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ABSTRACT
Due to the complexity of graph query languages, the need for visual
query interfaces that can reduce the burden of query formulation
is fundamental to the spreading of graph data management tools
to wider community. We present a novel hci (human-computer
interaction)-aware graph query processing paradigm, where instead
of processing a query graph after its construction, it interleaves vi-
sual query construction and processing to improve system response
time. We present the architecture of a system called vogue that ex-
ploits gui latency to prune false results and prefetch candidate data
graphs by employing a novel action-aware indexing and query pro-
cessing schemes. We discuss various non-traditional design chal-
lenges and innovative features of vogue and highlight its practical-
ity in evaluating subgraph queries.

1. INTRODUCTION
Graph is an extensively studied subject in mathematics and many

areas of computer science as it provides a natural way of mod-
eling data in a wide variety of domains. For example, in chem-
informatics graphs are used to represent atoms and bonds in chem-
ical compounds. In bioinformatics, protein interaction networks
are graphs where nodes represent molecules and edges represent
interactions between them. Although data models such as xml
come close to graph representations, they do not support graphs
as the primary object. Recently, due to increasing growth of graph-
structured data in many domains, it is imperative to devise efficient
techniques for analysis and querying large graph databases.

Querying any kind of database (e.g., relational, xml) typically
involves two key steps: query formulation using a query language
(e.g., sql for relational databases) and efficient processing of the
formulated query using a set of data structures and algorithms. In
the context of graph database, a number of query languages (e.g.,
GraphQL [7], sparql, and pql [12]) have recently been proposed to
address the first step. While most of these languages can express
a wide variety of graph queries, the complexity of the syntax of a
graph query language makes it unsuitable for ordinary users in a
variety of domains. To address the second step, recently several in-
novative solutions have been designed to process a variety of graph

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.
.

queries [5, 8, 16, 18, 20, 21, 23–25]. Designing efficient strategy for
graph query evaluation is a challenging problem due to its inherent
computational hardness.

The traditional approach to address the challenge of query for-
mulation is to build an intuitive and user-friendly visual framework
on top of a state-of-the-art graph query processing technique. Such
graphical interface is designed to reduce the burden of learning a
query language by enabling visual query formulation using click-
and-drag approach. Figure 1 depicts an example of such a visual
interface for formulating graph queries. In this traditional paradigm
the query processing module remains idle during query formulation
and is only initiated after the Run icon is clicked. That is, the query
formulation and query processing activities are independent to one
another. Observe that although the final query that a user intends
to pose is revealed gradually in a step-by-step manner during vi-
sual query construction, it is not exploited by the query processor
prior to clicking of the Run icon to execute the query. In this paper,
we challenge this traditional graph query processing paradigm in a
visual querying environment by seeking answers to the following
fundamental questions:

• Why wait for the complete visual query to be constructed be-
fore initiating query evaluation? Why cannot we start query
evaluation immediately during query formulation?

• If we can then how can we interleave (blend) these two or-
thogonal steps together?

Specifically, we take the first major step to explore, design, and im-
plement a visual graph querying framework called vogue (Visual
InteractiOn-aware Graph QUErying) that blends the two tradition-
ally orthogonal steps (query formulation and query processing) to
provide answers to the above questions.

The key benefits of the aforementioned paradigm are at least
three-fold. First, it ensures that the query processor does not re-
main idle during visual query formulation. Second, it provides us
an opportunity to significantly improve the system response time
(srt), which is the duration between the time a user presses the
Run icon to the time when the user gets the query results. In tradi-
tional graph processing paradigm, srt is identical to the time taken
to evaluate the entire query. In contrast, in the new paradigm since
we initiate query processing during query construction, srt is the
time taken to process a part of the query that is yet to be evaluated
(if any). Third, since the gui latency is exploited to prune false
results and prefetch candidate data graphs during query construc-
tion, this paradigm provides us opportunities to enhance usability
of graph databases by providing relevant guidance and feedback
during query formulation. For instance, whenever a newly con-
structed edge makes a graph query fragment unsatisfiable (yield



1

2 3

4

1

6

5

4
3

2

Figure 1: Visual interface for formulating graph queries (labels on the edges represent order of formulation of the edges).

empty answers), it can be immediately detected by processing the
prefetched results and notified to the user in a timely fashion. It is
not efficient if the unsatisfiability of the query is only detected at
the end of query formulation as a user may have wasted her time
and effort in formulating additional constraints. Note that such im-
mediate feedback opportunity is lost in traditional paradigm where
any kind of processing of a query only occurs after it has been com-
pletely formulated. Similarly, the partial results can be leveraged to
provide suggestions, guidance, and recommendation for formulat-
ing correct queries.

The rest of the paper is organized as follows. In Section 2, we
identify the non-traditional design issues that need to be consid-
ered to realize the proposed paradigm. We present the functional
architecture of vogue in Section 3. We walk through a real-world
application of vogue in Section 4. Section 5 summarizes the cur-
rent implementation of the vogue architecture. We review related
research in Section 6. The last section concludes the paper by high-
lighting interesting research directions.

2. NON-TRADITIONAL DESIGN ISSUES
We begin by identifying key characteristics associated with vi-

sual graph query formulation. Next, we highlight unique design
issues that need to be considered in realizing this novel paradigm.

2.1 Visual Query Formulation
First, a visual query construction may follow either a node/edge-

at-a-time or a subgraph-at-a-time approach. In the former case,
a visual interface may support only incremental addition of a new
node or edge for query formulation. Consequently, after every step
the size of the query fragment grows by one. Note that it may be
time consuming to formulate a query with large number of edges
using this approach. In order to alleviate this problem, a sophisti-
cated visual interface may subscribe to the subgraph-at-a-time ap-
proach in which a user may readily use a set of canned subgraph
patterns (e.g., benzene, chlorobenzene patterns) provided by the in-
terface to formulate a visual query. For instance, instead of drawing
six edges incrementally to construct a benzene ring in a query, we
can construct it with a single click-and-drag if it is available as a
canned pattern. Consequently, after every step the size of the query
fragment grows by k ≥ 1, which is the size of the canned pattern

added to the query fragment.
Second, any practical visual graph querying system should allow

users to modify a query fragment at any time during query formula-
tion. A user may modify a visual query due to two key reasons: (a)
if the candidate set of the formulated query fragment is empty then
she may modify the query when prompted by vogue; (b) she may
commit a mistake or may change her mind during query formula-
tion and modify the query fragment accordingly. Hence, the size of
the query graph may not always increase monotonically with time.

Third, a visual graph query can be formulated in different ways
by following different sequences of gui actions. Figure 2 shows
two different sequences of visual actions or steps (denoted by Se-
quence 1 and Sequence 2) users may undertake to formulate the
query in Figure 1. However, it is impossible to speculate apriori
which query graph a user intends to construct following which par-
ticular sequence.

Fourth, the structure of the query fragment can evolve from a
path to a tree or graph. At any step, the partial query graph formu-
lated thus far, is either a frequent or infrequent fragment. Typically,
as more edges are added, the chance of a query to remain frequent
diminishes. Once it becomes infrequent, it remains as infrequent
for the rest of the formulation steps unless previously constructed
query fragment is modified. Note that the specific step at which a
query fragment becomes infrequent is dependent on the query for-
mulation sequence followed by a user. For instance, in Figure 2 the
partial query evolved from a frequent fragment to an infrequent one
after Step 4 in Sequence 1 whereas it becomes infrequent after the
second step in Sequence 2.

2.2 Action-Aware Indexing Schemes
In our proposed paradigm of blending visual query formulation

and query processing, it is important to filter negative results af-
ter every visual action taken by a user. Consequently, we need an
efficient indexing scheme which can exploit the above visual inter-
action characteristics effectively to prune false results. We envisage
that such an action-aware indexing scheme should support the fol-
lowing key features:

• It should be able to prune a part of irrelevant results even if
only partial query graph is known during query formulation.
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Figure 2: Query formulation steps.

• Since the size of a partial query graph g′ grows by k, given
a list of graphs that satisfy the fragment g′ in Step i, it is im-
portant to support efficient strategy for identifying the graphs
that match (exact or approximate) the fragment g′′ (generated
at Step i + 1) where g′ ⊂ g′′ and |g′′| = |g′| + k.

• A partial query graph may evolve from being a frequent frag-
ment to an infrequent one in the database. Furthermore, it
may also evolve from a simple path to a complex graph struc-
ture. Hence, the proposed strategy should be able to support
pruning based on both graph-structured frequent and infre-
quent fragments.

• It should be able to support modifications to a query graph ef-
ficiently. Note that such modification may result in reduction
of query graph size as well as transformation of an infrequent
query fragment to a frequent fragment again.

• Since smaller fragments always appear more often in differ-
ent visual queries compared to larger-sized fragments, smaller-
sized graph fragments should be efficiently indexed to sup-
port fast retrieval.

• Lastly, since subgraph isomorphism testing is known to be
np-complete, the indexing scheme should minimize expen-
sive candidate verification while retrieving partial results.

While state-of-the-art indexing strategies are certainly innovative
and powerful, we found out that they cannot be directly adopted for
efficiently blending visual query formulation and processing for the
following reasons.

• Firstly, these schemes are based on the conventional paradigm
that the entire query graph must be available before query
processing. However, in our proposed paradigm query pro-
cessing is initiated as soon as a fragment of the query graph
is visually formulated. For instance, gIndex [23] uses apri-
ori-like strategy to enumerate a set of fragments of the query
by checking whether a fragment belongs to the underlying
frequent subgraph index. In order to generate this fragment
set, the entire query graph should be available.

• Secondly, a key feature of action-aware indexing scheme is
that it should be able to exploit both frequent and infrequent
subgraph fragments to prune false results. However, very
few existing techniques support both types of fragments. For

example, FG-Index [5] uses frequent subgraphs as index fea-
tures. Frequent graph queries are answered without verifica-
tion and infrequent queries require only a small number of
verifications. While it supports infrequent edges, it does not
support infrequent graphs.

• Lastly, since existing indexes are designed for conventional
subgraph matching paradigm, they do not require to support
efficient traversal and retrieval of graph fragments g and g′

where |g| = |g′|+ k. Further, relatively more efficient pruning
of smaller-sized frequent fragments compared to larger-sized
fragments and query modification-friendly indexing support
are also not important requirements for existing approaches.

2.3 Materialization of Intermediate Results
To realize the aforementioned paradigm, we need a visual graph

query processor that supports evaluation of each formulated query
fragment immediately after its construction as well as materializa-
tion of information related to all partial candidate graphs matching
the query fragment. While this has always been considered as an
unreasonable assumption in traditional databases, materialization
of all intermediate results of a query is often the normal operat-
ing procedure in non-database systems [2, 14]. More recently, this
strategy has also been supported in databases to enhance database
usability [3] and query performance [26]. However, this issue is
yet to be explored in the context of graph databases. Note that it is
particularly challenging due to computational hardness of subgraph
isomorphism test. Hence judicious strategy to minimize candidate
verification while retrieving partial candidates is required.

2.4 Selectivity-free Query Processing
Selectivity-based query processing, that exploits estimation of

predicate selectivities to optimize query processing, has been a
longstanding approach in classical databases. Unfortunately, this
strategy is ineffective in our proposed paradigm as users can for-
mulate low and high selective fragments in any arbitrary sequence
of actions. As query processing is interleaved with the construction
(modification) of each fragment, it is also not possible to “push-
down” highly selective fragments which requires knowledge of the
entire query. The only possible way to bypass this stumbling block
in this environment is to ensure that the sequence of visual actions
formulated by a user is ordered by their selectivities. For example,
consider the two query formulation sequences in Figure 2. Note
that c-s has higher selectivity than c-c. Hence, it is beneficial if
the former is formulated and processed before the latter (Sequence
2 is a better choice than Sequence 1). However, users cannot be ex-
pected to be aware of such knowledge and it is unrealistic to expect
them to formulate a query in a “selectivity-aware” order.

Additionally, due to the unavailability of the entire query graph
during query processing, the classical approach of physical query
plan generation is ineffective here as well. That is, the longstand-
ing and highly successful strategy of parsing the query to generate
an optimized logical plan first and then transform it to a physical
query plan which can be executed by the vogue system cannot be
leveraged in this novel paradigm.

2.5 Focus on Waiting Time of Users
Recall from Section 1, a key objective of this new paradigm is

to improve the system response time (srt). srt is significant from
an end user’s perspective as it is the time she has to wait to view
the results of her query. A longer srt will add up to her frustration
in using a graph querying system. On the other hand, typically she



is not very concerned of the backend processing cost during query
formulation as it does not effect her interaction with the system.

In order to ensure that the srt is significantly reduced in vogue
in comparison to traditional graph querying paradigm, several chal-
lenges has to be addressed. Firstly, the naïve strategy of matching
every fragment a user draws on the query canvas to the underlying
database can be prohibitively expensive due to multiple subgraph
isomorphism tests and repeated access to the disk. Hence, efficient
index-based strategy is required that can minimize disk access as
well as subgraph isomorphism tests. Ideally, evaluation of each
new query fragment should be finished during the latency offered
by the gui while constructing the succeeding fragment. Secondly,
srt should be robust to different query formulation sequences of a
query. As different users may follow different order of visual steps
to formulate a query, the srt of the query should not vary signifi-
cantly for different sequences.

3. ARCHITECTURE OF VOGUE
Figure 3 shows the system architecture of vogue designed for

single-user environment. The vogue gui, the Query Wizard, and the
Query Feedback components of the Visual Interface Manager pro-
vide an interactive visual environment to enable users to formulate
queries without the knowledge of complex graph query languages.
The Query Wizard and the Query Feedback modules are responsi-
ble for intelligent guidance and feedback to users to further ease the
cognitive overhead associated with query formulation. The Feature
Extraction module mines the frequent fragments from the underly-
ing graph database using an existing frequent graph mining tech-
nique. The Action-Aware Index Constructor module takes as input
the discovered frequent and infrequent fragments and builds an ar-
ray of action-aware indexes to support efficient query processing in
our proposed paradigm. The Action-Aware Query Processing mod-
ule embodies a series of innovative index-based algorithms that uti-
lize the latency offered by the gui actions to retrieve partial results
of a graph query. These results are progressively refined based on
the subsequent actions by the user. Lastly, upon successful exe-
cution of a graph query, the Results Visualizer module displays the
results in graphical format. We now elaborate on these components.

3.1 Visual Interface Manager
Figure 1 depicts the screenshot of the current visual interface

of vogue supporting edge-at-a-time query formulation approach.
A user begins formulating a query by choosing a database as the
query target and creating a new query canvas using Panel 1. The left
panel (Panel 2) displays the unique labels of nodes that appear in
the dataset in lexicographic order. In the query formulation process,
the user chooses labels from Panel 2 for creating the nodes in the
query graph. Panel 3 depicts the area for formulating graph queries.
A user drags a node that is part of the query from Panel 2 and
drops it in Panel 3. Next, she adds another node in the same way.
Then, she creates an edge between the added nodes by left and right
clicking on them. Additional nodes and edges are added to the
query graph by repeating these steps. Finally, the user can execute
the query by clicking on the Run icon in Panel 1. Panel 4 displays
the query results.

The above query construction activities are supported by a feed-
back and guidance mechanism (Query Feedback and Query Wizard
modules) that guide users to formulate queries by (a) helping them
to find nodes in Panel 2 quickly that may be of interest to them
and (b) providing appropriate feedback whenever necessary in a
timely manner. In order to realize the former, several features of
the dataset such as frequency of a node’s label, degree of connec-
tivity of a node with other nodes, and popularity of a label in past
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Figure 3: Architecture of vogue.

queries from users, are determined by analyzing the structure of
the dataset and query log. On the other hand, query feedbacks are
essential during query construction as a user may not know if the
query she is trying to formulate will return any results. We observe
user’s actions during query formulation and notify her if a query
fragment constructed at a particular step fails to return any results
using our action-aware indexing schemes (discussed below). Fur-
ther, it also advises the user on which edge in the formulated query
fragment is the “best" to remove in order to get non-empty result
set. These feedbacks are provided in a timely fashion in order to
minimize the cognitive overhead associated with tasks interruption.
Lastly, given a partial query fragment already drawn by a user, the
query guidance mechanism aims to provide suggestion of a concise
set of edges that she is likely to draw in the next step.

Upon successful execution of a subgraph query, the Result Vi-
sualizer module displays the results in graphical format (Panel 4).
The result graphs are ordered according to increasing value of their
similarity distance.

3.2 Feature Extraction Module
This module mines the frequent fragments from the graph database

D using an existing frequent graph mining technique (the current
version uses gSpan [22]). Informally, we use the term fragment
(resp. query fragment) to refer to a small subgraph existing in graph
databases (resp. query graphs). Given a fragment g which is a sub-
graph of G (denoted as g ⊆ G) and G ∈ D, we refer to G as the
fragment support graph (fsg) of g. Since each data graph in D is
denoted by an unique identifier, f sgIds(g) denotes the set of identi-
fiers of fsgs of g. A fragment g is frequent inD if its support is no
less than α |D| where 0 < α < 1 is the minimum support threshold.
Otherwise, g is an infrequent fragment.

3.3 Action-Aware Index Constructor Module
This component of vogue is responsible for constructing two

types of indexes, namely action-aware static and action-aware dy-
namic indexes [10,11]. These indexes are constructed based on the
assumption that the current version of vogue supports edge-at-a-
time query formulation strategy.

Action-aware static index. We support two types action-aware
static index which are build on D. The action-aware frequent



index (a2f) is a graph-structured index having a memory-resident
and a disk-resident components. We refer to them as memory-
based frequent index (mf-index) and disk-based frequent index (df-
index), respectively. Specifically, small-sized frequent fragments
(frequently utilized) are stored in mf-index whereas larger frequent
fragments (less frequently utilized) reside in df-index.

The df-index is an array of fragment clusters. A fragment clus-
ter is a directed graph C = (VC,EC) where each vertex1 v ∈ VC

is a frequent fragment f where the size of f (denoted as | f |) is
greater than the fragment size threshold β (i.e., | f | > β ). There is
an edge (v′, v) ∈ EC iff f ′ is a proper subgraph of f (denoted as
f ′ ⊂ f ) and | f | = | f ′| + 1. We denote the root vertex (node with
no incoming edge) of C as root(C). Each fragment f of v is rep-
resented by its cam code [9], denoted as cam(g). Each vertex with
fragment f in C points to a set of fsg identifiers of f ( f sgIds( f )).
Note that given the frequent fragments f and f ′, if f ′ ⊂ f then
f sgIds( f ) ∩ f sgIds( f ′) = f sgIds( f ). That is, vertex v′ (represent-
ing f ′) and its child vertex v (representing f ) share a large number
of fsgs. Consequently, vogue store only a subset of f sgIds( f ) at
each vertex.
mf-index indexes all frequent fragments having size less than or

equal to β . Similar to a fragment cluster, it is a directed graph
GM = (VM,EM) where the vertices and edges have same semantics
as C. In addition, vertices representing frequent fragments of size
β are leaf vertices in GM and do not have any child fragments. Each
leaf vertex v ∈ VM (representing f ) is additionally associated with
a fragment cluster list L where each entry Li points to a fragment
cluster C j in the df-index such that f ⊂ root(C j).

The action-aware infrequent index (a2i-index) indexes infrequent
fragments to prune the candidate space for infrequent queries. In
order to ensure that the index is space-efficient, we index only the
discriminative infrequent fragments (difs). Informally, a dif is a
smallest infrequent subgraph of an infrequent fragment. Given an
infrequent fragment g, let sub(g) be the set of all subgraphs of g. If
sub(g) contains only frequent fragments or |g| = 1, then g is a dif
in D. Intuitively, a2i-index consists of an array of difs arranged in
ascending order of their sizes. Each entry in the index stores the
cam code of a dif g and f sgIds(g).

Action-aware dynamic index. The spig Generator module gener-
ates a dynamic index on-the-fly during visual query construction.
For each new edge eℓ created by the user, this module create a
spindle-shaped graph (spig) using the action-aware indexes. Each
edge is assigned a unique identifier according to their formulation
sequence. That is, the ℓ-th edge constructed by a user is denoted as
eℓ where ℓ is its label. The edge with the largest ℓ is referred to as
new edge (most recently added). Note that a set of spigs are created
for a query graph.

A spig is a directed graph Sℓ = (Vℓ,Eℓ) where each vertex v ∈ Vℓ

represents a subgraph g of the query fragment containing the new
edge eℓ. In the sequel, we refer to a vertex v and its associated query
fragment g interchangeably. There is a directed edge from vertex v′

to vertex v if g′ ⊂ g and |g| = |g′| + 1. Each v is associated with the
cam code of the corresponding g, a list of labels of edges of g, and
a list of identifier set called Fragment List to capture information
related to frequent or infrequent nature of g or its subgraphs. We
now elaborate on the structure of a Fragment List.

A Fragment List contains four attributes, namely frequent id, dif
id, frequent subgraph id set, and dif subgraph id set.

• If g is in a2f-index or a2i-index, then the identifier of the
vertex or entry representing g in the corresponding index is

1For clarity, we distinguish between a node in a query graph fragment and a node in
action-aware indexes and spigs by using the terms “node” and “vertex”, respectively.

stored in frequent id or dif id attribute, respectively. Note that
the identifier of a vertex or an entry in a2f-index or a2i-index
is denoted by a2 f Id(g) or a2iId(g), respectively.

• If g is neither in a2f-index nor in a2i-index, then the frequent
subgraph id set stores the frequent ids of all largest proper
subgraphs of g that are in a2f-index. Note that the size of
these subgraphs is |g| − 1. The dif subgraph id set of g con-
tains the dif ids of all subgraphs of g that are indexed by
a2i-index.

The source vertex (vertex with no incoming edge) in the first
level of Sℓ, denoted by Sℓ.vsource, represents eℓ and the target vertex
(vertex with no outgoing edge) in the last level, denoted by Sℓ.vtarget ,
represents the entire query fragment at a specific step. Since there
is only one vertex at the first and the last level and a set of vertices
in the “middle" levels, the shape of Sℓ is like a spindle.

3.4 Action-Aware Query Processing Module
This module implements an innovative spig-based query process-

ing algorithm that utilizes the latency offered by the gui actions to
retrieve partial candidate data graphs. The current version of vogue
has the following key operators to realize the proposed paradigm.

Select. This operator takes as input a new edge eℓ (graph frag-
ment) drawn by a user on the query canvas and retrieves identifiers
of data graphs containing the query fragment q (denoted by Rq).

ExactMatch. This operator implements an action-aware index-
based subgraph containment search for retrieving candidate graphs
for q. That is, it takes q as input and generates a set of candidate
data graph identifiers Rq as output. If q is a frequent fragment, then
it retrieves fsg identifiers of corresponding g by probing a2f-index.
Otherwise, if g represents a dif, then it retrieves the fsg identifiers
from a2i-index. If g is neither a dif nor a frequent fragment then
for each identifier in the frequent subgraph id set and dif subgraph
id set of g in the spig, it retrieves the corresponding fsg identifiers
from a2f-index and a2i-index, respectively, and then intersect them
with Rq to generate the candidate set.

SimilarMatch. This operator implements a spig-based subgraph
similarity search2 for retrieving approximate matches of q. Given
the subgraph distance threshold σ , it exploits the spig set to identify
the relevant subgraphs of q that need to be matched for retrieving
approximate candidate sets. Specifically, these subgraphs are query
fragments represented by the vertices at levels |q| − 1 to |q| − σ in
the spig set. The candidate set are separated into two parts, namely
R f ree and Rver, storing the identifiers of verification-free candidate
graphs and data graphs that need verification, respectively. For each
vertex in the i-th level, if it is a frequent fragment or dif, then the
candidates satisfying the node is retrieved using the aforementioned
exact substructure search procedure and combine them with exist-
ing R f ree. Otherwise, it is neither a frequent fragment nor a dif.
Consequently, the candidate data graphs are once again computed
using frequent subgraph id set and dif subgraph id set (see above)
and combined with existing Rver. Lastly, candidates that exist in
both R f ree and Rver are removed from Rver. Note that ExactMatch
and SimilarMatch are typically used inside another operator, such
as Select or Update.

Update. This operator handles modification to a query in vogue
by enabling edge deletion3. It is invoked under following scenario:
(a) the user selects deletion of an existing edge (the modified query
2Similar to [16], the current version of this operator adopts the maximum connected
common subgraphs (mccs) for computing similarity between a pair of graphs.
3Node relabeling can be expressed as deletion of edge(s) following by insertion of
new edge(s) and node.
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Figure 4: Frequent and infrequent fragments.

graph must be connected graph at all times); (b) the system recom-
mends deletion of an edge whose removal would maximize the size
of the candidate graph set of the modified query fragment.

Let em be the newest edge in q and ed be the edge deleted from
q by the user at any time during query formulation where 0 < d ≤
m. The new query fragment q′ is formed by deleting ed from q.
The spig set is updated by removing spigs and vertexes related to
ed . Finally, the new candidate set is generated by invoking the
ExactMatch or SimilarMatch operator.

Verify. This operator returns the exact results by filtering the
false candidate data graphs. The current implementation uses Ull-
man’s algorithm for subgraph isomorphism test and extends VF2 [6]
to handle mccs-based similarity verification.

Query processing strategy. When a user draws a new edge eℓ on
the query canvas, the Select operator is invoked to retrieve iden-
tifiers of data graphs containing the query fragment q (denoted by
Rq) and monitors its status. If Rq is non-empty at a specific step
then the ExactMatch operator is invoked as q has exact matches in
the database. If Rq becomes empty (e.g., in Figure 2 (Sequence 1),
the query fragment after Step 5 does not have any match) then it ef-
ficiently support the following two steps. (a) If the user chooses to
modify q then it invokes the Update operator to handle the modifi-
cation process. (b) Otherwise, it uses the SimilarMatch operator
to retrieve approximate matches to q.

If the final query is a frequent subgraph containment query or
a dif, then the results are directly computed without subgraph iso-
morphism test (without invoking the Verify operator). If it is a
non-dif infrequent subgraph containment query, when the Run icon
is clicked, the Verify operator returns the exact results by filtering
the false candidates. Otherwise, if the final query has evolved to
a subgraph similarity query then firstly the candidates in R f ree are
added to result set without any verification test. Next, it generates
the result set from the candidates in Rver by invoking the Verify
operator. Observe that our query processing strategy does not rely
on selectivities of the added edges or the order in which they are
constructed.

4. AN APPLICATION SCENARIO
In this section, we illustrate with an example how vogue can be

deployed on a real-world dataset to support our proposed visual
querying paradigm.

Consider a graph-structured chemical compounds dataset (e.g.,
aids Antiviral dataset, DrugBank [19]). vogue first mines and ex-
tracts the frequent fragments and difs from this dataset (Feature
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Figure 5: Examples of mf-index and a2i-index.

Extraction module). Figure 4 depicts some of these frequent and
infrequent fragments (support values are shown in parenthesis).
Specifically, the fragments f0 − f6 are frequent fragments and the
rest are infrequent fragments. Among the infrequent fragments,
di f0 − di f2 are difs as all subgraphs in each fragment are frequent.
These fragments are then used to construct the a2f (mf-index and
df-index) and a2i-indexes (Action-Aware Index Constructor mod-
ule) to support efficient matching of frequent and infrequent query
fragments, respectively, while formulating a visual query. For in-
stance, Figure 5(a) depicts an examples of mf-index based on the
frequent fragments in Figure 4 (for β = 4). Note the distinc-
tion between delId( f ) and f sgIds( f ). For instance, |delId( f0)| =
| f sgIds( f0)|− | f sgIds( f2)|− | f sgIds( f3)|. Also, each vertex v in a2f-
index is assigned an identifier, denoted by a2 f Id(v) (e.g., a2 f Id(v0) =
0 in Figure 5(a)). Figure 5(b) depicts an a2i-index based on the difs.
The identifier of each dif g in the index is denoted by a2iId(g) (e.g.,
a2iId(di f1) = 1 in Figure 5(b)).

We now illustrate how query processing is blended with visual
query formulation in vogue. Suppose a user formulates the visual
query in Figure 1 by following the formulation sequence Sequence
1 in Figure 2. Let σ = 2. Observe that the query remains as fre-
quent in the first three steps. After Step 4, it evolves to an infrequent
query. For each new step, the spig Generator module of vogue dy-
namically generates a spig using the action-aware indexes. Then,
using these indexes the Action-Aware Query Processing module
computes candidate data graphs matching (exact or approximate)
the partial query fragment formulated so far. We first give an ex-
ample of the spig generation process.

Consider Step 5. Figure 6(a) depicts the spig S5 after the addition
of the new edge labeled 5 (e5). Each vertex represents a subgraph
of the query fragment containing e5 and is identified by a pair of
identifiers containing label of e5 and its position. For instance, v5,3

refers to the third vertex in S5. Information associated with each
vertex in S5 is shown in Figure 6(b). Particularly, the entries from
left to right in the Fragment List are frequent id, dif id, frequent
subgraph id set, and dif subgraph id set, respectively (we follow
this sequence in all relevant figures). Note that v5,1, v5,2, v5,3 and
v5,4 represent the frequent fragments f1, f3, f5 and f6 (Figure 4),
respectively. Therefore, their frequent ids are 1, 3, 5, and 6, respec-
tively. Since v5,5 represents di f1, the dif id is 1 (Figure 5(b)). As v5,6

represents the non-dif infrequent pattern in f4, it is neither indexed
by a2f-index nor by a2i-index. Consequently, frequent and dif ids
of v5,6 are empty. Among all the largest proper subgraphs of in f4

(size of these subgraphs is |in f4|−1), the subgraph f6 (see Figure 4)
is a frequent fragment and hence stored in the a2f-index (vertex id
6 in Figure 5(a)). Hence, frequent subgraph id set contains only 6.
Also, among all the subgraphs of in f4, the subgraphs di f1 and di f2

(see Figure 4) are difs and are indexed by a2i-index (having entry
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Figure 6: The vertices of the spindle-shaped graph in step 5.

ids 1 and 2 in Figure 5(b)). Consequently, dif subgraph id set of
v5,6 contains 1 and 2. Figure 7 depicts the set of spigs constructed
for Steps 1 to 6. Observe that the fragments represented by vertices
of two consecutive spigs (e.g., S5 and S6) can be quite different.

We now illustrate how candidate data graphs are generated at
each step. In the first step (Sequence 1), edge e1 is added and S1

is constructed as shown in Figure 7(a). As frequent id of v1,1 is 0,
the ExactMatch operator is used to locate it in a2f-index and re-
trieve f sgIds( f0) as the candidate set of current query fragment. In
the second step, the spig S2 is constructed. Since frequent id of v2,2

(v2,2 is the target vertex) is 2, its fsg identifiers are again retrieved by
probing a2f-index. After Step 3, v3,3 is the target vertex in S3 and
frequent id of v3,3 is 5. Hence f sgIds( f5) is retrieved by probing
a2f-index as the candidate set for exact substructure match. Ob-
serve that so far the query is a frequent fragment. After Step 4, the
target vertex v4,6 in S4 is a non-dif infrequent fragment and frequent
subgraph id set and dif subgraph id set are {4, 5} and {2}, respec-
tively. Hence, the fsg identifiers of these fragments are computed
as follows: f sgIds(v4,6)= f sgIds(di f2)∩ f sgIds( f4)∩ f sgIds( f5) =
f sgIds(in f1). Also, | f sgIds(v4,6)| = 250.

After Step 5 since the target vertex is v5,6 in S5 and
f sgIds(in f4) = 0, the user is given an option to either modify the
query or relax it to a subgraph similarity query and retrieve approx-
imate matches. Suppose the user chose the latter option. Then, the
SimilarMatch operator is invoked. Recall that σ = 2. That is, in
Step 5 two edges are allowed to be missed in the results of substruc-
ture similarity search. Consequently, R f ree(3) and Rver(3) are gen-
erated for the vertexes in the third levels of the spigs (v3,3, v4,4, v4,5

and v5,3). Rver(3) = ∅ and R f ree(3) = f sgIds(v3,3) ∪ f sgIds(v4,4) ∪
f sgIds(v4,5)∪ f sgIds(v5,3) = f sgIds( f5)∪ f sgIds(di f3)∪ f sgIds( f4)∪
f sgIds(di f5). Observe that |R f ree(3)| ≥ 1300. R f ree(4) and Rver(4)
are generated for the vertexes in the fourth levels of the spigs (v5,4,
v5,5, and v4,6). Consequently, R f ree = R f ree(4) = f sgIds(v5,4) ∪
f sgIds(v5,5) = f sgIds( f6) ∪ f sgIds(di f1) whereas Rver = Rver(4) =
f sgIds(v4,6). Observe that |R f ree(4)| ≥ 1100 and |Rver(4)| = 250. If
the user clicks on the Run icon now, at most 250 candidate graphs in
Rver need candidate verification. However, at least 2400 candidate
graphs in R f ree are returned directly without verification.

When another edge is added in Step 6, R f ree=R f ree(4) ∪ R f ree(5)
and Rver=Rver(4) ∪ Rver(5) where

Rver(4) = Rver(4) ∪ f sgIds(v6,4) ∪ f sgIds(v6,5)
= Rver(4) ∪ f sgIds(in f2) ∪ f sgIds(in f3)

Note that |Rver | ≤ 800. Similarly, R f ree(5) = 0 and Rver(5) =
f sgIds(v5,6) ∪ f sgIds(v6,6) ∪ f sgIds(v6,7). Since f sgIds(v5,6) = 0,
f sgIds(v6,6)= f sgIds(di f0) ∩ f sgIds(di f2) and f sgIds(v6,7)=
f sgIds(di f0) ∩ f sgIds(di f1). Also, since | f sgIds(v6,7)| = 200 and
| f sgIds(v6,6)| = 150, |Rver(5)| ≤ 350.
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Figure 8: The query modification procedure in Step 5.

Lastly, in Step 7, when the user clicks on the Run icon, the list
of data graphs that match the query approximately are returned. In
this step, the verification-free matches (R f ree in the above step) are
returned directly. On the other hand, candidate data graphs that
need verification (Rver) are first verified using the Verify operator
and then the relevant matches are returned to the user.

Visual query modification. We now illustrate with an example
how query modification is handled in vogue by the Update opera-
tor. For clarity, we illustrate only single edge deletion. It is trivial to
extend it to support multiple edge deletions. Reconsider Step 5 of
Sequence 1 in Figure 2. The state of the query fragment is depicted
in Figure 8(a). Assume that the user now selects the query modi-
fication option (Figure 8(b)). Since | f sgIds(v5,4)| = | f sgIds( f6)| =
1300 is larger than both | f sgIds(v4,6)| and | f sgIds(v5,5)| in the fourth
level of the spigs in Figure 7, q′ is modified to f6 and the edge 3 is
suggested for deletion (Figure 8(c)). Figure 8(d) shows the modi-
fied query fragment q′ after the user accepted the suggestion. At the
same time, the spindle-shaped graph set is updated by removing S3

and updating the spigs S4 and S5 by deleting the vertexes with edge
3 in their Edge Lists. The updated spig set is shown in Figure 9.

Now suppose the user chooses to invoke substructure similarity
search instead at Step 5 (as discussed above) and then deletes edge
6 after Step 6 (the case where deletion of an edge is selected by the
user). Now q′ matches v5,6 and the target vertex of S5. Hence, the
updated spig set now excludes S6. At last, the new candidates are
calculated based on this updated spig set.

5. IMPLEMENTATION OF VOGUE
vogue is implemented in Java jdk 1.6. The current version of

vogue supports formulation of subgraph containment and subgraph
similarity search queries on a large set of small or medium-sized
graphs (e.g., chemical compounds). The Visual Interface Manager
currently supports edge-at-a-time query construction. The Query
Wizard and Query Feedback modules are yet to be implemented.
The Result Visualizer module is implemented using ZGRViewer [15].
The Feature Extraction, Action-Aware Index Constructor, and Action-
Aware Query Processing modules have all been implemented to
support efficient blending of aforementioned queries. The reader
may refer to [10,11] for detailed algorithms associated with realiz-
ing these modules.

Performance summary of vogue. Our empirical study in [10, 11]
highlights the benefits of the proposed paradigm. The srts of sub-
graph containment and subgraph similarity search queries are sig-
nificantly lower than state-of-the-art approaches based on tradi-
tional paradigm [16,21]. More importantly, the srt of vogue grows
gracefully with the size of underlying database. Also, the construc-
tion process of action-aware indexes is very efficient. In particular,
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the generation of action-aware dynamic index (spig) at each step
takes negligible time. It is significantly lower (almost an order of
magnitude) than the available gui latency (at least two seconds to
draw an edge). Furthermore, the formulation sequences of a query
only have minor effect on the spig construction time and srt high-
lighting the robustness of vogue. Lastly, the query modification
cost is cognitively negligible and can easily be completed by ex-
ploiting the gui latency.

6. RELATED WORK
Recent efforts to address subgraph containment and similarity

search problems can be broadly classified into two streams. One
stream focuses on processing subgraph queries on a large number
of small or medium-sized graphs such as chemical compounds [5,8,
16,21,23,25]. The other stream aims to handle query processing on
a small number of large graphs (e.g., protein interaction networks,
social networks) [18, 20, 24]. Nevertheless, all these aforemen-
tioned efforts follow the conventional query processing paradigm
where the formulation of a query graph is independent of its eval-
uation against the database. Typically, the complete query is first
specified before it is processed. In contrast, vogue realizes a novel
query processing paradigm by blending two traditionally indepen-

dent areas, namely human-computer interaction and database query
processing. Specifically in the proposed paradigm, when a graph
query is visually formulated, its evaluation is interleaved with the
formulation activities. Hence, our method is orthogonal to existing
studies related to graph query processing. Additionally, in order
to speed up subgraph evaluation, most existing works focus on de-
veloping indexing techniques to support efficient searching. As re-
marked earlier, the indexing scheme necessary to support the pro-
posed paradigm is different from these traditional approaches. In
particular, unlike existing strategies, the design of the proposed in-
dexing scheme is influenced by the characteristics of users’ visual
interaction behaviors during query formulation.

There has been some research in the arena of visual query lan-
guages for graph databases [1, 4]. QGraph [1] is a visual language
for querying and updating graph databases. In QGraph the user
can draw a query consisting of some nodes and edges with speci-
fied relations between their attributes. The output of the system is
a collection of all subgraphs in the underlying database that have
the desired pattern. Graphite [4] allows the user to visually con-
struct a graph query pattern over large attributed graphs, finds both
its exact and approximate matching subgraphs, and visualizes the
matches. vogue differs from these efforts in the following way. Al-
though the main objective of these approaches being easy to use; all
these systems follow the traditional paradigm of query processing
where evaluation of a visual query pattern is initiated only after the
complete query has been formulated.

7. DISCUSSIONS
In this paper, we have presented vogue - a novel approach for

processing graph queries which are formulated using a visual in-
terface. To the best of our knowledge, it is the first system that
makes a strong connection between graph query processing and vi-
sual query formulation. vogue employs a novel indexing scheme,
which exploits some of the users’ interaction characteristics with
visual interfaces to support efficient pruning and retrieval. The in-
novative subgraph querying engine exploits the latency offered by



the gui-based query formulation to prune false results and prefetch
partial query results.

We have barely scratched the surface of this novel query pro-
cessing paradigm. We are currently exploring following interesting
issues (non-exhaustive) to enhance the framework of vogue.

Enhancing usability of vogue gui. We are currently enhancing the
usability of vogue gui by incorporating query feedback and guid-
ance mechanisms in the Visual Interface Manager. Specifically, for
the first time, we aim to integrate well-founded principles from hci
and cognitive psychology with graph query processing to devise ef-
fective solutions towards this goal. Additionally, recall that the cur-
rent version of vogue only supports edge-at-a-time query formula-
tion. We are extending it to support subgraph-at-a-time query con-
struction so that large subgraph queries can be easily constructed
with relatively fewer clicks. Consequently, the underlying action-
aware indexing schemes and query processing strategies need to be
adapted to take advantage of such query construction strategy.

“Blendability” of complex graph queries. Currently, vogue suc-
cessfully blends subgraph containment and subgraph similarity search
queries. We aim to enhance the expressiveness of vogue by in-
vestigating if more complex subgraph queries are “blendable” and
demonstrate superior performance. For instance, we intend to in-
vestigate blending of supergraph containment queries, homeomor-
phic graph queries, and generalized subgraph queries [13].

Visual query processing on massive graphs. vogue currently sup-
ports querying a large set of small or medium-sized graphs. A
natural extension to this problem is to support similar queries on
massive graphs. However, generating feature-based action-aware
indexes is a challenging problem as it requires us to determine fre-
quent fragments in a very large graph which is prohibitively expen-
sive operation and a long standing problem [20]. Furthermore, it
is also space-inefficient to index location of all the possible occur-
rences of a fragment in a massive network as it may appear numer-
ous times. Lastly, visualizing query results becomes cognitively
and computationally challenging. Even if a data graph contains
few thousands of nodes and edges, it imposes significant cognitive
burden on the end user if it is shown in its entirety. Particularly, the
entire graph looks like a giant hairball and the subgraphs that match
the query are lost in the visual maze. We are currently exploring a
novel graph partitioning-based technique in the vogue framework
to address these challenges.

Synthetic visual query simulator. Lastly, there is a pressing need
for a framework to support comprehensive empirical study of vogue.
In contrast to traditional paradigm, each query in vogue must be
formulated by a set of real users for empirical study. Furthermore,
each query can follow many different query formulation sequences.
The challenge here is that it is prohibitively expensive to find and
engage a large number of users who are willing to formulate a large
number of visual queries. In fact, our experience suggests that such
aspiration strongly deters end users to participate in the empirical
study. To address this limitation, we are currently building a syn-
thetic visual query simulator that simulates visual graph query for-
mulation by real users. A key feature of this simulator is that it
leverages principles from hci on visual task completion to simulate
users’ interaction behaviors. It is then integrated with the vogue
architecture to simulate our proposed paradigm of blending query
formulation and query processing.
Acknowledgement: Shuigeng Zhou was supported by the Research
Innovation Program of Shanghai Municipal Education Committee
under grant No. 13ZZ003. We would also like to thank Changjiu
Jin for implementing several features of vogue.

8. REFERENCES
[1] H. Blau , N. Immerman , D. Jensen. A Visual Language for

Querying and Updating Graphs. Technical Report 2002-037,
University of Massachusetts, Amherst, 2002.

[2] S. P. Callahan, J. Freire, et al. VisTrails: Visualization Meets Data
Management. SIGMOD, 2006.

[3] A. Chapman, H. V. Jagadish. Why Not? In SIGMOD, 2009.
[4] D. H. Chau , C. Faloutsos, H. Tong, et al. GRAPHITE: A Visual

Query System for Large Graphs. ICDM Workshop , 2008.
[5] J. Cheng, Y. Ke, W. Ng, A. Lu. FG-Index: Towards Verification-Free

Query Processing On Graph Databases.In SIGMOD, 2007.
[6] L.P. Cordella, P. Foggia, C. Sansone, M. Vento. An improved

algorithm for matching large graphs. Proceedings of the 3rd IAPR
TC-15 Workshop on Graph-based Representations in Pattern
Recognition, pages 149-159, 2001.

[7] H. He, A. K. Singh. Graphs-at-a-time: Query Language and Access
Methods for Graph Databases. In SIGMOD, 2008.

[8] H. He, A. K. Singh. Closure-Tree: An Index Structure for Graph
Queries. In ICDE, 2006.

[9] J. P. Huan, W. Wang. Efficient Mining of Frequent Subgraph in the
Presence of Isomorphism. In ICDM, 2003.

[10] C. Jin, et al. Gblender: Towards Blending Visual Query Formulation
and Query Processing in Graph Databases. In ACM SIGMOD, 2010.

[11] C. Jin, et al. prague: A Practical Framework for Blending Visual
Subgraph Query Formulation and Query Processing. In ICDE, 2012.

[12] U. Leser. A Query Language for Biological Networks. In
Bioinformatics, 21:ii33–ii39, 2005.

[13] W. Lin, X. Xiao, et al. Efficient Algorithms for Generalized
Subgraph Query Processing. In CIKM, 2012.

[14] T. Oinn, M. Greenwood, M. Addis et al. Taverna: Lessons in
Creating a Workflow Environment for the Life Sciences: Research
Articees. Concurr. Comput.: Pract. Exper., 18(10), 2006.

[15] E. Pietriga. A Toolkit for Addressing HCI Issues in Visual Language
Environments.In IEEE Symp. on Vis. Lang. and Human-Centric
Comp., 2005.

[16] H. Shang, et al. Connected Substructure Similarity Search. In
SIGMOD, 2010.

[17] Y. Tian, R. C. McEachin, C. Santos, et al. SAGA: A subgraph
matching tool for biological graphs. In Bioinformatics, 2006.

[18] Y. Tian, J. Patel. TALE: A Tool for Approximate Large Graph
Matching. In ICDE, 2008.

[19] D. S. Wishart, C. Knox, A. C. Guo, et al. DrugBank: A
Knowledgebase for Drugs, Drug Actions and Drug Targets. Nucleic
Acids Research, Vol. 36, D901-D906, 2008.

[20] Y. Xie, P. S. Yu. CP-Index: On the Efficient Indexing of Large
Graphs. In CIKM, 2011.

[21] X. Yan, et al. Substructure Similarity Search in Graph Databases. In
SIGMOD, 2005.

[22] X. Yan, J. Han. gSpan: Graph-based Substructure Pattern Mining. In
ICDM, 2002.

[23] X. Yan, et al. Graph Indexing: A Frequent Structure-Based
Approach. In SIGMOD, 2004.

[24] S. Zhang, et al. SAPPER: Subgraph Indexing and Approximate
Matching in Large Graphs. In VLDB, 2010.

[25] P. Zhao, et al. Graph Indexing: Tree + delta ≥ Graph. In VLDB,
2007.

[26] Y. Zhou, S. S. Bhowmick, et al. Xblend: Visual xml Query
Formulation Meets Query Processing. In ICDE, 2009.



Figure 10: Demonstration viewer.

APPENDIX
Demonstration Objectives
vogue is implemented in Java JDK 1.6. Our demonstration will be
loaded with synthetic datasets and a few real datasets (e.g., aids
Antiviral dataset containing 43k graphs) with different sizes. Ex-
ample query graphs will be presented. Users can also write their
own ad-hoc queries through our gui (Figure 1).

Interactive experience of the novel query evaluation paradigm.
One of the key objectives of the demonstration is to enable the au-
dience to interactively experience the proposed query processing
paradigm in real-time. During the visual construction of a sub-
graph query, one will be able to view the generation of candidate
data graphs at each visual step, evolution of a containment query
to a similarity query (if necessary) and their effect on the size of
candidate set (bottom part of Figure 10). Additionally, the user
will be able to experience the time taken by vogue at each visual
step for fetching candidate data graphs (top part of Figure 10) and
appreciate the fact that the latency offered by the gui at each step
is sufficient to finish this prefetching task. Furthermore, she will
be able to visualize in real-time the effect of the type of subgraph
query fragment (containment or similarity) on the prefetching time.

Robustness to query modification. We shall interactively show
the following two features of vogue to highlight its robustness to
query modification. First, we shall show the automatic edge rec-
ommendation process for deletion (Figure 11). Second, we shall
demonstrate in real-time how vogue efficiently handle query modi-
fication in response to deletion of any edge by a user during query
formulation.

Superior performance of vogue. We shall demonstrate that the
proposed paradigm significantly improves srt compared to tradi-
tional graph query evaluation systems.

Figure 11: Query modification.


