure, which simply
updates the belief distribution on each vertex and calculates its out-
going messages. The algorithm terminates when the belief of each
vertex u stops changing, in practice when ||b(t)u − b(t−1)

u || < ε for
some small ε.

Although the original BP algorithm is simple to understand and
implement, it can be very inefficient. One important reason is that
it is effectively only using messages from the previous tick. A
well-known empirical observation is that when vertices are updated
sequentially using the latest available messages from their neigh-
bors, the resulting asynchronous BP will generally approach the
fixpoint with fewer updates than the original variant [12]. In addi-
tion, those vertices whose incoming messages changed drastically
will be more “eager” to update their outgoing messages in order

Algorithm 2: Residual BP Algorithm

1 Initialize bnew
u and bold

u as φu for all u ∈ V ;
2 Initialize mold

u→v as uniform distribution for all eu,v ∈ E ;
3 Calculate message mnew

u→v using bnew
u according to Eq. 2 for all

eu,v ∈ E ;
4 repeat
5 u = arg maxv(max(w,v)∈E ||mnew

w→v −mold
w→v||) ;

6 Set bold
u to be bnew

u ;
7 Calculate bnew

u using mnew
w→u according to Eq. 1 ;

8 foreach outgoing edge eu,v of u do
9 Set mold

u→v to be mnew
u→v ;

10 Calculate mnew
u→v using bnew

u according to Eq. 2 ;
11 end
12 until ∀u ∈ V, ||bnew

u − bold
u || ≤ ε ;

to reach the fixpoint. Therefore, as suggested by Gonzalez et al.,
a good sequential update ordering is to update the vertex that has
the largest “residual,” where the residual of a message is defined
as the difference between its current value and its last used value,
and the residual of a vertex is defined as the maximum residual of
its received messages [13]. The resulting residual BP algorithm is
illustrated in Algorithm 2, where during each tick the vertex with
the largest residual is chosen to be processed and then its outgoing
messages are updated.

Comparing Algorithm 1 and 2, we find that their core computa-
tional logic is actually the same: they are both based on iterative ap-
plication of Equations 1 and 2. The only difference lies in how this
computational logic is executed. In the original BP algorithm, all
vertices simultaneously apply these two equations to update their
beliefs and outgoing messages using the messages received from
the previous tick. In the residual BP algorithm, however, vertices
are updated sequentially using the most recent messages while the
order is based on message residuals. The independent nature of the
message calculation suggests that the original BP algorithm can be
easily parallelized: since in each tick, each vertex only needs to
read its incoming messages from the previous tick, the vertex com-
putations will be completely independent as long as all messages
from the previous tick are guaranteed to be available at the begin-
ning of each tick. Such a computational pattern can be naturally
expressed in the BSP model for parallel processing, where graph
vertices are partitioned and distributed to multiple processes for lo-
cal computation during each tick. These processes do not need to
communicate with each other until synchronization at the end of the
tick, which is used to make sure every message for the next tick has
been computed, sent, and received. Such a parallel program writ-
ten in the BSP model can automatically avoid non-deterministic
access to shared data, thus achieving both programming simplicity
and scalability.

On the other hand, in the residual BP algorithm only one vertex
at a time is selected and updated based on Equation 1 and 2. In
each tick it selects the vertex v with the maximum residual:

arg max
v

max
(w,v)∈E

||mnew
w→v −mold

w→v||

which naively would require O(|E|) time. To find the vertex with
maximal residual more efficiently, a priority queue could be em-
ployed with the vertex priority defined as the maximum of residu-
als of the vertex’s incoming messages [12]. During each tick, the
vertex with the highest priority is selected to update its outgoing
messages, which will then update the priorities of the receivers cor-
respondingly. Note that since access to the priority queue has to be



serialized across processes, the resulted residual BP algorithm no
longer fits in the BSP model and thus cannot be parallelized easily.
Sophisticated concurrency control is required to prevent multiple
processes from updating neighboring vertices simultaneously. As a
result, despite the great success of the serial residual BP algorithm,
researchers have reported poor parallel speedup [13].

The above observations can also be found in many other graph
processing applications. For instance, both Bellman-Ford algo-
rithm and Dijkstra’s algorithm can be used to solve the shortest
path problem with non-negative edge weights. These two algo-
rithms share the same essential computational logic: pick a vertex
and update its neighbors’ distances based on its own distance. The
difference lies only in the mechanisms of selecting such vertices: in
Bellman-Ford algorithm, all vertices are processed synchronously
in each tick to update their neighbors, whereas in Dijkstra’s algo-
rithm only the unvisited vertex with the smallest tentative distance
is selected. On a single processor, Dijkstra’s algorithm is usually
preferred since it can converge faster. However, since the algorithm
requires processing only one vertex with the smallest distance at a
time, it cannot be parallelized as easily as Bellman-Ford. Similar
examples also include the push-relabel algorithm and the relabel-
to-front algorithm for the network max-flow problem [16].

In general, although asynchronous algorithms can result in faster
convergence and hence better performance, they are (1) more dif-
ficult to program than synchronous algorithms, and (2) harder to
scale up through parallelism due to their inherent sequential order-
ing of computation. To avoid these difficulties, graph processing
application developers want to start with a simple synchronous im-
plementation first; they can thoroughly debug and test this imple-
mentation and try it out on sample data. Then once an application
developer has gained confidence that her synchronous implemen-
tation is correct, she can carefully switch to an asynchronous exe-
cution to reap the benefits of better performance from faster con-
vergence while maintaining similar speedup — as long as the asyn-
chronous execution generates identical (or at least acceptable) re-
sults compared to the synchronous implementation. To the best of
our knowledge, GRACE is the first effort to make this development
cycle a reality.

3. PROGRAMMING MODEL
Unlike most graph query systems or graph databases which tend

to apply declarative (SQL or Datalog-like) programming languages
to interactively execute graph queries [2, 3, 4], GRACE follows
batch-style graph programming frameworks (e.g., PEGASUS [15]
and Pregel [23]) to insulate users from low level details by pro-
viding a high level representation for graph data and letting users
specify an application as a set of individual vertex update proce-
dures. In addition, GRACE lets users explicitly define sparse data
dependencies as messages between adjacent vertices. We explain
this programming model in detail in this section.

3.1 Graph Model
GRACE encodes application data as a directed graph G(V,E).

Each vertex v ∈ V is assigned a unique identifier and each edge
eu→v ∈ E is uniquely identified by its source vertex u and destina-
tion vertex v. To define an undirected graph such as an MRF, each
undirected edge is represented by two edges with opposite direc-
tions. Users can define arbitrary attributes on the vertices, whose
values are modifiable during the computation. Edges can also have
user-defined attributes, but these are read-only and initialized on
construction of the edge. We denote the attribute vector associated
with the vertex v at tick t by St

v and the attribute vector associated
with edge eu→v by Su→v . Since Su→v will not be changed during

class Vertex {
Distribution potent; // Predefined potential
Distribution belief; // Current belief

};

class Edge {
Distribution potent; // Predefined potential

};

class Msg {
Distribution belief; // Belief of the receiver

// from sender’s perspective
};

Figure 1: Graph Data for BP

the computation, the state of the graph data at tick t is determined
by St = (St

v1 , S
t
v2 · · · , S

t
v|V | ). At each tick t, each vertex v can

send at most one message M t
v→w on each of its outgoing edges.

Message attributes can be specified by the users; they are read-only
and must be initialized when the message is created.

As shown in Figure 1, for Belief Propagation, St
v stores vertex

v’s predefined potential function φv(xv), as well as the belief dis-
tribution bv(xv) estimated at tick t. Su→v stores the predefined
potential function φu,v(xu, xv). Note that the belief distributions
are the only modifiable graph data in BP. As for messages, M t

u→v

stores the belief distribution mt
u→v about the value of Xv from

Xu’s perspective at tick t.

3.2 Iterative Computation
In GRACE, computation proceeds by updating vertices itera-

tively based on messages. At each tick, vertices receive messages
through all incoming edges, update their local data values, and
propagate newly created messages through all outgoing edges. Thus
each vertex updates only its own data. This update logic is captured
by the Proceed function with the following signature:

List<Message> Proceed(List<Message> msgs)

Whenever this function is triggered for some vertex u, it will be
processed by updating the data of vertex u based on the received
messages msgs and by returning a set of newly computed outgoing
messages, one for each outgoing edge. Note that at the beginning,
the vertices must first send messages before receiving any. There-
fore the received messages parameter for the first invocation of this
function will be empty. When executed synchronously, in every
tick each vertex invokes its Proceed function once, and hence ex-
pects to receive a message from each of its incoming edges.

As shown in Figure 2, we can easily implement the Proceed
function for BP, which updates the belief following Equation 1
(lines 2 - 6) and computes the new message for each outgoing
edge based on the updated belief and the edge’s potential function
(lines 7 - 13); we use Msg[e] to denote the message received on
edge e. Similarly, outMsg[e] is the message sent out on edge e.
The computeMsg function computes the message based on Equa-
tion (2). If a vertex finds its belief does not change much, it will
vote for halt (lines 14 - 15). When all the vertices have voted for
halt during a tick, the computation terminates. This voting-for-halt
mechanism actually distributes the work of checking the termina-
tion criterion to the vertices. Therefore at the tick boundary if we
observe that all the vertices have voted for halt, we can terminate
the computation.

Note that with this synchronous programming model, data de-
pendencies are implicitly encoded in messages: a vertex should
only proceed to the next tick when it has received all the incom-
ing messages in the previous tick. As we will discuss in the next



1 List<Msg> Proceed(List<Msg> msgs) {
2 // Compute new belief from received messages
3 Distribution newBelief = potent;
4 for (Msg m in msgs) {
5 newBelief = times(newBelief, m.belief);
6 }

7 // Compute and send out messages
8 List<Msg> outMsgs(outDegree);
9 for (Edge e in outgoingEdges) {
10 Distribution msgBelief;
11 msgBelief = divide(newBelief, Msg[e]);
12 outMsg[e] = computeMsg(msgBelief, e.potent);
13 }

14 // Vote to terminate upon convergence
15 if (L1(newBelief, belief) < eps) voteHalt();

16 // Update belief and send out messages
17 belief = newBelief;
18 return outMsgs;
19 }

Figure 2: Update logic for BP

section, we can relax this condition in various ways in order to
execute graph applications not only synchronously, but also asyn-
chronously.

4. ASYNCHRONOUS EXECUTION IN BSP
Given that our iterative graph applications are written in the BSP

model, it is natural to process these applications in the same model
by executing them in ticks: within each tick, we process vertices
independently in parallel through the user-specified Proceed func-
tion; at the end of each tick we introduce a synchronization barrier.
A key observation in the design of the GRACE runtime is that asyn-
chronous execution policies can also be implemented with a BSP-
style runtime: an underlying BSP model in the platform does not
necessarily force synchronous BSP-style execution policies for the
application.

4.1 Relaxing Synchrony Properties
In the BSP model, the graph computation is organized into ticks.

For synchronous execution, each vertex reads all available mes-
sages, computes a new state and sends messages that will be avail-
able in the next tick. This satisfies the following two properties:
Isolation. Computation within each tick is performed indepen-
dently at the vertex level. In other words, within the same tick
newly generated messages from any vertices will not be seen by
the Proceed functions of other vertices.
Consistency. A vertex should be processed if and only if all its
incoming messages have been received. In other words, a vertex’
Proceed function should be triggered at the tick when all its re-
ceived messages from incoming edges have been made available at
the beginning of that tick.

By ensuring both isolation and consistency in the BSP model, all
vertices are processed independently in each iteration using their
received messages from the previous iteration. Hence data depen-
dencies implicitly encoded in messages are respected. In asyn-
chronous execution, however, we can relax isolation or consistency
(or both) in order to achieve faster convergence. By relaxing con-
sistency, we allow a vertex to invoke its Proceed function before
all the incoming messages have arrived; for example, we can sched-
ule a vertex that has received only a single, but important message.
By relaxing isolation, we allow messages generated earlier in an it-
eration to be seen by later vertex update procedures. Therefore, the

invocation order of vertex update procedures can make a substantial
difference; for example, we may process vertices with “important”
messages early in order to generate their outgoing messages and
make these messages visible to other vertices within the same tick,
where the message importance is intended to capture the messages
contribution to the convergence of the iterative computation. In
either case, an edge eu,v could have multiple unread messages if
the destination vertex v has not been scheduled for some time or
it could have no unread message at all if the source vertex u has
not been scheduled since the last time v was processed. Hence we
must decide which message on each of the incoming edges should
be used when we are going to update the vertex. For example, an
option would be to use the latest message when there are “stale”
messages or to use the last consumed message if no new message
has been received.

By relaxing isolation and/or consistency properties, we can effi-
ciently simulate asynchronous execution while running with a BSP
model underneath. Combining different choices about how to re-
lax these properties of the BSP model results in various execution
policies, which may result in different convergence rates. We now
describe the customizable execution interface of the GRACE run-
time which enables this flexibility.

4.2 Customizable Execution Interface
Vertex Scheduling. If users decide to relax the consistency prop-
erty of the BSP model, they can determine the set of vertices to be
processed as well as the order in which these vertices are processed
within a tick. In order to support such flexible vertex scheduling,
each vertex maintains a dynamic priority value. This value, called
the scheduling priority of the vertex, can be updated upon receiving
a new message. Specifically, whenever a vertex receives a message
the execution scheduler will trigger the following function:

void OnRecvMsg(Edge e, Message msg)

In this function, users can update the scheduling priority of the re-
ceiver vertex by aggregating the importance of the received mes-
sage. Then at the start of each tick, the following function will be
triggered:

void OnPrepare(List<Vertex> vertices)

In OnPrepare, users can access the complete global vertex list and
select a subset (or the whole set) of the vertices to be processed for
this tick. We call this subset the scheduled vertices of the tick. To
do this, users can call Schedule on any single vertex to schedule
the vertex, or call ScheduleAll with a specified predicate to sched-
ule all vertices that satisfy the predicate. They can also specify the
order in which the scheduled vertices are going to be processed;
currently, GRACE allows scheduled vertices to be processed fol-
lowing either the order determined by their scheduling priorities or
by their vertex ids. For example, users can schedule the set of ver-
tices with high priority values; they can also use the priority just as
a boolean indicating whether or not the vertex should be scheduled;
they can also simply ignore the scheduling priority and schedule
all vertices in order to achieve consistency. The framework does
not force them to consider certain prioritized execution policies but
provides the flexibility of vertex scheduling through the use of this
scheduling priority.

Message Selection. If users decide to relax the isolation property
of the BSP model, vertices are no longer restricted to using only
messages sent in the previous tick. Users can specify which mes-
sage to use on each of the vertex’s incoming edges when process-
ing the vertex in Proceed. Since every vertex is processed and



1 void OnRecvMsg(Edge e, Message msg) {
2 // Do nothing to update priority
3 // since every vertex will be scheduled
4 }

1 Msg OnSelectMsg(Edge e) {
2 return GetPrevRecvdMsg(e);
3 }

1 void OnPrepare(List<Vertex> vertices) {
2 ScheduleAll(Everyone);
3 }

Figure 3: Synchronous Original Execution for BP

1 void OnRecvMsg(Edge e, Message msg) {
2 Distn lastBelief = GetLastUsedMsg(e).belief;
3 float residual = L1(newBelief, msg.belief);
4 UpdatePriority(GetRecVtx(e), residual, sum);
5 }

1 Msg OnSelectMsg(Edge e) {
2 return GetLastRecvdMsg(e);
3 }

1 void OnPrepare(List<Vertex> vertices) {
2 List<Vertex> samples = Sample(vertices, m);
3 Sort(samples, Vertex.priority, operator >);
4 float threshold = samples[r * m].priority;
5 ScheduleAll(PriorGreaterThan(threshold));
6 }

Figure 4: Asynchronous Residual Execution for BP

hence sends messages at tick 0, every edge will receive at least one
message during the computation. Users can specify this message
selection logic in the following function:

Msg OnSelectMsg(Edge e)

This function will be triggered by the scheduler on each incoming
edge of a vertex before the vertex gets processed in the Proceed
function. The return message msg will then be put in the parame-
ters of the corresponding edge upon calling Proceed. In the On-
SelectMsg function, users can get either 1) the last received mes-
sage, 2) the selected message in the last Proceed function call, or
3) the most recently received message up to the previous tick. Users
have to choose the last option in order to preserve isolation.

In general users may want to get any “unconsumed” messages or
“combine” multiple messages into a single message that is passed
to the Proceed function, we are aware of this requirement and plan
to support this feature in future work. For now we restrict users to
choosing messages from only the above three options so that we
can effectively garbage collect old messages and hence only main-
tain a small number of received messages for each edge. Note that
during this procedure new messages could arrive simultaneously,
and the runtime needs to guarantee that repeated calls to get these
messages within a single OnSelectMsg function will return the
same message objects.

4.3 Original and Residual BP: An Example
By relaxing the consistency and isolation properties of the BSP

model, users can design very flexible execution policies by instanti-
ating the OnRecvMsg, OnSelectMsg and OnPrepare functions.
Taking the BP example, if we want to execute the original syn-
chronous BP algorithm, we can implement these three functions
as in Figure 3. Since every vertex is going to be scheduled at ev-
ery tick, OnRecvMsg does not need to do anything for updating
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Figure 5: Data flow in GRACE runtime

scheduling priority. In addition, since every edge will receive a
message at each tick, OnSelectMsg can return the message re-
ceived from the previous tick.Finally, in OnPrepare we simply
schedule all the vertices. By doing this both consistency and isola-
tion are preserved and we get as a result a synchronous BP program.

If we want to apply the asynchronous residual BP style execu-
tion, we need to relax both consistency and isolation. Therefore we
can instead implement these three functions as in Figure 4. In this
case we use the maximum of the residuals of the incoming mes-
sages as the scheduling priority of a vertex. In OnRecvMsg, we
first get the belief distribution of the last received message. Next
we compute the residual of the newly received message as the L1
difference between its belief distribution with that of the last re-
ceived message. This residual is then used to update the scheduling
priority of the vertex via the sum aggregation function. In OnS-
electMsg, we simply return the most recently received message.
For OnPrepare, we schedule approximately r · |V | of the vertices
with high scheduling priorities by first picking a threshold from a
sorted sample of vertices and then calling ScheduleAll to schedule
all vertices whose priority values are larger than this threshold.2

5. RUNTIME IMPLEMENTATION
We now describe the design and implementation of the paral-

lel processing runtime of GRACE. The goal of the runtime is to
efficiently support vertex scheduling and message selection as we
discussed in Section 4. Most asynchronous processing frameworks
have to make the scheduling decision of which vertex to be pro-
cessed next. However, because GRACE follows the BSP model, it
schedules a set of vertices to be processed for the next tick at the
barrier instead of repeatedly schedule one vertex at a time. As we
will show below, this allows both fast convergence and high scala-
bility.

5.1 Shared-Memory Architecture
For many large-scale graph processing applications, after ap-

propriate preprocessing, the data necessary for computation con-
2To strictly follow the residual BP algorithm, we can only sched-
ule one vertex with the highest scheduling priority for each tick;
although this can also be achieved in OnPrepare by first sorting
the vertices based on their priorities and then choose only the ver-
tex with the highest priority value, we choose not to demonstrate
this execution policy since it is not efficient for parallel processing.



sists of a few hundred gigabytes or less and thus fits into a single
shared-memory workstation. In addition, although the BSP model
was originally designed for distributed-memory systems, it has also
been shown useful for shared-memory multicore systems [33, 36].
As a result, while the GRACE programming abstraction and its cus-
tomizable execution interface are intended for both shared-memory
and distributed memory environments, we decided to build the first
prototype of the GRACE runtime on a shared-memory architecture.
In the future we plan to extend it to a distributed environment for
even larger data sets.

The architecture of the runtime is shown in Figure 5. As in a
typical BSP implementation, GRACE executes an application as
a group of worker threads, and these threads are coordinated by
a driver thread. The runtime also contains a scheduler, which is
in charge of scheduling the set of vertices to be processed in each
tick. Each run of the application is treated as a task, with its config
information such as the number of worker threads and task stop
criterion stored in the task manager. All vertices, together with
their edges and the received messages on each incoming edge, are
stored in a global vertex list in shared memory. Although messages
are logically stored on the edges, in the implementation they are
actually located in the data space of the receiving vertex to improve
locality.

5.2 Batch Scheduling
Recall that there is a synchronization barrier at the end of each

tick, where the user-specified OnPrepare function is triggered.
This barrier exists not only for enforcing determinism but also for
users to access the global vertex list of the graph. Within this On-
Prepare function users can read and write any vertex data. For
example, they can collect graph statistics by aggregating over the
global vertex list, change global variables and parameters of the
application, and finalize the set of scheduled vertices for the next
tick. In addition to the user-specified data attributes, the runtime
maintains a scheduling bit for each vertex. When a vertex is sched-
uled inside OnPrepare through the Schedule and ScheduleAll
function calls, its scheduling bit is set. Thus, at the end of the On-
Prepare function, a subset of vertices have their scheduling bits
set, indicating that they should be processed in the next tick.

5.3 Iterative Processing
As discussed above, at the end of each tick a set of scheduled

vertices is selected. During the next tick these scheduled vertices
are assigned to worker threads and processed in parallel. In order
to decide the assignment in an efficient and load-balanced way, the
driver partition the global vertex list into fixed-size chunks. Those
chunks are allocated to worker threads in a round robin manner
during the tick. Each worker thread iterates over the vertices of the
chunk following either a fixed order or the order specified by ver-
tices’ scheduling priority values, selecting and processing vertices
whose scheduling bits are set. After a worker thread has finished
processing its current chunk, the next free chunk is allocated to it.

When no more free chunks are available to a worker thread, the
thread moves on to the tick barrier. Once a worker thread has
moved to the tick barrier, there are no more free chunks available to
be assigned later to other threads in the current tick. Therefore, the
earliest thread to arrive the synchronization barrier will wait for the
processing time of a single chunk in the worst case. When every
thread has arrived at the tick barrier, we are guaranteed that all the
scheduled vertices have been processed. The scheduler then checks
if the computation can be stopped and triggers OnPrepare to let
users collect statistics and schedule vertices for the next tick.

In the current GRACE runtime, computation can be terminated

either after a user-specified number of ticks, or when a fixpoint has
been reached. A fixpoint is considered to be reached if the set of
scheduled vertices is empty at the beginning of a tick or if all the
vertices have voted to halt within a tick. To efficiently check if
all the vertices have voted to halt in the tick, each worker thread
maintains a bit indicating if all the vertices it has processed so far
have voted to halt. At the tick barrier, the runtime only needs to
check M bits to see if every vertex has voted to halt, where M is
the number of worker threads.

5.4 Vertex Updating
Recall that we use a message passing communication interface

to effectively encode the data dependencies for vertices. When the
Proceed function is triggered on a vertex, it only needs to access
its received messages as well as its local data. Compared to a re-
mote read interface where the Proceed function triggered on a
vertex directly accesses the data of the vertex’ neighbor vertices,
a message passing interface also avoids potential read and write
conflicts due to concurrent operations on the same vertex (e.g., a
thread updating vertex u is reading u’s neighbor vertex v’s data
while another thread is updating v concurrently). By separating
reads and writes, high-overhead synchronization protocols such as
logical locking and data replication can usually be eliminated [27,
34].

In the GRACE runtime we implement such a low-overhead con-
currency control mechanism for vertex updates as follows. When a
vertex is about to be processed, we must select one message on each
of its incoming edges as arguments to the Proceed function. Each
edge maintains three pointers to received messages: one for the
most recently received message; one for the message used for the
last call of Proceed; and one for the most recently received mes-
sage up to the previous tick. Some of these pointers can actually
refer to the same message. When any of these message pointers are
updated, older messages can be garbage collected. For each incom-
ing edge, the OnSelectMsg function is invoked and the returned
message is selected; if OnSelectMsg returns NULL the most re-
cently received message is selected by default. The update opera-
tions of these message pointers are made atomic and the results of
the message pointer de-reference operations are cached such that
new message receptions will be logically serialized as either com-
pletely before or after the OnSelectMsg function call. Therefore,
multiple calls to get a message reference within a single OnSe-
lectMsg function will always return the same result.

After the messages have been selected, the Proceed function
will be called to update the vertex with those messages. As de-
scribed in Section 3, Proceed returns a newly computed message
for each of the vertex’s outgoing edges, which will in turn trigger
the corresponding receiver’s OnRecvMsg function. Since during
the OnRecvMsg procedure, the receiver vertex’s scheduling pri-
ority can be updated, and multiple messages reception can trigger
the Proceed function simultaneously within a tick, we need to se-
rialize the priority update procedure. The current implementation
achieves this with a spin lock. Since the the chance of concurrent
Proceed function calls is small and the priority update logic inside
Proceed is usually simple, the serialization overhead is usually
negligible. Once a scheduled vertex has finished processing, its
scheduling bit is reset.

6. EXPERIMENTS
Our experimental evaluation of GRACE had two goals. First, we

wanted to demonstrate that by enabling customized execution poli-
cies GRACE can achieve convergence rates comparable to state-
of-the-art asynchronous frameworks such as GraphLab. Second,



we wanted to demonstrate that GRACE delivers the good parallel
speedup of the BSP model even when asynchronous policies are
used.

6.1 System
Our shared-memory GRACE prototype is implemented in C++,

using the PThreads package. To test the flexibility of specifying
customized executions in our runtime, we implemented four differ-
ent policies: (synchronous) Jacobi (S-J), (asynchronous) GaussSei-
del (AS-GS), (asynchronous) Eager (AS-E), and (asynchronous)
Prior (AS-P).3

Jacobi is the simple synchronized execution policy in which all
vertices are scheduled in each tick, and each vertex is updated using
the messages sent in the previous tick. It guarantees both consis-
tency and isolation and is the default execution policy in the current
GRACE prototype.

The remaining three execution policies are asynchronous; all of
them use the most recently received messages. For GaussSeidel, all
the vertices are scheduled in each tick, while for Eager and Prior
only a subset of the vertices are scheduled in each tick. Specif-
ically, for the Eager execution policy, a vertex is scheduled if its
scheduling priority exceeds a user-defined threshold. For the Prior
execution policy, only r · |V | of the vertices with the top priorities
are scheduled for the next tick, with r a configurable selection ratio.
Accurately selecting the top r · |V | vertices in Prior could be done
by sorting on the vertex priorities in OnPrepare at the tick bar-
rier, but this would dramatically increase the synchronization cost
and reduce speedup. Therefore, instead of selecting exactly the top
r · |V | vertices we first sample n of the priority values, sort them to
obtain an approximate threshold as the scheduling priority value of
the dr ·neth vertex, and then schedule all vertices whose scheduling
priorities are larger than this threshold.

The implementations of all these execution policies are straight-
forward, requiring only tens of lines of code in the OnPrepare,
OnRecvMsg, and OnSelectMsg functions.

6.2 Workloads

6.2.1 Custom Execution Policies
Recall that the first goal of our experiments was to demonstrate

the ability of GRACE to support customized execution policies
with performance comparable to existing frameworks. We there-
fore chose four different graph processing applications that have
different preferred execution policies as summarized in Table 1.

Structure from Motion. Our first application is a technique for
structure from motion (SfM) to build 3D models from unstructured
image collections downloaded from the Internet [9]. The approach
is based on a hybrid discrete-continuous optimization procedure
which represents a set of photos as a discrete Markov random field
(MRF) with geometric constraints between pairs of cameras or be-
tween cameras and scene points. Belief Propagation (BP) is used to
estimate the camera parameters as the first step of the optimization
procedure. We looked into the manually written multi-threaded
program from the original paper, and reimplemented its core BP
component in GRACE. The MRF graph is formulated in GRACE
with each vertex representing a camera, and each edge representing
the relative orientation and the translation direction between a pair
of cameras. During each tick t, vertex v tries to update its belief
St
v about its represented camera’s absolute location and orientation

3The system along with the provided execution policy imple-
mentations is available at http://www.cs.cornell.edu/
bigreddata/grace/

based on the relative orientations from its neighbors and possibly
its priors specified by a geo-referenced coordinate. The manually
written program shared by the authors of the SfM paper consists of
more than 2300 lines of code for the BP implementation, while its
reimplementation in GRACE takes only about 300 lines of code,
most of them copied directly from the original program. This is be-
cause in GRACE issues of parallelism such as concurrency control
and synchronization are abstracted away from the application logic,
greatly reducing the programming burden. The execution policy of
SfM is simply Jacobi.

Image Restoration. Our second application is image restoration
(IR) for photo analysis [31], which is also used in the experimen-
tal evaluation of GraphLab [21]. In this application the color of an
image is captured by a large pair-wise Markov random field (MRF)
with each vertex representing a pixel in the image. Belief propa-
gation is used to compute the expectation of each pixel iteratively
based on the observed dirty “pixel” value and binary weights with
its neighbors. A qualitative example that shows the effectiveness of
the BP algorithm is shown in Figure 6.

In the literature, three different execution policies have been used
for this problem, resulting in the following three BP algorithms: the
original Synchronous BP, Asynchronous BP, and Residual BP [26,
12]. The execution policy for Synchronous BP is Jacobi, while the
Eager policy in GRACE and the FIFO scheduler in GraphLab cor-
respond to the Asynchronous BP algorithm. For the Residual BP
algorithm, the Prior policy in GRACE and the priority scheduler in
GraphLab are good approximations. Previous studies reported that
Residual BP can accelerate the convergence and result in shorter
running time compared to other BP algorithms [12, 13].

Topic-Sensitive PageRank. Our third application is topic-sensitive
PageRank (TPR) for web search engines [14], where each web page
has not one importance score but multiple importance scores corre-
sponding to various topics. At query time, these importance scores
are combined based on the topics of the query to form a compos-
ite score for pages matching the query. By doing this we capture
more accurately the notion of importance with respect to a partic-
ular topic. In GRACE, each web page is simply a vertex and each
link an edge, with the topic relative importance scores stored in the
vertices. Like IR, TPR can use the Jacobi, Eager, and Prior execu-
tion policies [38].

Social Community Detection. Our last application is label prop-
agation, a widely used social community detection (SCD) algo-
rithm [19, 29]. Initially, each person has a unique label In each iter-
ation, everyone adopts the label that occurs most frequently among
herself and her neighbors, with ties broken at random. The algo-
rithm proceeds in iterations and terminates on convergence, i.e.,
when the labels stop changing. In GRACE, each vertex represents
a person in the social network with her current label, and vertices
vote to halt if their labels do not change over an update. Label
propagation can be executed either synchronously [19] or asyn-
chronously [29], corresponding to the Jacobi and GaussSeidel ex-
ecution policies, respectively. Researchers have reported the Label
Propagation algorithm converges much faster and can avoid oscil-
lation when using an asynchronous execution policy [29].

6.2.2 Speedup
Recall that the second goal of our experiments was to evalu-

ate the parallel performance of GRACE. We distinguish between
light and heavy iterative graph applications. In heavy applications,
such as IR, the computation performed by the Proceed function
on a vertex is relatively expensive compared to the time to retrieve
the vertex and its associated data from memory. Heavy applica-

http://www.cs.cornell.edu/bigreddata/grace/
http://www.cs.cornell.edu/bigreddata/grace/


Table 1: Summary of Applications
Application Comp. Type Data Set # Vertices # Edges Description
SfM for 3D Model non-linear Acropolis 2,961 17,628 Photo Collection downloaded from Flickr
Image Restoration non-linear Lenna-Image 262,144 1,046,528 Standard image processing benchmark
Topic PageRank linear Web-Google 875,713 5,105,039 Web graph released by Google in 2002
Community Detection non-numeric DBLP 967,535 7,049,736 Co-author graph collected in Oct 2011

Figure 6: Qualitative Evaluation of BP
Restoration on Lenna Image. Left: noisy
(σ = 20). Right: restored
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Figure 7: SfM Running Time
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Figure 8: SfM Speedup

tions should exhibit good parallel scaling, as the additional com-
putational power of more cores can be brought to good use. On
the other hand, in light applications such as TPR, the computation
performed on a vertex is relatively cheap compared to the time to
retrieve the vertex’s associated data. We anticipate that for light
applications access to main memory will quickly become the bot-
tleneck, and thus we will not scale once the memory bandwidth has
been reached.

We explore these tradeoffs by investigating the scalability of both
IR and TPR to 32 processors. We also add additional computation
to the light applications to confirm that it is the memory bottleneck
we are encountering.

6.3 Experimental Setup
Machine. We ran all the experiments using a 32-core computer
with 8 AMD Opteron 6220 quad-core processors and quad channel
128GB RAM. The computer is configured with 8 4-core NUMA
regions. This machine is running CentOS 5.5.
Datasets. Table 1 describes the datasets that we used for our four it-
erative graph processing applications. For SfM, we used the Acrop-
olis dataset, which consists of about 3 thousand geo-tagged photos
and 17 thousand camera-camera relative orientations downloaded
from Flickr. For IR we used the “Lenna” test image, a standard
benchmark in the image restoration literature [5]. For TPR, we
used a web graph released by Google [18], which contains about
880 thousand vertices and 5 million edges, and we use 128 topics
in our experiments. For SCD, we use a coauthor graph from DBLP
collected in Oct 2011; it has about 1 million vertices and 7 million
edges.

We used the GraphLab single node multicore version 2.0 down-
loaded from http://graphlab.org/downloads/ on March
13th, 2012 for all the conducted experiments.

6.4 Results for Custom Execution Policies

6.4.1 Structure from Motion
First, we used GRACE to implement the discrete-continuous op-

timization algorithm for SfM problems to demonstrate that by ex-
ecuting per-vertex update procedures in parallel GRACE is able
to obtain good data parallelism. We evaluated the performance
of the GRACE implementation against the manually written pro-

gram. Since no ground truth is available for this application, like
the manually written program we just executed the application for
a fixed number of ticks. Using the Jacobi execution policy, the
GRACE implementation is logically equivalent to the manually
written program, and thus generates the same orientation outputs.
The performance results up to 16 worker threads are shown in Fig-
ure 7, and the corresponding speedup results are shown in Figure 8.
We can see that the algorithm reimplemented in GRACE has less
elapsed time on single CPU, illustrating that GRACE does not add
significant overhead. The GRACE implementation also has better
multicore speedup, in part because the manually written code esti-
mates the absolute camera poses and the labeling error sequentially,
while following the GRACE programming model this functionality
is part of the Proceed logic, and hence is parallelized.

6.4.2 Image Restoration
To compare the effectiveness of the Prior policy in GRACE with

a state of the art asynchronous execution engine, we implemented
the image restoration application in both GRACE and GraphLab.
We use three different schedulers in GraphLab: the low-overhead
FIFO scheduler, the low-overhead splash scheduler, and the higher-
overhead prioritized scheduler.

Figure 11 examines the convergence rate of various execution
policies; the x-axis is the number of updates made (for GRACE this
is just the number of Proceed function calls) and the y-axis is the
KL-divergence between the current distribution of each vertex and
the ground truth distribution. Here both the priority scheduler of
GraphLab and the Prior execution policy of GRACE approximate
the classic residual BP algorithm. By comparing with the Jacobi
execution policy of GRACE, we can see that Prior yields much
faster convergence. For this application such faster convergence
indeed yields better performance than Jacobi, which takes about
6.9 hours on a single processor and about 14.5 minutes when using
32 processors.

Figures 9 and 10 compare the running time and the correspond-
ing speedup of GRACE’s Prior execution policy with the priority
and splash schedulers from GraphLab. As shown in Figure 9, al-
though GraphLab’s priority scheduler has the best performance on
a single processor, it does not speed up well. The recently in-
troduced ResidualSplash BP was designed specifically for better
parallel performance [13]. Implemented in the splash scheduler

http://graphlab.org/downloads/
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Figure 14: TPR Convergence

of GraphLab, this algorithm significantly outperforms the priority
scheduling of GraphLab on multiple processors. As shown in Fig-
ure 10, the Prior policy in GRACE can achieve speedup comparable
to ResidualSplash BP implemented in GraphLab. This illustrates
that by carefully adding asynchronous features into synchronous
execution, GRACE can benefit from both fast convergence due to
prioritized scheduling of vertices and the improved parallelism re-
sulting from the BSP model.

6.4.3 Topic-sensitive PageRank
To demonstrate the benefit of the simpler Eager execution policy,

we implemented the topic-sensitive PageRank (TPR) algorithm [14]
in GRACE. We also implemented this algorithm in GraphLab [21]
with both the FIFO scheduler and the priority scheduler for compar-
ison. Figure 14 shows the convergence results of both GRACE and
GraphLab. We plot on the y-axis the average L1 distance between
the converged graph and the snapshot with respect to the number of
vertex updates so far. All asynchronous implementations converge
faster than the synchronous implementation, and the high-overhead
priority of GraphLab and the Prior execution of GRACE converge
faster than the low-overhead FIFO scheduler of GraphLab or the
Eager policy of GRACE. In addition, GRACE and GraphLab con-
verge at similar rates with either low-overhead or high-overhead
scheduling methods.

Figures 12 and 13 show the running time and the correspond-
ing speedup of these asynchronous implementations on up to 16
worker threads. The Eager policy outperforms the Prior policy al-
though it has more update function calls. This is because Topic PR
is computationally light: although the Prior policy results in fewer
vertex updates, this benefit is outweighed by its high scheduling
overhead. We omit the result of the priority scheduler in GraphLab
since it does not benefit from multiple processors: on 32 worker
threads the running time (654.7 seconds) decreases by only less
than 7 percent compared to the running time of 1 thread (703.3
seconds).

6.4.4 Social Community Detection
To illustrate the effectiveness of the GaussSeidel execution pol-

icy, we use GRACE to implement a social community detection
(SCD) algorithm for large-scale networks [19, 29].

Figure 17 shows the convergence of the algorithm using the Ja-
cobi and GaussSeidel execution policies. On the y-axis we plot the
ratio of incorrect labeled vertices at the end of each iteration com-
pared with the snapshot upon convergence. As we can see, using
the Gauss-Seidel method we converge to a fixpoint after only 5 iter-
ations; otherwise convergence is much slower, requiring more than
100 iterations to reach a fixpoint.

Figure 15 and 16 illustrate the running time and the multicore
speedup compared with the sweep scheduler from GraphLab, which
is a low-overhead static scheduling method. We observe that by
following the BSP model for execution, GRACE achieves slightly
better performance.

6.5 Results for Speedup
As discussed in Section 6.2.2, for light applications, which do

little computation on each vertex, we expect limited scaling above
a certain number of worker threads due to the memory bandwidth
bottleneck. We have already observed this bottleneck for the SfM,
topic-sensitive PageRank, and social community detection applica-
tions in Section 6.4, and we now investigate this issue further.

We start with image restoration, an application with a high ratio
of computation to data access. Figure 18 shows the speedup for
this application up to 32 worker threads. We observe that both the
Eager and the Prior execution policies have nearly linear speedup.
In GraphLab, FIFO and splash scheduling achieve similar speedup,
but GraphLab’s priority scheduler hits a wall around 7 threads.

Our remaining three applications have a low ratio of compu-
tation to data access. We show results here from topic-sensitive
PageRank as one representative application; results from the other
two graph applications are similar. As shown in Figure 19, since
the computation for each fetched byte from the memory is very
light, the speedup slows down after 12 threads for both GraphLab
and GRACE as our execution becomes memory-bound: we cannot
supply enough data to the additional processors to achieve further
speedup. We illustrate this phenomenon by adding some (unnec-
essary) extra computation to the update function of TPR to create
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Figure 19: TPR Speedup32core
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Figure 20: TPRloaded Speedup32core

a special version that we call “Loaded Topic PR.” The speedup of
Loaded Topic PR, shown in Figure 20 is close to linear up to 32
threads. Since both Eager and Prior have similar speedup, we only
show the speedup for Eager in the figure. In Eager(1Exp) we have
added one extra exp function call for each plus operation when up-
dating the preference vector, and in Eager(2Exp) we added two ex-
tra exp function calls for each plus operation. We can observe that
although Loaded Topic PR with two exp function calls is about
6.75 times slower than the original Topic PR on a single core, it
only takes 1.6 times longer on 32 processors, further demonstrat-
ing that the memory bottleneck is inhibiting speedup.

7. RELATED WORK
Much of the existing work on iterative graph programming sys-

tems is based on the Bulk Synchronous Parallel (BSP) model which
uses global synchronization between iterations. Twister [11], PE-
GASUS [15], Pregel [23] and PrIter[38] build on MapReduce [10],
which is inspired by the BSP model. Naiad [24] is an iterative
incremental version of DryadLINQ [35] with one additional fix-
point operator, in which the stop criterion is checked at the end of
each tick. HaLoop [8] extends the Hadoop library [1] by adding
programming support for iterative computations and making the
task scheduler loop-aware. Piccolo [28] and Spark [37] also follow
an iterative computation pattern although with a higher-level pro-
gramming interface than MapReduce/DryadLINQ; they also keep
data in memory instead of writing it to disk. All these frameworks
provide only synchronous iterative execution for graph processing
(e.g., update all vertices in each tick) — except PrIter, which allows
selective execution. However, since PrIter is based on MapReduce,
it is forced to use an expensive shuffle operation at the end of each
tick, and it requires the application to be written in an incremental
form, which may not be suitable for all applications (such as a Be-
lief Propagation). In addition, because of the underlying MapRe-
duce framework, PrIter cannot support Gauss-Seidel update meth-
ods.

GraphLab [21, 22] was the first approach to use a general asyn-
chronous model for execution. In their execution model, computa-
tion is organized into tasks, with each task corresponding to the up-

date function of a scope of a vertex. The scope of a vertex includes
itself, its edges and its adjacent vertices. Different scheduling algo-
rithms are provided for ordering updates from tasks. GraphLab
forces programmers to think and code in an asynchronous way,
having to consider the low level issues of parallelism such as mem-
ory consistency and concurrency. For example, users have to choose
one from the pre-defined consistency models for executing their ap-
plications.

Galois [17], which is targeted at irregular computation in gen-
eral, is based on optimistic set iterations. Users are required to
provide commutativity semantics and undo operations between dif-
ferent function calls in order to eliminate data races when multiple
iterators access the same data item simultaneously. As a result, Ga-
lois also requires users to take care of low level concurrency issues
such as data sharing and deadlock avoidance.

Another category of parallel graph processing systems are graph
querying systems, also called graph databases. Such systems in-
clude HyperGraph DB [2], InfiniteGraph DB [3], Neo4j [4] and
Horton [30], just to name a few. Their primary goal is to pro-
vide a high level interface for processing queries against a graph.
Thus, many database techniques such as indexing and query opti-
mizations can be applied. In order to implement a graph process-
ing application over these systems, users can only interactively call
some system provided functions such as BFS/DFS traversals or Di-
jkstra’s algorithms. This restricts programmability and applicabil-
ity of these systems for iterative graph processing applications.

8. CONCLUSIONS
In this paper we have presented GRACE, a new parallel graph

processing framework. GRACE provides synchronous program-
ming with asynchronous execution while achieving near-linear par-
allel speedup for applications that are not memory-bound. In par-
ticular, GRACE can achieve a convergence rate that is compara-
ble to asynchronous execution while having a comparable or better
multi-core speedup compared to state-of-the-art asynchronous en-
gines and manually written code.

In future work, we would like to scale GRACE beyond a sin-
gle machine, and we would like to investigate how we can further



improve performance on today’s NUMA architectures.
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