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ABSTRACT
Trends in multicore processors and hardware virtualization pose se-
vere structural challenges to system software in general, and data-
bases in particular. On the one hand, machines are becoming in-
creasingly heterogeneous in terms of, i.e., cache hierarchies, pro-
cessor interconnect, instruction sets, etc., thereby making it increas-
ingly difficult to develop optimal software for all possible plat-
forms. On the other hand, virtualization forces databases to share
resources with other applications without the databases having any
knowledge about the run-time conditions.

As part of a long-term effort in our group to revisit the entire
software stack of the data center, in this paper we explore how
to enhance the interaction between databases and OS to allow the
database better cope with varying hardware characteristics and run-
time conditions. The goals is to integrate the database’s extensive
internal knowledge of its own resource requirements –including
cost models– into the system-wide and run-time view of the hard-
ware configuration and application mix available inside the OS.

1. INTRODUCTION
The last years have seen profound changes in the hardware avail-

able for running database systems.
On the hardware side, increasing core counts are at odds with

the synchronization-heavy approach to concurrency used in both
databases [29] and operating systems [9]. Furthermore, increas-
ing heterogeneity both within and between systems poses addi-
tional structural problems: optimal use of resources requires de-
tailed knowledge of the underlying hardware (memory affinities,
cache hierarchies, interconnect distances, CPU/- core/die layouts,
etc.), a problem aggravated by the increasing diversity of machines
in the marketplace. Such a trend towards more complex, and more
parallel computer architectures means that databases must work
harder to efficiently exploit the available hardware: placement of
data in memory, and assignment of tasks to cores, for example,
now have a much more profound effect on performance. Databases
perform their own memory allocation and thread scheduling, store
data on raw disk partitions, and implement complex strategies to
optimize and avoid I/O synchronization problems (e.g., in logging).
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Extensive research has been invested over more than three decades
to optimize such engine decisions. Unfortunately, and unless some-
thing changes, a great deal of additional complexity will need to be
added to database engines to cope with the increasing heterogeneity
within and across hardware architectures.

On the deployment side, in an age of virtualization and server
consolidation, databases can no longer assume they have a com-
plete physical machine to themselves. Databases are increasingly
deployed on hardware alongside other applications: in virtual ma-
chines, multi-tenant hosting scenarios, cloud platforms, etc. As
a result, the carefully constructed internal model of machine re-
sources a DBMS uses to plan execution has become highly depen-
dent on the runtime state of the whole machine, state which is un-
known to the database and is currently available only to the oper-
ating system (OS). In our experiments we observe that even small
OS-related tasks can impact the performance of an otherwise scal-
able database because the DBMS is unaware of these tasks. Hence,
good performance in the presence of other applications requires
the database to have an accurate picture of the runtime state of the
whole machine. We may have reached the limits of complexity
that database engines (already bloated and facing their own scaling
problems because of multi-core) can absorb while trying to opti-
mize for a given architecture and second-guessing the OS.

Database management systems and operating systems have a
history of conflict. Although 35 years ago Jim Gray pointed out
the significant gains that could be obtained by co-designing the
DBMS and the OS [19], not much has changed since then. Mod-
ern databases find many of the abstractions provided by an OS of
limited use. In parallel, the design of modern OSes pays little at-
tention to database workloads. In part this is because databases, as
the large enterprise application par excellence, usually run on ded-
icated machines and so the OS as a resource allocator and arbiter
between applications has little role to play.

However, this situation is now changing. As we discuss in Sec-
tion 2, the complexity and diversity of future hardware platforms
has led to calls to re-architect both databases [18, 12, 24] and op-
erating systems [9, 6]. In this paper we argue that it is necessary
to rethink not only the design of operating systems and database
management systems for future hardware, but also the interface be-
tween them. Only through a better interface and better interaction
between the two will databases be able to exploit the sophisticated
knowledge of the application with the mechanisms and ability of
the OS to manage shared resources and to act as a homogeneous
hardware driver across architectural differences.

Our contribution in this paper is to show the benefit of integrat-
ing recent ideas from both areas in a co-designed DBMS and OS,
including, crucially, a richer interface between the two. Such in-
tegration makes sense in a wide range of contexts but specially in



data processing appliances (which provide the context for the work
done in this paper [1]).

The resulting system, COD, combines a DB storage engine re-
designed to operate well on multi-core machines with an OS level
policy engine in charge of making suggestions and decisions re-
garding all deployment aspects of the DB. The interface between
them allows several types of interactions: from adding informa-
tion to the policy engine or registering for notifications regarding
changes in the system-state to declaring DB specific cost models
that the OS service then uses to answer queries about job placement
and system-state. Based on the recommendations from the OS pol-
icy engine, the DB can optimize queries and restructure itself so as
to be able to meet concrete SLAs of throughput and response time.
The OS itself uses the same facility to spatio-temporally schedule
multiple applications without interfering with the database, as it
now knows what the DB needs to meet its SLAs.

2. BACKGROUND
COD is motivated by the implications for both databases and op-

erating systems of trends in hardware and workloads, and combines
several recent ideas from the OS and DBMS communities.

A current school of thought in research is devoted to redesign-
ing system software for multicore architectures [6, 36, 26, 24], re-
ducing inter-core memory sharing and synchronization by careful
structuring of the whole system. COD follows this same line of
thinking.

2.1 Databases on Multicore
Conventional databases aim for thread concurrency but not par-

allelism, and exploit little information about the underlying hard-
ware. While a traditional DB can be made to scale when restricted
to trivial (read-only, non-indexed, single-table) workloads [10], han-
dling updates and more complex queries is much harder, even with
a fully in-memory system. Traditional designs do not perform well
at scale, due to algorithms optimized for single-CPU systems [22],
scalability limits on synchronization primitives [24], architectural
limitations [23], or load interaction among parallel queries [29]. In
all cases, the fix requires major changes to the system.

The challenge goes beyond scalability: modern hardware is com-
plex and diverse, and databases increasingly need to be aware of
cache architectures and system interconnects to be able to optimize
query processing [8]. A placement of data and operators on the
cores in a machine which works well on one hardware configura-
tion and workload, may perform poorly on another.

Column stores and shared scans are two recent techniques for
addressing these challenges in database design, in particular for
Online Analytical Processing (OLAP) and Operational Business
Intelligence (BI) workloads. COD uses both techniques.

Shared scans are a simple example of a multi-query optimization
technique [31]. The idea is to process a group of queries on the
same table simultaneously by executing a full table scan once for
all the queries in the group. Shared scans are used in systems like
RedBrick [16], IBM Blink [20] and Crescando [35] and have been
extensively studied [37, 34].

For instance, Crescando’s “ClockScan” algorithm, the one im-
plemented in COD, uses one scanning kernel thread pinned to each
core that continuously scans a horizontal partition of the complete
data set. Result tuples are aggregated from all scan threads. With
modern hardware, a single scan thread can answer thousands of re-
quests at a time and is CPU bound – the performance is limited by
the time taken to execute the queries on the subset of tuples cur-
rently in the processor cache, rather than the DRAM bandwidth
needed to move tuples in and out of the cache. Crescando provides

excellent scalability due to the low synchronization requirements
between scanning threads, and its high predictability: the perfor-
mance of a shared-scan is stable and easy to model.

Column stores are attractive for OLAP and Operational BI be-
cause these workloads process large numbers of tuples to compute
a given business metric. With a column store, if the query involves
only a few columns of a table, only a fraction of the data has to
be brought into the processor cache. As a result, column-oriented
DBMS implementations, including main memory ones, are now
common in industry and research, for instance MonetDB [8], C-
Store [33], Vertica, and SAP’s T-Rex accelerator.

The database part of COD builds on existing work [2] combin-
ing both techniques to define a deployment and work unit within
the database that (1) can be allocated to a single core, (2) oper-
ates without any interference with the other work units, and (3) has
fully predictable performance controllable with a few, well-defined
parameters. Thanks to the robust1 behavior of the database compo-
nent, COD can make a more precise allocation of resources without
the need for inefficient over-provisioning.

2.2 Opening up the OS
The OS problem that COD seeks to address can be cast as fol-

lows: given a database and OS, both designed to fully exploit mul-
ticore hardware, what is the best interface and best distribution of
state information between them?

Abstraction of resources and the associated encapsulation of sys-
tem state has long been regarded as a core operating system func-
tion, and this has tended to go hand-in-hand with the OS determin-
ing resource allocation policy. As a result, the abstractions (vir-
tual processors, uniform virtual memory, etc.) provided by con-
ventional OSes have often turned out to be a poor match for the
requirements of relational databases.

This is less true of the research OS work we survey below, which
tends to be wary of over-abstraction, but we are aware of surpris-
ingly little such work in the OS community that targets databases.
This is despite the fact that the detailed resource calculations that
databases perform would seem to make them an ideal test case for
better OS designs and abstractions.

The separation of mechanism and policy in an OS has a long his-
tory going back at least to the Hydra system [25]. One thread of OS
research has always sought to get better performance by exposing
more information to applications in a controlled way. For exam-
ple, Appel and Li [3] proposed a better interface to virtual memory
which still located much of the paging policy in the kernel, but
nevertheless allowed applications (specifically, garbage-collected
runtimes) to do a better job of managing their own memory.

Architecturally, one way to do this is to remove abstractions from
the kernel, and instead implement as much OS functionality (and
consequently, policy) as possible in user-space libraries linked into
the application – an approach used in Exokernel [15] and Neme-
sis [21]. This opens up the space for application-specific policies,
but by itself does not solve the problem of how each application
can map its requirements onto the available resources.

Alternatively, extensible OS kernels like SPIN [7] and VINO [32]
allowed applications to inject policy code in the OS, where both
the mechanism and state required to make decisions were located.
However, even on uniprocessor systems, the benefits of such ap-
proaches are debatable [14].

InfoKernel [4] adopted a different approach to overcoming ab-
straction barriers and the “semantic gap” between OS state and
application-level research management, by exposing considerable
1Robust in the sense of producing fully predictable execution times
regardless of the query and load
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information about the state of a conventional OS to applications.
Today, as with databases, there is considerable interest in remov-

ing scalability bottlenecks in OS designs (e.g. [10, 6, 36, 26, 17]),
much of which is relevant to database/OS co-design. A key area
to emerge is spatio-temporal scheduling: various ways of combin-
ing time-slicing on individual cores with longer-term assignment
of tasks to processors [26, 27]; COD provides such placement as
basic OS mechanism.

One example of this work, the Barrelfish OS, extends ideas from
Exokernel and InfoKernel by combining a small and relatively policy-
neutral kernel per core with a novel system facility, the “System
Knowledge Base” (SKB). The SKB is a complete constraint logic
programming (CLP) solver populated with rich hardware informa-
tion and OS state, and is used, for example, to construct optimal
communication patterns over the hardware [6] and configure hard-
ware devices [30].

Although prototyped on Linux, COD builds upon the Barrelfish
SKB, with the goal of deeper integration in the future [1].

3. SYSTEM OVERVIEW
The key feature of COD is the interface between the database and

OS so that the database can make optimal use of the available sys-
tem resources even in a dynamic, noisy environment where it shares
the machine with other applications/tasks. Figure 1 illustrates the
basic architecture. Such an interface cannot be easily constructed
with existing products. Thus, here we resort to two experimental
systems where we have access to the source code as building blocks
for COD. However, we show that the ideas behind COD and what
needs to be done at both sides of the interface to get the results can
be easily generalized to other type of systems.

Since database engines are complex systems with many compo-
nents, in this paper we focus on the storage engine, marked (1) in
Figure 1. Our storage engine is a main memory, column oriented,
shared scan engine designed for robustness and whose performance
can be precisely controlled with a few parameters. Its design and
characteristics are covered in Section 4.

The second building block is the OS Policy Engine, a service
provided by the operating system, and marked (2) in Figure 1. This
unifies the OS knowledge of the available hardware resources, such
as cores and NUMA-domains, with information provided by ap-
plications running atop. This enables the OS to better orchestrate
resource allocation both among running tasks and within a specific
application. We discuss it further in Section 5.

Between the two is a rich query-based interface that not only
allows for exchange of system-level information but also provides
the means to create application-specific stored procedures, able to
exploit both the constraint solver and optimizer as well as the over-
all knowledge available on the OS side. Section 6 describes the
interface in more detail.

4. THE DATABASE SIDE OF COD
To be able to interact in a reasonable manner with the OS, the

database side has to have a very precise idea of what it needs.
Briefly, the storage manager needs (1) a working unit (e.g. a thread)
that allows flexible and elastic use of resources as well as serving as
deployment unit, and (2) a cost function that predicts the impact of
resource allocation decisions on the overall performance (response
time and throughput). Below we present the storage manager of the
COD database, the Clock-Scan Column Store (CSCS) [2], which
we use to obtain these features.

4.1 CSCS Architecture
Traditional database storage managers use memory pages and

blocks as the exchange unit with the rest of the system. Their
function is to manage the buffer pool from which every transaction
thread obtains memory pages, while enforcing the mechanisms that
ensure transactional durability (flushing dirty pages to disk when
needed) and isolation (e.g., when enforcing snapshot isolation),
in addition to prefetching and replacing pages to minimize page
misses. The performance of the database depends heavily on the
storage manager, since it controls the memory allocation and re-
placement policy. Given their architecture, storage managers must
arbitrate among the competing needs of concurrent transactions.
This makes them a critical component, specially in multi-core ma-
chines where concurrent transactions become truly parallel threads
competing for resources. In multicores not only memory size and
paging, but also core affinity and core allocation play fundamental
roles in determining performance.

Unsurprisingly, these challenges are currently a hot topic in both
database research and industry. Inspired by work on tailored database
engines for the airline industry [35], CSCS has been built as a stor-
age manager with a SQL-based interface instead of purely memory
blocks and pages.

Derived from the flexibility and predictability requirements above,
along with workload requirements, CSCS’ architecture has the fol-
lowing characteristics:

1. Batching of requests: instead of assuming each transaction
runs on its own thread, CSCS batches transactions and pro-
cesses them as a group – an idea increasingly applied in sys-
tems like IBM Blink [28], SharedDB [18], DataPath [5], and
C-Join [11, 12].

2. Main memory storage: As with most commercial database
engines today, CSCS is a main memory storage manager.
Like SharedDB and DataPath, CSCS maps individual op-
erators to cores and well-defined memory regions, with no
interaction between them beyond the necessary data flow.

3. Shared scanning: Like IBM Blink or Crescando [35], CSCS
avoids static indexes on the data. Such systems do not pay the
penalty of many indexes during insert/update transactions.
By only scanning the data, they can offer an upper bound on
the latency of each transaction.

4. Column storage: In performing scan operations, column
storage offers better data locality than traditional row stor-
age.



While none of the above techniques is new, the novelty of CSCS is
that it encompasses all of them in achieving its goals: a fast, flexible
and predictable storage engine.
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Figure 2: CSCS architecture

Figure 2 shows the CSCS architecture. Requests enter the input
queue, where they are batched and indexed based on their predi-
cates, while awaiting processing. Scan threads perform full data
scans, each one over its own partition of the data. Data is parti-
tioned first into columns (CSCS is a column store), and then hori-
zontally in partitions, as needed for scalability (see below). After
each complete scan, the scan threads read a new batch of requests
and start a new data scan phase. As the scan progresses, results are
passed to the merging and aggregation thread, which pushes them
into the output queue. More details on the system can be found in
the corresponding tech report [2].

4.2 Deployment/Performance unit
For our purposes in COD, the key feature of CSCS is the work-

ing and deployment unit used - the scan thread. Scan threads have
hard-CPU affinity, and the memory for the data partition processed
by each scan thread is well-defined and determined in advance.
The column store approach ensures high data locality during the
scan, minimizing L1 data cache misses. Therefore, under all loads,
CSCS remains CPU bound, but also cache- and NUMA-sensitive.
Furthermore, all requests within a batch are processed in the same
amount of time, with the response time bound by the time it takes
to perform a single scan matching each tuple against the index of
requests and merge the results.

4.3 Properties of CSCS
The number of CSCS scan threads is determined by the amount

of data in the system, expected peak throughput, and target re-
sponse time bounds for processing a request. From these param-
eters, the number of scan threads needed can be calculated in ad-
vance, and therefore the performance of CSCS determined by de-

sign, making it both scalable and predictable.
The scalability of CSCS derives from the ability to linearly re-

duce response time by increasing the number of scan threads. For
a fixed amount of data, either the same number of requests can be
processed faster or more can be processed with the same response
time by reducing the amount of data assigned to each scan thread
and adding more scan threads. Since CSCS scans are synchroniza-
tion free, the number of scan threads in the system has negligible
effect on the overall behavior.

The predictability of CSCS lies in its ability to guarantee an
upper bound on the response time of any request that it receives.
While traditional systems are optimized for answering each request
as fast as possible by using data-indexes, this does not scale for di-
verse workloads with many update requests: increasing the number
of indexes in order to optimize any possible request degrades the
update performance. Alternatively, CSCS handles such workloads
in a predictable way by optimizing the most expensive operation:
performing a full data scan. A full data scan requires the entire data
to be read in order to fulfill each request. This latency is high, but
predictable, since we always know how long it takes to scan the
whole dataset. Extending this naïve processing model by batching
requests on the same full data scan yields an increased through-
put that more than compensates for the increased latency of each
individual query [35, 5].

4.4 Embedding into COD
CSCS provides a working unit that is easily deployable and scal-

able. It remains to provide a cost function that can be used for al-
locating resources such that the database can meet its SLAs. From
now on we will assume, without loss of generality, that the system’s
SLA is an upper bound on the response time of all requests.

In this paper, we focus on a workload comprising both update
and read-only queries. It is inspired from an operational business
intelligence workload from the travel industry that contains a high
number of both queries and updates [35]. We use this workload for
our experiments. All requests (i.e., queries or updates) are point-
requests matching few records. The dataset is formed by a single
table with 48 attributes.

Table 1: Throughput (queries/sec): Operational BI Workload,
Vary #Cores, Vary Dataset Size (1core/1GB)

Number of cores/Data size
1 8 16 32 40
Throughput (queries/sec)

CSCS 870 860 850 843 843

Table 1 shows the results of the benchmark when run on a 48-
core AMD MagnyCours with 128GB RAM. We varied the number
of cores used from 1 to 40 and varied the database size from 1
GB to 40 GB, so that each new scan thread adds 1GB of data in
a new partition. The workload uses batches of 2048 queries and
256 updates. As the results show, CSCS scales with the data size,
maintaining a steady throughput.

From this data we derive via polynomial fitting a cost function
describing the response time of CSCS as a function of the number
of scan threads (cores), tuples per thread (memory), and requests
per thread (batch size). The model we use is:

RT [ms] = c · #tuples

#cores
· {a ·#requests+ b}

For the AMD MagnyCours machine, these constants are:
a = 0.85, b = 106.37 and c = 1/3750000.



Constants a and b are machine-dependent, while c is used to nor-
malize the total number of tuples used in the experiment.

Using this function, CSCS can delegate the deployment of scan
threads across cores and the corresponding allocation of memory to
the OS. Given the cost function, the OS has a precise idea of what
the application needs and will try to find the best possible match to
the characteristics of the underlying hardware, current system state,
and resource utilization.

Last but not least, CSCS has been designed to be both proac-
tive and reactive: in addition to stating its requirements, it can also
receive notifications from the OS indicating changes to available
resources. Before starting a new scan phase, CSCS checks whether
it needs to reconfigure its deployment. If so, it reorganizes the data
partitions, starts or stops new scan threads as needed, or reallocates
scan threads and their associated data across cores.

5. THE OS SIDE OF COD
COD extends a traditional OS with new functionality aimed at

widening the interface between it and applications, in particular
CSCS. One critical challenge is the distribution of knowledge in
the system: the OS holds information about system resource state
and hardware performance trade-offs, whereas CSCS has detailed
knowledge about its workload, via application-specific analysis and
the inherent predictability of its shared-scan architecture.

For the OS to make optimal resource allocation decisions, and
for CSCS to make optimal use of the resources available, both need
access to all of this knowledge. However, centralizing it in the
OS requires the OS to take “on trust” information from CSCS and
perform CSCS’s optimization for it. On the other hand, centralizing
it in CSCS prevents the OS from making global resource decisions.

We resolve this tension as follows: the OS maintains detailed in-
formation about hardware (cores, memory hierarchy, performance
trade-offs, etc.) and its own state (resource allocations, load, etc.)
in a rich representational framework that enables it to reason about
this information online to make medium-term (i.e. on the order of a
few seconds) policy decisions, such as spatial placement of OS and
application tasks on cores.

However, the OS also exposes this functionality to CSCS. It can
perform complex application-specific calculations on this state on
behalf of CSCS and other applications, allowing them to optimize
usage of their own resources. Coupled with a facility for explic-
itly notifying the database when the system resource allocation
changes, it provides CSCS with the benefits of being able to rea-
son about the complete system state, without the cost of replicating
and maintaining that state in the application. Finally, CSCS can
submit hints to the OS about utility, which are stored alongside
system state. In COD, we refer to this part of the system as the
Policy Engine and view it as part of the operating system.

5.1 Architecture
The new OS functionality is structured as shown in Figure 3, and

consists of two additional facilities: the Resource Manager (RM)
and System Knowledge Base (SKB).

We borrow the concept of the SKB from the Barrelfish OS. It
stores free-form predicates in a Constraint Logic Programming (CLP)
engine, and permits reasoning over this information by means of
logical queries extended with facilities for constraint solving and
optimization. The information in the SKB falls into two categories.

First, the SKB is populated with information from the OS about
the hardware obtained at startup from resource discovery and on-
line micro-benchmarks (such as the hardware topology, memory
hierarchy, and core to memory affinities), and system state (such as
the set of running tasks, and their spatial assignments to cores). It
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Figure 3: New OS functionality

can also store other named constraints and inference rules. We refer
to these collectively as system-level facts, and CSCS can query the
SKB for information about current resource allocations, but more
importantly can submit complex queries to allow it to optimize ex-
ecution based on the resources it has.

Second, CSCS also submits “hints” for resource allocation to
the SKB in the form of additional constraints, which the OS may
take into account when allocating resources: this is not intended to
override OS policies (though the OS might choose to), but rather
provides additional, application-specific information to the OS to
help it select the best allocation from a set of policy-compliant al-
ternatives. We refer to these as application-level facts.

Application-level facts are part of application’s domain knowl-
edge which might not be understood by the OS, but rather can be
used by application-specific stored procedures (explained later) to
compute desired system-level properties. Section 7 shows several
examples where these facts are used, and explains how this infor-
mation is being utilized in different scenarios.

The SKB is purely “reactive”: it is essentially a repository and
calculation engine for knowledge about COD as a whole. The RM,
on the other hand, implements the results of resource allocation al-
gorithms executed in the SKB. On every change of the environment
(new task arrives, task terminates, task’s properties change), the re-
source manager triggers a re-computation of the global allocation.
After the re-computation, the RM notifies the CSCS (and other af-
fected applications) about the new resource allocation decisions.

Our new OS facilities are not intended to be on the critical path
either in the OS or CSCS – in other words, they do not delay reg-
ular operations in either. Rather, they provide a way to calculate
medium-term policies out-of-band, such as thread placement or
data partitioning based on global system knowledge which can then
be implemented inside CSCS or the rest of the OS.

5.2 Implementation
The OS portion of COD has been built on version 2.6.32 of the

Linux kernel for 64-bit x86 machines, though there is little that
would prevent a port to an OS with more explicit allocation of re-
sources such as Barrelfish. The RM implements spatial scheduling
by means of thread pinning, populates the SKB, and triggers peri-
odic recalculation of resource allocations. It also mediates between
the SKB and CSCS, and informs CSCS of changes in resource al-
location by means of upcalls. The SKB is built using the ECLiPSe

CLP engine, running as a system daemon. ECLiPSe is expressive,
convenient and easy to run, but complex queries can be slow. Using
a modern Satisfiability Modulo Theories (SMT) solver like Z3[13]
is a topic for future work.



Table 2: Message types and instances
Message Type Example
Core functions rsmgr_client_connect()
Add facts add_fact(var_name(value))
Add CSCS-specific function add_query("f_name(f_vars):-f_content")
(De-)Register for notification rsmgr_register_fn(event, filter, handler)
Query system-specific info execute_query("get_nr_cores()")
Query CSCS-specific function execute_query("f_name(f_param,f_result)")

5.3 Discussion
Even though the computation of a global allocation plan is peri-

odically done off-fast path, it is important to do that in a reasonable
time. The current implementation does not restrict the ECLiPSe

solver in any ways when finding valid allocations. This complete
freedom implements the most general allocation policy and allows
the solver to consider every possible solution. This comes at the
risk of high execution times. It is infeasible to predict execution
times, as this depends heavily on the requirements imposed on the
system by the CSCS and possibly other applications.

For future work, we envision to restrict the solver’s search space
in a way that it still finds allocation solutions close to the fully flex-
ible implementation. As an example, if CSCS needs four cores, the
current implementation might chose them from a full permutation
of all available cores. This is not necessary, as CSCS is not affected
by the order it gets the four cores.

6. INTERFACE
In this section we present the third main component of COD that

joins the CSCS and the OS Policy engine: the interface between
them. Examples of how it is used are provided in Section 7. Here
we provide an overview of the current scope covered by the in-
terface, followed by a brief description of the different classes of
supported functions and their intended use, as well as an outline of
the planned methods for evaluation.

6.1 Scope
As described earlier, currently the interface between the database

and the OS is only covering the communication between the DB
storage engine (CSCS) and the OS policy engine. We are thus pro-
viding support for actions such as: retrieving information about the
underlying architecture and resources, pushing down application-
specific properties and cost functions in a way that the OS policy
engine can reason about them, as well as some basic functionality
that allows for information flow also during runtime.

This list is neither exhaustive nor exclusive, but rather is intended
to illustrate the possibilities currently offered by the interface and
the type of interactions that can be implemented in a co-design
architecture. Later, it can be further enhanced with support for
actions involving database query optimization and scheduling, as
well as more advanced features needed for control and coordina-
tion with other modules of the operating system. These extensions
are left for future work.

6.2 Semantics
For better overview of the current possibilities, we have grouped

the supported messages into several categories and summarized
them in Table 2. COD’s interface currently supports the following
types of messages:

Core functions provide support for: (1) Initializing communica-
tion between the CSCS and the policy engine, (2) registering CSCS

as a running task, informing the policy engine that a new task has
arrived, and setting up state so the RM can forward notifications to
it, and (3) requesting a resource allocation suggestion from the RM
that will invoke the execution of the global allocation code in the
SKB, and eventually forward the decision to the affected applica-
tions.

Add facts calls enable CSCS to load information, as facts, for its
own properties into the SKB. As described earlier, the policy en-
gine distinguishes between system-level properties and application-
specific facts. The interface allows for both of these to be modified
and/or removed at any time during the execution of the application.

Add application-specific function calls enable CSCS to add stored
procedures to the SKB that are specific to its own needs, such as the
deployment cost stored procedure (presented in Listing 3). These
procedures can use all CSCS-related facts and system-level proper-
ties belonging to the application.

Subscribe for events calls allow CSCS to be informed about
changes occurring in the system, and filter unrelated events. RM
by default will notify all applications via upcalls when the global
system optimizer of the SKB changes the resources allocated to
a particular task. This enables CSCS and other applications to
adapt their execution plans and internal resource management ac-
cordingly and to react to the changes in the system that affect the
resources they operate with.

Query system-specific information calls enable CSCS to issue
queries that retrieve system-specific information.

Query application-specific functions calls allow CSCS to also
query its own stored procedures, previously added to the SKB.

As we mentioned before, this list is neither exhaustive nor ex-
clusive, but rather intended to illustrate the possibilities offered by
the currently supported interface and is subject to be altered and
extended in the future.

6.3 Implementation
The implementation of the interface is heavily dependent on the

OS policy engine, its support and the syntax it understands. Since
the OS policy engine is implemented as a user-space library, written
in Prolog and uses the ECLiPSe CLP language, most of the func-
tion calls of the interface resemble the Prolog format. Exceptions
are the core-functions that enable the CSCS engine to bind to the
RM and the SKB and register itself as an application entering the
system. All other functions contain a string of Prolog command
as argument, containing both the input parameters for the function
and pointers for the output variables. Parsing the response obtained
from the policy engine on the client side is implemented in a similar
fashion. More detailed explanation will be provided in Section 7,
accompanied with an example.

6.4 Evaluation
In order to evaluate the proposed and implemented interface we

intend to investigate it from two different aspects:



1. Applicability We are interested in evaluating the applicabil-
ity of the proposed functionality, i.e. how it can be used, in which
concrete scenarios and use-cases, the benefits of utilizing it, as well
as the potential for expanding it. For that purpose, in the next sec-
tion we present several scenarios, and for each we discuss in more
details how the interface is used. Furthermore, we will present pos-
sible options for extending the usability by giving other examples
where applicable.

2. Overhead A different aspect when evaluating the interface
is the overhead that it introduces to the system. Thus, we plan to
investigate the cost for making each call that affects the latency; the
size of each message and the frequency of their occurrence, both of
which affect the extra load imposed on the system bus. This evalu-
ation will be presented after each use-case, as part of the discussion
for the overall results obtained from that experiment.

7. EXPERIMENTS
This section presents in more details the interactions between the

CSCS engine and the OS policy engine through use-cases, present-
ing both the advantages of this approach supported by experiments
and discussion of the overhead imposed by the communication.
Furthermore we conclude each scenario with ideas for extensions
and possible future work directions.

More concretely, in this section we show that COD can deploy
efficiently on a variety of different machine configurations without
prior knowledge of hardware, and react to additional loads on the
system to preserve performance.

7.1 Experimental Setup
The dataset and workload used in these experiments is the one

used by Unterbrunner et al. [35]. It is generated from the traces
of the Amadeus on-line flight booking system. It is characterized
by a large amount of concurrent point-queries, frequent peak loads,
many updates and strong latency requirements.

We used four different hardware platforms for diversity:

1. AMD Shanghai: Supermicro H8QM3-2 board with 4 quad-
core 2.5GHz AMD Opteron 8380 processors, and 16GB RAM,
arranged as 4GB per NUMA node.

2. AMD Barcelona: TyanThunder S4985 board with M4985
daughtercard and 8 quad-core 2GHz AMD Opteron 8350
processors and 16GB RAM across 8 NUMA nodes.

3. Intel Nehalem-EX: Supermicro X8Q86 board with 4 8-core
1.87GHz Intel Xeon L7555 processors and 128GB RAM with
a NUMA node size of 32GB. Hyperthreading is disabled.

4. AMD MagnyCours: Dell 06JC9T board with 4 2.2GHz AMD
Opteron 6174 processors and 128GB RAMwith a NUMA
node size of 16GB. Each processor has two 6-core dies.

7.2 Deployment on different machines
Our first scenario shows how COD can adapt the deployment of

CSCS to different hardware platforms using the OS policy engine,
satisfying the performance SLA requirements.

Use-case description
In this use-case the main goal for CSCS is to determine the most
suitable deployment strategy on a given machine so that it meets its
response time SLA. In order to do that CSCS needs to derive: (a)
the number of cores to run scan threads on, and (b) the correct size
of its data partitions.

One can easily see when knowing the underlying architecture
and having a cost function that characterizes the DB scan operation,
like the one presented in section 4.4, this task is trivially solved. In
that regard with this scenario we confirm the importance of deriving
such DB cost models and matching them to the available hardware
resources.

Implementation details
We now describe the interaction between the CSCS and the OS pol-
icy engine, and how the information exchange comes into place. As
given in Listing 1, at startup CSCS binds to the OS policy engine:
by registering to both the RM and the SKB (lines 1-4); and then
registers its system-level properties with the SKB, namely that it
is a CPU-bound task that could use all cores on the machine and
highly cache- and NUMA-sensitive (lines 6-9).

Listing 1: Using the interface
1 rsmgr_client_connect(use_skb);
2 rsmgr_register_function();
3

4 skb_client_connect();
5

6 skb_system_fact(maxCores, MAX_CORES);
7 skb_system_fact(bound, CPU);
8 skb_system_fact(sensitive, cache);
9 skb_system_fact(sensitive, NUMA);

10

11 skb_add_fact("db_ntuple(3750000).");
12 skb_add_fact("db_tsize(315).");
13 skb_add_fact("db_nquery(2048).");
14 skb_add_fact("db_nupdate(256).");
15 skb_add_fact("db_rtime(3000).");
16

17 skb_add_fn("db_cost_fn(X,Y,Z,NrCores):-NrCores is
(X*((0.47*Y)+265.29))/(3750000*Z)");

18

19 skb_add_fn(...query: see Listing 3...);
20 skb_execute_query(...query...);

It then populates the SKB with its application-specific facts such
as: the size of its dataset in tuples, size of a tuple, the batch size
of requests it needs to handle, the response time SLA, and the cost
function as derived in Section 4.4 (lines 11-17). Finally, it registers
the stored procedure (line 19) to derive the results needed: number
of partitions, and the corresponding size of each partition (more
details are provided in Listing 3).

Listing 2 contains Prolog code that retrieves system-level facts:
list of all available cores, and list of all NUMA nodes’ sizes. Both
of these functions are used in the stored procedure in Listing 3.

Listing 2: Example for retrieving system-level facts
1 get_list_free_cpus(avail_cores):-findall(_,

cpu_affinity(_,_,_),avail_cores).
2 get_list_numa_sizes(numa_sizes):-findall(N,

memory_affinity(_, N, _), numa_sizes).

The CSCS’ initial deployment stored procedure (see Listing 3)
operates by first retrieving the CSCS-specific facts (lines 4-6), and
then the necessary system-level facts using the example functions
given in Listing 2 (lines 8-10). It continues the execution by cal-
culating the total size of the dataset (line 12), and computing the
minimum number of cores, as requested by the cost function, pro-
vided during the initialization phase (line 14). Since the CSCS is
NUMA-sensitive, the dataset needs to be partitioned and distributed
across the available NUMA nodes, and at least one core per NUMA
node should be used - to guarantee data access locality. Conse-
quently, each partition size must not exceed the size of a NUMA



Table 3: Derived deployments for different SLAs and hardware platforms
Hardware SLA Num. cores by Num. cores by Total Size of Measured mean
platform requested cost function NUMA node size Num. cores partition response time

Intel Nehalem EX 2s 8 1 8 1GB 1.66s
4s 4 1 4 2GB 3.27s
8s 2 1 2 4GB 6.54s

AMD Barcelona 2s 8 5 8 1GB 2.18s2

4s 4 5 5 1.6GB 3.55s
8s 2 5 5 1.6GB 3.55s

AMD Shanghai 2s 8 3 8 1GB 1.68s
4s 4 3 4 2GB 3.25s
8s 2 3 3 2.67GB 4.33s

AMD MagnyCours 2s 8 1 8 1GB 1.87s
4s 4 1 4 2GB 3.71s
8s 2 1 2 4GB 7.37s

node. Thus, the stored procedure computes the minimum number
of cores so that each partition fits in the smallest of all NUMA
nodes (lines 16-17). The final number of cores/partitions needed
is the maximum of both requirements (line 18). Once determined,
the final number of cores is used to calculate the exact size of the
partitions to be used (line 20). Finally, the stored procedure checks
whether the total size of the dataset fits into main memory, and if
the total number of cores required is in fact available in the ma-
chine. If either of these is not true, the query fails, notifying the
CSCS that this machine cannot meet the desired constraints (lines
22-24) CSCS then operates on the obtained results and partitions
its data accordingly.

Listing 3: CSCS’ Initial deployment stored procedure
1 %status, nr_cores, part_size are output values.
2 dbos_cost_function(status, nr_cores, part_size):-
3

4 db_tsize(tsize), db_ntuple(ntuple).
5 db_nquery(nquery), db_nupdate(nupdate),
6 db_rtime(rtime),
7

8 get_free_memory(avail_memory),
9 get_list_free_cpus(avail_cores),

10 get_list_numa_sizes(numa_sizes),
11

12 memory is (ntuple*tsize),
13

14 db_cost_fn(ntuple,(nquery+nupdate),rtime,
sla_nr_cores),

15

16 min(numa_sizes, min_numa_size),
17 numa_nr_cores is (memory/min_numa_size),
18 max([numa_nr_cores, sla_nr_cores], nr_cores),
19

20 part_size is (memory/nr_cores),
21

22 ( nr_cores > length(avail_cores) -> status = 1;
23 memory > avail_memory -> status = 2;
24 status = 0;
25 ).

During runtime, some of the application-specific properties may
change: for example, the size of the batch of requests that needs
to be handled. In that case CSCS simply modifies these values in
the OS policy engine, and triggers a re-computation of the stored
procedure.

The outcome of an application-specific stored procedure results
in new CSCS’ system-level properties that are added in the SKB.

By design, whenever some system-specific properties change or are
added/removed, the RM calls the global allocation function in the
policy engine to compute concrete core IDs to be allocated to all
registered applications.

In this particular use-case, the CSCS’ stored procedure com-
putes the minimum requirement of core count and the size of a
partition, both of which are added as system-level properties in the
SKB. After the global allocation plan completes its computation,
the RM sends CSCS an upcall containing the concrete core IDs to
use. Based on that, the CSCS can pin its scan threads and allocate
memory from the corresponding NUMA nodes.

Experiment evaluation
We deployed COD on all machines, described in 7.1, and now
present the resulting allocation of scan threads to cores, as sug-
gested by the OS policy engine.

The CSCS engine pushed to the SKB the following application-
specific facts: 30 · 106 tuples, each of size 315B (resulting in a
total dataset size of 8GB) and a batch size of requests containing
2048 queries and 512 updates. We varied the SLA response time
constraint between 2 and 8 seconds.

Table 3 shows the results of the calculation performed at the SKB
and illustrates how the suggested configuration varies considerably
for different SLA requests and hardware platforms. The final col-
umn of the table shows the results of the actual runs with the pro-
posed configuration. The experiment values confirm that in every
case, but one, COD does meet the SLA as predicted. 2

In theory, this calculation could be performed entirely inside the
database based on information requested by CSCS from the OS,
regarding details about the underlying architecture and available
resources. However, submitting a query to the OS policy engine
means that CSCS does not need to understand each machine’s hard-
ware configuration. More importantly, since CSCS has now dele-
gated useful knowledge to the OS about its own resource require-
ments (including how it can trade-off cores for memory), the OS is
in position to do more intelligent resource reallocation, and auto-
matically compute CSCS’ deployment in response.

Moreover, in the next scenarios we will see cases where this de-
ployment decision is heavily dependent on system runtime state

2The case where the SLA is not met is due to the use of the same
cost function for all machines rather than tailoring it to each one
of them. Some of the constants depend on CPU clock frequencies
that vary from machine to machine and we have not adjusted the
formula accordingly.



and the resource utilization of other applications present in the sys-
tem. In this case, the OS is the only location where all this in-
formation is available and it makes little sense to pass it on to the
database.

Communication and computation overhead
As presented in the implementation details of this scenario, the
communication overhead that COD introduces can be calculated as
the number of messages that had to be sent in order to add the re-
quired facts to the SKB and trigger computation of the application
stored-procedure and global allocation plan. In this particular sce-
nario (see Listing 1), the initialization phase requires three function
calls: connection to the SKB, and registration to the RM. It then
needs four calls to set up the system-level properties, and seven
calls to place the application-specific facts including the cost func-
tion and the stored procedure (note that we calculate one function
call per fact). Lastly, we need one call that triggers the computation
of the stored-procedure, which waits upon the callback containing
the results of the calculation, and the final call belongs to the upcall
notification from the global allocation plan.

In total that means that we have introduced sixteen function calls
for the initialization phase at deployment time, out of which four
are fixed and the rest depend on our application properties. As we
can see, one immediate candidate for optimization in the interface
is to decrease the communication overhead by grouping the redun-
dant calls of adding application properties to the SKB into a single
function call. This optimization is left for future work.

The computation overhead for this phase solely depends on the
time it takes for the SKB to calculate the output of the CSCS-stored
procedure. We measured this overhead during our last experiment
to be 0.18 milliseconds (see also Table 4) Since it is invoked quite
infrequently, i.e. only at deployment time and when one of the
application-specific facts have altered, we can conclude that this
overhead is not affecting the overall performance of the system.

Conclusion and possibilities for extensions
The results confirmed that even having a rather-simplistic cost model
for the scan operation can result in a good deployment when know-
ing the underlying architecture. Ideally, the cost function should
also take into consideration other processor properties (like CPU
frequency) and cache layout so that we get more accurate results
when deploying on different machines.

This scenario can easily be extended to other DBMS operations,
apart from the full table scan, as long as we develop the correspond-
ing cost function that best describes the operation’s dependencies
on the available system resources.

7.3 Deployment in a noisy system
In the second scenario we continue the discussion of the impact

of information exchange between CSCS and the OS policy engine
in COD, especially when deploying in a noisy system.

Use-case description
In this use-case we show that just knowing the architecture is not
enough to do smart deployment on a machine that is being shared
with other tasks. One also has to take into account the current state
of the system and map accordingly, otherwise the deployment de-
cision can result in a significant drop in performance.

Implementation details
In this subsection we describe the assignment of tasks (such as scan
threads) to cores, in particular in the presence of other tasks sharing
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Figure 4: Matrix showing core to task allocation, including
NUMA, cache and core affinity.

the machine with the datastore. The concrete allocation of cores
and NUMA nodes is performed by the constraint satisfaction solver
in the SKB.

The basis for allocation is a matrix of free variables annotated
with constraints derived from system-level and application-specific
facts. The structure of the matrix is itself based on the particular
hardware configuration at hand. Figure 4 shows an example, sim-
ilar to the one we used for evaluation in this experiment, where
the number of tasks assigned to each core is constrained to be zero
or one3. This set of policy constraints is essentially equivalent to
the space-time partitioning scheme proposed for the Tessellation
OS [26], though COD’s technique is rather more general: it sub-
sumes shared caches and NUMA nodes, as well as sharing cores
between appropriate tasks. Given that the matrix contains initially
unconstrained free variables, we are not restricted to spatial place-
ment of tasks. With time the solver obtains concrete values for
these variables to indicate which core on which NUMA-node is
allocated to which task. To derive a concrete core allocation, addi-
tional requirements on the number of necessary cores and memory
consumption may be registered by the CSCS or other applications.
The most common constraints used in the SKB for task assignment
are the following:

MaxCores defines how many cores the application supports at
most. Not all applications support an arbitrary number of cores in
every phase. Some phases might be single-threaded or applications
might have scaling limitations making it useful to tell the OS the
maximum supported number of cores for a given phase. This con-
straint is implemented as the sum of the task’s row has to be smaller
or equal to MaxCores. In Figure 4, tasks 1 and 2 set MaxCores to
1 and task 3 to 2. Task 4 does not have any restrictions.

MinCores defines the minimum number of cores to be allocated
to an application. It is implemented as a row sum constraint, but
also includes an admission control check. To avoid infeasible allo-
cations, the policy code checks in advance whether the sum of all
MinCore values is at most the number of available cores.

WorkingSetSize defines the working set size per core. This prop-
erty is important for NUMA-aware core allocation to tasks. If two
cores share a 4GB NUMA node and the application processes a
working set size of 4GB per thread, cores must be allocated on dif-
ferent NUMA nodes to accommodate the data sets.

CSCS declares MinCores to be the value computed by the previ-
ous experiment with the application-specific stored procedure, and
WorkingSetSize to be the corresponding partition size. With this
information, the OS policy engine can allocate concrete core IDs,
which are NUMA-aware and meet SLA requirements.
3Please note that Figure 4 is a sample illustration of a machine
with eight cores, used for simplicity, and does not match the actual
machine used in the experiment.
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Figure 5: CSCS performance when deployed in a noisy system

Experiment evaluation
For this experiment we used the AMD MagnyCours machine, and
we tested the deployment of CSCS engine with dataset size of
53GB, consisting of 180 · 106 tuples of size 315B each. The num-
ber of requests processed in a batch was varied between 512 queries
and 128 updates to 4096 queries and 1024 updates. Prior to start-
ing the execution of CSCS there was one other CPU-intensive task
already in the system, pinned to execute on core 0.

Figure 5 presents the obtained results from the described experi-
ment. We see the throughput of CSCS running on forty-eight cores
both when spatially partitioned (CSCS is the only application in the
system using these forty-eight cores) and when running in a noisy
environment (in this case sharing one of the cores with a stres-
sor program that is CPU-intensive). The results show that running
CSCS collocating one of its scan threads with the other compute
intensive task in the system can significantly impact performance,
degrading the total throughput by almost fifty percent. The out-
come is logical, since one slow scan thread in CSCS can delay the
whole system, as all scan threads need to finish processing the same
batch of requests before they start the next one.

This situation can be avoided only if CSCS is aware of the other
tasks when deploying its threads. COD is superior than a naïve-
CSCS engine because it relies on the OS policy engine which com-
putes an allocation of forty-seven cores for CSCS, avoiding the al-
ready occupied core. This results in a performance almost as good
as the original deployment in an isolated system when utilizing all
forty-eight cores.

Communication and computation overhead
Communication overhead boils down to one function call that trig-
gers the deployment and a notification response given by the OS
policy engine that comes as a result from the re-calculation of the
global allocation plan of the SKB.

The main overhead is the computation time in the SKB when
evaluating the global allocation of resources to all registered appli-
cations. Table 4 summarizes the measured time of the computation
of the global allocation plan for this experiment when having only
CSCS, and when we have the CSCS plus one other application in
the system.

As we can see from the results, the computation cost is quite
small (in the range of milliseconds) for this setup. It can, however,
grow higher as more applications enter the system, each with a spe-
cific set of system-level and application-specific facts that increase
the complexity of the problem that the optimizer needs to solve.

Conclusion and possibilities for extensions
Even though in this use-case we have utilized a CPU-intensive task
to create the noise in the system, that is not the only scenario where
we need to be careful. Similar effects can be noticed when having
a task that pollutes the caches, and thus thrashes the performance
of the highly cache optimized scan threads of CSCS.

As described earlier, the decision for proper deployment of an
application in a noisy system requires detailed information about
the underlying hardware, the OS and system state, and CSCS inter-
nal properties, which COD collocates in the SKB. In a traditional
database plus operating system deployment, there is no part of the
system which has access to all this information.

7.4 Adaptability to changes
It is not only necessary that the CSCS engine is aware of the other

running applications and tasks at deployment time but also during
runtime. It is essential that the database can adapt to the dynamic
system state so that it is not severely affected by the constantly
changing noise in the machine.

Use-case description
In this experiment we show how COD can guarantee performance
and maintain predictable behavior even in such a dynamic noisy en-
vironment. We will compare it with an execution of a naïve CSCS
working stand alone and unaware of the changes undergoing in the
system.

Implementation details
Whenever a new task enters the system it triggers a re-computation
of the global allocation plan of resources. This can very often result
in a decision to remove one of the cores previously allocated to
CSCS, as long as the CSCS can still meet its SLA constraints i.e.
satisfying the MinCores system-level property. In this case, the
CSCS has to decide which scan threads should take over processing
the affected portion of tuples.

In order to do that CSCS invokes the second application-specific
stored procedure, registered at the SKB. This function (whose code
with omit due to lack of space) derives to which cores the CSCS
should move the affected tuples to, so that the new imbalance of
load is evenly distributed to the other scan threads. It checks for
memory availability on the corresponding NUMA nodes, and at
the same time tries to maximize the number of sibling threads that
will share the new load. Eventually, it responds with a list of core
IDs to which CSCS will have to move the tuples to, as well as
the corresponding number of tuples to be delegated to each of the
cores. As soon as the data is re-distributed, CSCS kills the scanning
thread on the core it just lost, and resumes the scan operation on the
next batch of requests.

Experiment evaluation
This experiment was also conducted on the AMD MagnyCours ma-
chine, using a dataset of size 53GB (180 · 106 tuples of size 315B
each), and a batch size consisting of 2048 queries and 512 updates.
Initially CSCS is the only application running in the system, utiliz-
ing all forty-eight cores. The SLA response time was set to be 3
seconds. The overall duration of the experiment is eighteen min-
utes and at about every four-five minutes we start another compute-
intensive task. In the naïve run, i.e. when the experiment was ex-
ecuted without the OS policy engine, the external CPU intensive
tasks were always scheduled at core #0. At the same time the CSCS
is unaware of their entrance and thus does not react. Consequently,
its performance gets degraded by almost fifty percent. In COD,
the new incoming tasks are placed on separate cores, as suggested
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Table 4: Policy engine computation overhead
Global allocation plan time (msec)

only CSCS in the system 5.64
CSCS + 1 application in the system 13.28

CSCS-specific functions time (msec)
initial deployment function 0.18
tuple re-distribution function 0.27

by the policy engine, and CSCS is notified every time it needs to
release a core.

The results of this experiment are presented in Figure 6. It shows
how the response time of CSCS, measured in seconds, changes in
the course of the experiment. On one side, we can see the CSCS’
naïve-run performance and how its response time increases dramat-
ically with each new task entering the system. On the other side,
we can see how the performance of CSCS integrated in COD re-
mains steady even in the presence of other applications. The peaks
that can be observed in COD are as a result of CSCS re-distributing
the tuples to the other cores, still owned by the CSCS.

Communication and computation overhead
Communication overhead is the upcall from the RM that there was
a change in the global allocation of resources, and the correspond-
ing reaction from the CSCS engine invoking the tuple redistribution
stored procedure, resulting in a total of two function calls.

Computation overhead on the SKB-side is the re-computation of
the global allocation plan and consequently the cost of calculat-
ing the redistribution of tuples to a specific subset of CSCS-owned
cores i.e. the second stored procedure of CSCS. Table 4 summa-
rizes the measured values for this experiment. As we can see, the
computation overhead for the stored procedure is almost negligi-
ble especially when compared to the time needed to do the actual
re-distribution of tuples, which takes around 1.2 seconds.

Conclusion and possibilities for extensions
The possibility to easily adapt the execution of the DB storage en-
gine as a result of receiving an upcall signal from the OS is of criti-
cal importance when sharing the machine with other tasks executed
in parallel. This makes the CSCS flexible and adaptable to dynamic
system state, that can maintain stable and predictable response time
within the SLA agreement.

Being able to adapt as a result of receiving a signal from the OS,

can easily be extended for other useful scenarios: for example, del-
egating to the operating system a task to monitor specific events
on CSCS’ behalf and getting notification when something goes be-
yond certain threshold. This can further enhance the database to
be more resilient to dynamic changes in the utilization of resources
and variations in workload.

8. CONCLUSION
The interaction between operating systems and database engines

has been a difficult system problem for decades. Both try to con-
trol and manage the same resources but have very different goals.
The operating system arbitrates between applications running on
the machine, but inevitably has little knowledge of the applica-
tions’ requirements. The database, meanwhile, tries to maximize
transactional performance using deep knowledge of what the trans-
actions do and the data needed to answer every query, but assumes
its own statically configured partition of the machine to do so. The
ignoring each other tactic followed in the last decades has worked
because the homogeneity of the hardware has allowed databases to
optimize against a reduced set of architectural specifications and
over-provisioning of resources (i.e., running a database on a single
server) was not seen as a problem.

With the advent of multicore and virtualization, these premises
have changed. Databases will often no longer run alone in a server
and the underlying hardware is becoming significantly more com-
plex and heterogeneous. In fact, and because of these changes, both
databases and operating systems are revisiting their internal archi-
tectures to accommodate large scale parallelism. Using COD as
an example, we argue that the redesign effort on both sides must
include the interface between the database and the OS.

COD is a proof of concept built out of several prototypes and
experimental systems. Yet, COD illustrates very well what needs
to be changed in both databases and operating systems to achieve
a better integration as well as how such an integration could look
like. As future work, we intend to investigate a negotiation protocol
between the database and the OS to resolve the situation when re-
quests cannot be met, adding runtime performance triggers on the
policy engine that provide useful information to the database on
how optimally it is operating, and linking the policy engine to the
database query optimizer.
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