
Quantum Databases

Sudip Roy1, Lucja Kot1, Christoph Koch2

1Cornell University
Ithaca, NY 14853, USA

{sudip,lucja}@cs.cornell.edu

2EPFL
CH-1015 Lausanne, Switzerland

christoph.koch@epfl.ch

ABSTRACT
We introduce quantum databases, a new database abstraction that
allows to defer the making of choices in transactions until an ap-
plication or user forces the choices by observation. Conceptually, a
transaction is in a quantum state – in one of many possible worlds,
which one is unknown – until fixed by observation. Practically, our
abstraction enables late binding of values read from the database.
This allows more transactions to succeed in environments with high
contention. This is particularly important for applications in which
transactions compete for scarce physical resources represented by
data items in the database, such as seats in airline reservation sys-
tems or meeting slots in calendaring systems. In such environ-
ments, deferral of the assignment of resources to consumers until
all constraints are available to the system will lead to more suc-
cessful transactions. Through entanglement of queries and trans-
actions, a notion that we have explored in previous work, quantum
databases can enable collaborative applications with a constraint
satisfaction aspect directly within the database system.

1. INTRODUCTION
In the strict formulation of the law of causality

– if we know the present, we can calculate the future –
it is not the conclusion that is wrong but the premise.

— Werner Heisenberg

Database applications are often used to allocate some commodi-
ties or resources based on user requests. These commodities could
be physical goods in retail applications, virtual goods in a game,
the availability of shared-use physical or virtual resources such as
a hotel room or an Amazon EC2 instance, time slots on a calendar,
or even another human user, e.g., a carpool partner. There are two
aspects that make resource allocation interesting. First, resource
allocation comes with conditions from users, for example, travel-
ers specify whether they want an aisle or window seat, employees
scheduling meetings specify whether they want a large or small
meeting room, and so on. However, there is often much flexibility
on other features of the resource being requested. Second, typi-
cally there is some delay between the user requests and the actual
“consumption” of the resource in question. For example, travelers

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.

reserve plane tickets some time in advance and there is time on the
order of days – or months – between the time the booking transac-
tion commits and the time the seat actually needs to be used.

In this paper, we observe that both flexibility and the time de-
lay from resource request to usage can and should be exploited by
the system for optimal resource allocation. The system can ex-
ploit user flexibility by explicitly keeping track of preferences and
“don’t cares”; it can also exploit the delay by deferring resource
allocation as late as possible. Usually, requests for resources arrive
over time from different users and the system has no knowledge of
the future request sequence. Allocating a resource too early may
prevent other requests from being fulfilled; for example, if a trav-
eler – Mickey – who does not care about his seat is assigned the
last available window seat on a plane, a subsequent user who only
wants a window seat may be turned away, unless Mickey is willing
to be reseated to an aisle seat. Reseating Mickey could be nontriv-
ial and may require executing compensation logic; for example if
he is traveling with his family and they all want to sit in the same
row several people may need to be reseated.

Deferral of resource assignment can not only improve global
utility, but the individual user’s experience as well. For example,
Mickey might have a preference for flying Delta, but if there are no
such available flights, he is willing to fly any other airlines. It is
possible that there are no seats available on Delta when Mickey
submits his transaction; however, a seat may open up due to a
cancellation in the future. If Mickey’s flight plans have not been
finalized yet, the system can automatically “reassign” Mickey’s
seat at this point. Moreover, users may specify more sophisticated
requests that involve coordination with other users. Formalisms
such as entangled and enmeshed queries [8, 3] make it possible
for Mickey to specify requests such as “I want to sit next to my
friend Goofy” (who will be booking his seat separately). If Goofy’s
seat request does not arrive in the system until much later, it is
again desirable to defer seat assignment to maximize the chance
that Mickey and Goofy can sit together.

Calendar management is another application domain where re-
source allocation is challenging. Users who schedule meetings of-
ten have flexibility in their respective calendars, but current soft-
ware forces everyone to commit to a particular date and time, even
if the meeting is months away. Anecdotal evidence suggests that
such arbitrarily chosen time slots frequently end up conflicting with
short-notice higher-priority meetings. For example, suppose Mickey
schedules a work offsite with his team two months in advance for a
Friday afternoon and everyone on the team makes sure to keep that
time slot free. Now, suppose that on the Wednesday before the off-
site, Mickey is notified that he needs to join a high-priority meeting
with the company CEO on Friday afternoon. Mickey now needs to
reschedule the offsite, taking into account the availability of all his

team members; by now, it may be impossible to find a new slot in
the immediate future where everyone is available at the same time.
Rescheduling under such circumstances is time-consuming and of-
ten stressful; indeed, many companies employ full-time adminis-
trative assistants who devote a lot of time specifically to calendar
management. On the other hand, suppose that Mickey and his team
were all willing to delay finalizing their daily work schedules un-
til the evening of the previous day; high-priority events could now
be added at short notice with much less disruption. The uncer-
tainty of not knowing your schedule until the day before may be
worrisome to certain employees, but in highly dynamic environ-
ments where rescheduling is frequent, employees cannot be certain
of their schedules anyway, so it is likely that they would accept the
alternative we propose above.

Whether in travel planning, calendar management, or other ap-
plication domains, most of today’s resource allocation solutions
do not fully utilize the opportunities provided by user flexibility
and the request-to-usage time delay. If they do, they achieve this
through custom ad-hoc code. There is currently no clean general
solution to the entire class of resource allocation problems, and de-
veloping such a solution on top of an existing DBMS is not trivial.
First, a user request for a resource that contains preferences does
not directly translate into an SQL query that returns a single re-
source instance, unless one uses an ad-hoc solution like appending
LIMIT 1 to the query. Second, normal database transactions can-
not commit without a concrete value being assigned, so deferred
assignment is not possible. The typical solution used today is to al-
locate an ad-hoc placeholder value and change the assignment later
as needed, with lots of error-prone logic at the middle tier. Third,
databases do not come with functionality for keeping track of user
conditions such as seat type requirements or preferences. There-
fore, these must be serialized and saved for future use; again, this
can be done in an ad-hoc fashion at the application layer but a better
solution is desirable.

In this paper, we introduce a principled, end-to-end solution for
performing resource allocation reasoning on top of standard rela-
tional databases in an OLTP setting. First, we present resource
transactions, a formalism that extends SQL to allow the specifica-
tion of transactions over resources that include user “don’t cares”
and preferences (Section 2).

Second, we introduce quantum databases as an abstraction for
the associated state that the system maintains as it defers value as-
signment (Section 3). A quantum database allows resource trans-
actions to commit without assigning concrete resource instances;
it keeps track of all possible worlds corresponding to all possi-
ble concrete resource assignments that could be made. A quantum
database is an intensional specification of these possible worlds us-
ing a set of constraints collected from committed resource transac-
tions. In true quantum fashion, unless the state is observed (i.e.,
read) by someone, the database remains in all of these states simul-
taneously. This is similar to probabilistic and uncertain databases
[17]; however, the key difference is that uncertainty is strictly in-
ternal to the quantum database and a read causes uncertainty to be
eliminated, i.e., it forces an instantiation.

Third, we show how a quantum database is maintained as trans-
actions execute in the system. We specify how the database is
transformed by operations such as reads, writes, and updates; this
involves in some cases reducing the uncertainty and in others intro-
ducing more uncertainty. We discuss algorithms and consistency
issues associated with each of these operations, and we propose
practical strategies which strike a sweet spot between computa-
tional tractability and optimizing resource allocation by keeping
the number of possible worlds large (Section 3.2).

SELECT ‘Mickey’, F.fno AS @f, F.fdate AS @d,
A1.sno1 AS @s

FROM Flights F, Available A1,
OPTIONAL Available A2, OPTIONAL Adjacent J

WHERE
OPTIONAL (‘Goofy’, F.fno, F.fdate, A2.sno2)

IN Bookings
AND Fdest=‘LA’ AND ... -- join condition

CHOOSE 1
FOLLOWED BY (
DELETE (@f, @d, @s) FROM Available;
INSERT (‘Mickey’, @d, @f, @s) INTO Bookings;)

Figure 1: An example resource transaction

Fourth, we demonstrate the feasibility of quantum databases by
implementing a prototype (Section 4) and evaluating it under real-
istic workloads of a real-world application (Section 5).

Lastly, we discuss the research challenges involved in making
the quantum database abstraction a real-world tool for developers
(Section 6). While these challenges are significant, we believe that
they are possible to resolve and that working on them will yield
new insights into multiple aspects of database systems, well beyond
resource allocation applications.

For concreteness, most of our examples in the paper are drawn
from the travel planning scenario above; however, we also discuss
other application domains such as calendar management when rel-
evant.

2. RESOURCE TRANSACTIONS
As explained previously, resource transactions are an extension

of SQL allowing users to explicitly specify soft preferences and
features that they do not care about in addition to traditional hard
constraints. We first introduce the notion of resource transactions
through an example and then discuss the salient features of their
syntax and semantics.

An example resource transaction is shown in Figure 1. This
is a transaction that Mickey might issue to specify that he would
like one seat on any available flight to LA, and that he has a soft
preference for sitting next to Goofy, if Goofy already has a book-
ing on some flight to LA. The SELECT and FROM clauses are es-
sentially standard SQL; the three new keywords we introduce are
OPTIONAL, CHOOSE and FOLLOWED BY. OPTIONAL specifies that
the specific conjunct in the WHERE clause is a soft preference rather
than a hard constraint. CHOOSE 1 specifies that only one seat (tu-
ple) is desired as an answer to the query. Finally, the FOLLOWED
BY block contains a specification of the database writes to be ex-
ecuted based on the result returned by the SELECT-FROM-WHERE
query. In this case, the concrete seat chosen is to be deleted from
the Available table and a suitable Booking is to be made.

A resource transaction has two components: first, a query with
optional clauses and a CHOOSE 1 clause, and second, a subsequent
code block that involves a set of blind writes to the database. No
reads are permitted within the FOLLOWED BY block. One might
imagine using SQL queries with OPTIONAL and CHOOSE within
more complex code blocks that include subsequent reads and other
features. Such an extension to the basic resource transaction model
is in principle possible although nontrivial; investigating the prac-
tical usefulness of this extension and developing it fully is ongoing
work. Ordinary resource transactions as described above are more
limited, but nevertheless provide a programming pattern suitable

for the majority of our use cases. Requesting a resource and per-
forming a set of blind writes to “reserve” the resource is by far the
most common pattern used in resource allocation applications.

In the rest of the paper we use a Datalog-like notation for repre-
senting resource transactions, which is a straightforward equivalent
of the SQL representation. Each transaction is denoted as follows:

U : −1 B

U and B are conjunctions of relational atoms. We call B the body
of the transaction, and U the update portion of the transaction. Any
variables appearing in U must also appear in B (this is a range-
restriction requirement). Each atom in U is either a delete (denoted
with a leading −) or an insert (denoted with a leading +) of a sin-
gle tuple into the database. Optional conditions are underlined and
the CHOOSE 1 is denoted by : −1. For example, the intermediate
representation for the example in Figure 1 is as follows, with A,
B, Adj, M and G abbreviating Available, Bookings, Adjacent,
’Mickey’ and ’Goofy’ respectively.

−A(f1, s1),+B(M, f1, s1) : −1

 A(f1, s1)∧
B(G, f1, s2) ∧ Adj(s1, s2)

The body of the transaction contains three atoms. The first spec-
ifies that the variable s1 should be an available seat for Mickey. The
two subsequent optional atoms specify that s2 should be a seat ad-
jacent to s1 that is already reserved by Goofy. The update portion
of the transaction specifies that once a suitable s1 is found, appro-
priate changes should be made by deleting a tuple from Available
and inserting a tuple into Bookings.

A detailed presentation of the semantics of resource transactions
requires formalizing the deferred value assignment model men-
tioned in the Introduction. As described in detail in Section 3,
the actual assignment of values to variables and “execution” of
the FOLLOWED BY clause happens after the transaction has already
committed. In this Section, we give a high-level intuitive overview
of the semantics. First, we explain the semantics a resource transac-
tion would have without the deferred assignment model, and then
explain how deferred assignment both complicates certain things
and presents certain unique opportunities.

A system that processes resource transactions without deferred
assignment would proceed as follows. First, the body of a resource
transaction is grounded, i.e., each variable is assigned one specific
value from the database. For example, s1 might be assigned the
value 5A, f1 might be assigned 123 (if 123 is a flight to Los An-
geles), and s2 might be assigned 5B (if this is the seat Goofy has
already booked). We use the term grounding and (value) assign-
ment interchangeably in the rest of the paper. Sometimes it may not
be possible to find a value assignment that satisfies all the optional
clauses; this is expected and permitted by the semantics, although
if there is an assignment that satisfies the optional clauses it must
be chosen in preference to one that does not. Once the grounding
is finalized, the system makes appropriate changes to the database
as specified in the update portion.

Quantum databases implement a variant of the above semantics
in a setting where value assignment is not immediate, but rather
deferred until after the commit of the transaction. As explained
in the Introduction, instead of grounding and executing the update
portion, the system maintains a guarantee that at least one suitable
grounding for the committed transaction exists at all times. Once
it is necessary or desirable to actually make the updates – for ex-
ample, once Mickey is at the airport and checking in for his flight
– then the system chooses a grounding and performs appropriate
database writes. In terms of the programming API, the application

is notified of the initial transaction commit only; because of the
guarantee that the system subsequently maintains, the transaction
will never need to be rolled back and the application is not noti-
fied again when the value assignments are actually made. (Such a
second notification could in principle be issued if desired, although
it is not clear whether this would ever be useful in practice.) The
first notification – that the transaction has committed – represents
a guarantee that the transaction will achieve its goal of booking a
seat when value assignment actually happens.

The deferred grounding execution model has an impact on the
“basic” semantics described above. It creates the need for two key
design decisions with regard to the transaction semantics. The first
relates to the treatment of optional constraints, and the second to
choosing an appropriate notion of transaction serializability.

We begin with the issue of optional constraints. Suppose a com-
mitted transaction currently has a possible assignment that satisfies
its optional constraints – for example, when Mickey’s transaction
commits, Goofy has seat 5B booked and seat 5A is open for Mickey.
Now suppose another transaction arrives and makes a conflicting
request. For example, Pluto specifically requests to book seat 5A,
and his constraint is non-optional. Should the system allow Pluto
in, or keep 5A for Mickey? Our design decision is to allow Pluto
in, since Mickey’s constraint was optional rather than hard. Some-
what more formally, the only invariant that the system maintains
for a committed resource transaction is that there exists a satisfying
assignment for its non-optional body atoms. In fact, optional con-
ditions are checked only when the variables of the transaction are
assigned values; if there is an assignment that satisfies optional as
well as non-optional atoms, that assignment is chosen.

Second, the notion of serializability becomes interesting when
we move to a deferred assignment model. The order in which re-
source transactions commit is not necessarily the order in which
their variable assignments are fixed and in which their database up-
dates are carried out. Suppose the system needs to fix a ground-
ing for a committed resource transaction: in principle, it has two
options. It can choose from the values available at the time the re-
source transaction was committed, or from those available at the
time the value must be fixed. These sets may be different; in our
running example, we may well expect that the seat availability has
changed between the time that Mickey’s transaction committed on
Monday and the time that Mickey reads his seat number on Tues-
day. Choosing Mickey’s seat based on Tuesday’s availability is
a natural thing to do, but it violates classical transactional isola-
tion. Mickey’s transaction is now no longer serialized in commit
order. However, the intent [7] of his transaction has definitely been
preserved, and we have maintained semantic serializability as his
transaction has achieved all its goals. Maintaining strict classical
serializability is also possible; this requires the system to ensure
that at least one seat from those available on Monday remains avail-
able for Mickey. This means the system must be more restrictive
in terms of how many other transactions can commit. Quantum
databases can implement transactions under either semantic serial-
izability or the classical ACID-style strong serializability, although
we expect the former to be more natural in most application sce-
narios.

3. QUANTUM DATABASES
We now present the details of our execution model for resource

transactions which allows for deferred assignment of values to vari-
ables in committed transactions. We achieve this by maintaining
the database in a partially uncertain state, called a quantum state,
and updating it appropriately in response to various transactional
operations. We call the resulting database a quantum database.

3.1 Defining a Quantum Database
Consider for a moment an execution model for resource transac-

tions where value assignment is not deferred. Rather, at the time the
transaction is executed, suppose the system finds all possible values
that could be assigned – all possible flights and seats for Mickey,
say – and forks the database state into several possible worlds. In
the first possible world, Mickey gets assigned the first available
seat, in the second he gets the second one, and so on. This yields a
large, but finite set of possible worlds, each of which is a concrete
database in which Mickey has a concrete seat on a concrete flight.

Suppose we now maintain all these possible worlds explicitly as
our database state. Other resource transactions can run on each
possible world as well and cause another “forking” of the state;
for example, if Donald now submits a transaction, the system can
create one possible world for each of Donald’s possible seat assign-
ments. If Donald only wanted a window seat, and there was only
one available window seat, this would eliminate all worlds in which
Mickey got that window seat. In other words, all worlds in which
Donald’s transaction cannot commit are eliminated. This is illus-
trated in Figure 2; we assume that there is only one available flight
to LA, number 123, for simplicity. Now, suppose that Minnie sub-
mits a transaction of her own, requesting to sit next to Mickey. The
new set of possible worlds is as shown in the final panel in Figure
2.

Suppose Mickey eventually needs to check-in and actually needs
to know – i.e., read – his seat. Our goal is to make the existence of
possible worlds invisible to the transaction. However, the read may
have a different value depending on the possible world that it occurs
in. Therefore, the system is forced to choose one possible value for
the read and “collapse” the uncertainty as required so that this is
the correct value read. All possible worlds consistent with the read
are retained, and all others are discarded. It may so happen that
some of his optional conditions cannot be satisfied in any world, in
which case the world in which the maximum number of conditions
are satisfied is preserved.

Of course, the number of possible worlds in the above setup
would grow at an exponential rate as new transactions are pro-
cessed. Therefore, an extensional representation of these worlds
as described above is not practical. We can, however, represent the
possible worlds intensionally in a concise way, and this is the idea
behind our true quantum database abstraction.

At a very high level, a quantum database consists of an exten-
sionally specified portion, which is the same in all possible worlds,
and an ordered sequence of pending transactions – more precisely,
committed transactions whose value assignments are still pending.
To avoid cascading rollbacks and enforce serializability, it is nec-
essary to guarantee two things – first, all the pending value as-
signments can be made successfully, and second, any reads on the
database issued by transactions serialized after a pending transac-
tion are handled correctly. Both of these requirements are chal-
lenging to enforce. The former requires ensuring the existence of
a successful grounding for the body of each pending transaction,
when these transactions are executed in a sequence. The latter re-
quires defining what dependence between transactions really means
in the case of deferred value assignments, and accurately identify-
ing pending transactions that may affect the result of a read.

More formally, we define a quantum database as follows.

Definition 3.1 (Quantum Database). Let D be a completely ex-
tensional initial database. Also, let T0, . . . ,TN be a sequence of N
resource transactions. A quantum database, denoted as D̂, rep-
resents the set of all possible database states obtained from D by
applying the operations in U0 through UN under consistent ground-

ings. A grounding for transaction Ui is consistent if it corresponds
to a valid grounding of Bi on the database obtained by applying U0

through Ui−1 to D.

The above definition does not assume the existence of consis-
tent groundings for the bodies. In the absence of a consistent set
of groundings, the quantum database D̂ corresponds to ∅; during
normal execution, the goal is to avoid reaching such a state. This is
done by disallowing changes to both the extensional portion D and
the intensional portion (the set of pending transactions) as neces-
sary. Most concretely, if adding a new transaction to the end of the
sequence would cause the set of possible worlds to become empty,
the transaction is disallowed.

The above intensional representation can be modified slightly to
allow semantically serializable schedules as defined in Section 2.
This essentially involves allowing changes to the ordering of the
sequence of resource transactions as long as all constraints in the
definition above can be maintained.

3.2 Maintaining a Quantum Database
We now describe how a quantum database is maintained and

transformed in the presence of system operations, while satisfy-
ing the goal of retaining a nonempty set of possible worlds at all
times. The operations that affect a quantum database state are
reads, writes, the execution of new resource transactions, and ex-
plicit grounding (value assignment) that affects one or more pend-
ing transactions; this latter type of operation may be required for
various reasons which will be explained below.

3.2.1 Composing resource transactions
As new resource transactions arrive and are processed, the sys-

tem constructs a single logical formula whose satisfiability corre-
sponds to the existence of a consistent set of groundings for all
the pending transactions. Here, we explain at a high level how
this formula is constructed. The intuition is that a sequence of re-
source transactions can be composed into a single resource trans-
action with a body that is more elaborate than the conjunction of
the respective bodies. If the body of the new resource transaction
is satisfiable on D, all the transactions are guaranteed successful
execution (i.e., the existence of a successful value assignment). If a
new resource transaction cannot be admitted in a way that preserves
satisfiability, the transaction is rejected.

We begin with a key assumption about the database D. We as-
sume that any relation R in D that appears in the FOLLOWED BY
clause of a resource transaction has a key, i.e., satisfies set seman-
tics. This property holds naturally in most cases; if it does not, it
can be enforced either by normalization or by introducing dummy
identifier columns.

We introduce a few definitions that are necessary for our presen-
tation. Given a set of relational atoms containing variables and a
database D, a substitution is mapping from variables to variables
or data values from D. The most general unifier of two relational
atoms b1 and b2 is defined as follows.

Definition 3.2 (Most General Unifier). Let b1, b2 be two atoms.
A unifier for b1 and b2 is a substitution θ such that θ(b1) = θ(b2).
A most general unifier (mgu) for b1 and b2 is a unifier θ for b1, b2

such that for each unifier ν of b1 and b2, there exists a substitution
ν′ for which ν = ν′ ◦ θ.

Based on the definition of most general unifier, we now define a
unification predicate.

Definition 3.3 (Unification Predicate). Let b1, b2 be two atoms.
The unification predicate for b1 and b2, denoted ϕ, is a conjunction

Name Flight Seat

Name Flight Seat

Mickey 123 1A

Name Flight Seat

Mickey 123 1B

Name Flight Seat

Mickey 123 1C

Mickey’s transaction
arrives

Quantum DB State
after Mickey’s

transaction

Name Flight Seat

Mickey 123 1A

Donald 123 1B

Name Flight Seat

Mickey 123 1B

Donald 123 1A

Name Flight Seat

Mickey 123 1C

Donald 123 1A

Quantum DB State after Donald’s
transaction– larger number of

possibilities

.

.

.

Donald’s transaction
arrives

Name Flight Seat

Mickey 123 1C

Donald 123 1A

Minnie 123 1B

.

.

.

Quantum DB State after Minnie’s
transaction– eliminates worlds where

Minnie cannot sit next t o Mickey

Name Flight Seat

Mickey 123 1A

Donald 123 1C

Minnie 123 1B

Minnie’s transaction
arrives

Figure 2: Evolution of an extensional quantum database

of equality constraints, where each equality constraint corresponds
to a variable substitution in the most general unifier θ of b1 and b2.

For example, consider the atoms R(1, v1, v2) and R(v3, 2, v4). Their
most general unifier is the substitution {{v1/2}, {v2/v4}, {v3/1}}. Cor-
respondingly, ϕ = (v1 = 2)∧ (v2 = v4)∧ (v3 = 1) is their unification
predicate. In the absence of a most general unifier, the unification
predicate is trivially false. If the most general unifier is empty (i.e.,
there are no variables in either atom), the predicate is trivially true.

We now explain how to compose a set of resource transactions
into a single resource transaction. The Lemma below shows how
this is done in the simple case of two resource transactions each
containing a single body atom and a single atom in the update por-
tion.

Lemma 3.4. Let T1 and T2 be two resource transactions as given
below, where each Ui and Bi is a single atom:

(T1) U1 : −1B1

(T2) U2 : −1B2

A sequential execution of T1 and T2 on any database D is equiva-
lent to the execution of the transaction T12, given by

U1,U2 : −1B

where B =

B1 ∧ (B2 ∨ ϕ(B2,U1)) if U1 is an insert
B1 ∧ B2 ∧ ¬ϕ(B2,U1) if U1 is a delete

Proof. The proof is given in Appendix A.

Basically, the body of T12 reflects the fact that there needs to be
a grounding for B1 on the original database and a grounding for B2

on the database modified by U1; if this modification was an insert,
this opens up the possibility that B2 could ground on the inserted
tuple. If U1 was a delete, this means B2 cannot ground on the tuple
deleted by U1. This idea extends to more general updates involving
sets of inserts and deletes, and conjunctive queries with multiple
body atoms.

Theorem 3.5 (Composition). Let T1 and T2 be two resource
transactions as given below:

(T1) U1 : −1B1

(T2) U2 : −1B2

A sequential execution of T1 and T2 on any database D is equiva-
lent to the execution of the transaction T12, given by

(T12) U1,U2 : −1 B

where B = B1 ∧
∧
i, j

(bi
2 ∧ ¬ϕ(bi

2, d
j
1)) ∧

∧
i, j

(bi
2 ∨ ϕ(bi

2, i
j
1))

and bi
2 ∈ B2 and d j

1, i j
1 are the deletes and inserts in U1 respectively.

Proof. This can be shown with a generalization of the argument
used to prove Lemma 3.4.

An example of the composition of three resource transactions is
shown in Figure 3. In the first transaction, Mickey cancels a reser-
vation for a seat on flight number 1. In the second, Donald books a
seat on a flight, where both the seat and the flight are unconstrained.
In the third, Goofy books a seat on flight 2. Figure 3 (b) shows the
composition of the first two transactions, and then the composition
of all three. The satisfiability of the body of T123 guarantees that
there is a possible value assignment corresponding to the ordered
execution of the three original transactions.

3.2.2 Reads and Writes
We now explain how a quantum database manages the set of

possible worlds it represents when handling reads and writes.
Reads: What should happen when a quantum database repre-

senting a set of possible worlds is read? For example, what happens
if Mickey submits a query to find out his actual flight and seat num-
ber? There are several options. One is to expose the uncertainty to
the user by returning all possible values for the read. The second
is to pick a single value and return it, which can be done under

(T1) −B(M, 1, s1),+A(1, s1) D1 B(M, 1, s1)
(T2) −A(f2, s2),+B(D, f2, s2) D1 A(f2, s2)
(T3) −A(2, s3),+B(G, 2, s3) D1 A(2, s3)

(a)

(T12) U1,U2 D1 B(M, 1, s1) ∧ {A(f2, s2) ∨ {(f2 = 1) ∧ (s1 = s2)}}

(T123) U1,U2,U3 D1

B(M, 1, s1)∧
{A(f2, s2) ∨ {(f2 = 1) ∧ (s1 = s2)}}∧
A(2, s3) ∧ ¬{(f2 = 2) ∧ (s3 = s2)}

(b)

Figure 3: (a) Three resource transactions (b) The composition
of the first two and all three transactions from (a) above; each
Ui denotes the update portion of transaction i.

two different semantics. First, we can pick a single possible value
and return it without nonetheless fixing it in the database, so that
Mickey would see a particular seat number but have no guarantees
that this number will remain fixed. Second, we can pick a single
value at query answering time and fix it at that time, essentially
“collapsing” part of the quantum state to a concrete, extensionally
specified state. These three options represent different points in a
trade-off between providing strong read consistency guarantees and
maintaining a large set of possible worlds to allow for better future
resource allocation.

The quantum databases we present in this paper use the third
option mentioned above; this approach completely hides the un-
certainty and allows the programmer to assume that he or she is
working with a standard database that provides the expected read
repeatability guarantees. In practice, we expect reads to be infre-
quent until the time of resource “consumption” (such as checking
in for a flight), at which time of course the assignments must be
fixed anyway. We note in particular that the programmer is noti-
fied by the system when his or her resource transaction commits;
this notification is a guarantee that a suitable resource exists and
will still exist when it is actually needed in the future. Therefore,
there is no need for the programmer to issue an immediate read to
“check” whether a suitable resource for the transaction exists in the
system – the fact that the transaction committed already provides
the desired confirmation.

In certain application-specific settings, handling reads in a way
that exposes uncertainty and/or loosens consistency guarantees may
be an acceptable solution. For example, consider the calendar man-
agement scenario we introduced in Section 1. We could use a quan-
tum database to delay finalizing employee meeting schedules until
absolutely necessary. However, it might be useful for employees to
know some information about their schedules a day or two in ad-
vance: for example, they may want to know whom they are meeting
so that they can prepare appropriately, without needing to know ex-
actly when each meeting occurs. This would suggest a more com-
plex read model where reading an employee’s schedule for that day
removes some of the uncertainty – regarding whom he or she is
meeting – but retains the uncertainty regarding the specific time of
each meeting. Developing quantum databases that use such alter-
nate approaches for read handling is future work.

The approach we take in this paper, i.e., fixing a particular value
assignment at read time, obviously reduces the opportunities avail-
able for future optimization. Two important challenges arise: what
values must be fixed when handling a particular read, and how

should they be fixed? Both of these are nontrivial, and it is de-
sirable to resolve them intelligently.

Identifying the values that must be fixed to handle a read can be
done at different levels of precision. At the highest level of general-
ity, this question is related to the problem of computing information
disclosure through views, which is Π

p
2 -complete [14]. However, a

simple practical solution is to use a conservative criterion based on
unifiability. If a relational atom in our incoming read query unifies
with a pending update Ui from a transaction Ti, the values involved
in that transaction are fixed.

Certain reads necessitate more grounding than others. For exam-
ple, a read requesting the full contents of the Booking table will
cause many more groundings than a read asking only for Mickey’s
seat number. The programmer should be aware that such general
reads have a potential negative impact on optimal resource alloca-
tion and should strive to avoid them. It is also possible to imagine
solutions where the programmer is provided more explicit feedback
before issuing a read on the potential “consequences” of that read
on the possible worlds. This might be helpful to the programmer
as he or she determines which reads to issue; on the other hand
it violates the pure quantum database model where uncertainty is
totally hidden from the programmer. Investigating the details and
usefulness of such a solution is ongoing work.

Once the system decides which values need to be fixed due to a
read, the system may still need to make a choice if more than one
satisfying assignment is available for the transactions in question.
Which specific seat among all those that are open should Mickey
receive? Generally, it is desirable to fix values in such a way as to
maximize the remaining number of possible worlds; more sophis-
ticated application-specific heuristics may also be appropriate.

Writes: Writes are significant in a quantum database because
they may cause the formula associated with the pending transac-
tions to become unsatisfiable. Thus, all writes to the database which
unify with the bodies of the pending transactions need to pass through
a check and are rejected if the check fails. This is analogous to the
check performed when processing a new resource transaction, with
the difference that a blind write changes the database over which
the formula must remain satisfiable rather than the formula itself.

3.2.3 Grounding
The uncertainty in the quantum database may need to be resolved

at certain points, due to a read or due to application specific require-
ments. Fixing some concrete value assignments in the database
may require actual execution of some of the committed resource
transactions that were previously pending value assignment.

When a particular value assignment must be fixed and a partic-
ular pending transaction actually carried out, the naïve approach
would be to also ground and apply all transactions that arrived in
the system earlier. For example, consider a quantum database D̂
with pending transactions T0, . . . ,TN over an extensional database
D. Suppose that transaction Ti requires grounding. The naïve ap-
proach is to apply transactions T0, . . . ,Ti in turn on the database D
to get a new database D′, by grounding each of them and carrying
out the appropriate update. The definition of a quantum database
guarantees that suitable groundings exist for each of T0, . . . ,Ti as
long as the set of possible worlds is nonempty. This procedure
yields a quantum database with extensional state D′ and the pend-
ing updates of Ti+1, . . . ,TN . Such an approach provides strong seri-
alizability of the transactions in arrival order; however, it may over-
constrain some assignments prematurely and reduce the window of
opportunity for future optimization.

An alternative is to strive for semantic serializability (as intro-
duced in Section 2); this approach avoids grounding transactions

MySQL Database

Unification Based Algorithms for Read Checks and
Composition

Satisfiability Checker

Quantum State

Recovery Module

Pending Resource
Xacts Table

LIMIT 1
SQL Query

Solution Cache

Composed
BodyReads and

Writes to the
database

Application Clients

Resource / Non-resource Xacts
Quantum Database

Middle-Tier

Figure 4: Quantum Database System Architecture

unless strictly necessary. The invariant associated with the quan-
tum database D̂ is, in general, order dependent. While this invariant
guarantees successful execution for the order in which the transac-
tions arrived, there can be other orderings of the pending trans-
actions which have the same desired effect. Of course, reorder-
ing the transactions affects the formula introduced in Section 3.2.1
whose satisfiability guarantees successful execution of the remain-
ing pending transactions. This means we cannot reorder pending
transactions arbitrarily, but must check for satisfiability first. That
is, we must maintain the invariant that there exists some ordering of
the remaining pending transactions under which the resulting for-
mula is still satisfiable. Checking for all possible reorderings would
be computationally intractable as there are exponentially many of
them. A practical strategy is to check only the ordering where the
transaction under consideration is moved to the front of the cur-
rent ordering. In most cases, we expect the underlying satisfiabil-
ity problem to be very under-constrained (i.e. many available re-
sources and few pending transactions) so this strategy should yield
good results.

4. QUANTUM DATABASE PROTOTYPE
Our quantum database prototype is implemented as a middle-tier

service over a MySQL database. From the developer’s perspective,
the API is almost identical to the API provided by any standard
database. It allows the developer to submit queries and updates to
the database; the major new feature is support for resource trans-
actions. Our current implementation does not accept and parse re-
source transactions in their SQL format, but only in the intermedi-
ate Datalog-like representation.

Figure 4 shows the architecture of our quantum database proto-
type. The constraint satisfiability checking required to maintain the
quantum database invariant is performed using database LIMIT 1
queries; alternate possible solutions are discussed in Section 6. We
explain some of the important architectural features of our proto-
type below.

Quantum State: The prototype keeps an in-memory representa-
tion of the intensional portion of the quantum database state. This
in-memory state is maintained as a set of composed transaction
bodies, where each composed body is a single formula that looks
like the one in Theorem 3.5. Some resource transactions are to-
tally independent of each other, i.e., there is no unification possible

between them – this is true for example of transactions that book
seats on different and explicitly specified flights. The system par-
titions the resource transactions accordingly into independent sets
and maintains a separate composed transaction body for each set.
This partitioning obviously helps keep all the required computa-
tions efficient as the quantum state evolves. The partitioning is not
fixed as new transactions arrive, however. For example, we may
have a scenario involving two sets of transactions, one containing
only requests for window seats and the other only for aisle seats.
These sets are independent; however, if a new transaction arrives
requesting either a window or an aisle seat, then this new transac-
tion as well as the two original sets must all be merged and com-
posed together.

Solution Cache: The prototype maintains an in-memory cache
of possible solutions (i.e., value assignments) to the composed trans-
action bodies. Recall that a quantum database must maintain the
invariant that there exists at least one grounding for each of the
composed bodies. When a new resource transaction arrives in the
system, we check whether an existing solution in the cache can
be extended to accommodate the new transaction. If this is not
possible, then we generate a LIMIT 1 SQL query corresponding
to the body of the new composed transaction and send it to the
database. If this query has an answer, the solution cache is updated
appropriately and the transaction commits. If not, then the new re-
source transaction is aborted. Maintaining a solution cache allows
us to amortize the cost of checking satisfiability of composed bod-
ies across a set of transactions. However, in the worst case, the
search for a solution must be restarted from scratch each time. A
strategy to avoid such recomputation is to increase the number of
solutions maintained in the cache. Such additional solutions can
be computed by a background process in order to keep the per-
transaction latency low. Our current prototype does not implement
this strategy, but instead maintains a single solution in the cache for
every composed transaction.

Since the solution cache always contains at least one valid ground-
ing for all the composed transactions, read queries which induce
grounding of pending transactions can be answered without much
overhead. If a read requires fixing some values in the database, the
system can use appropriate values from the solution cache to apply
the updates of the affected resource transaction(s). Once the re-
quired values are fixed in the database, the read query is processed
normally.

Recovery: Since the execution of resource transactions is de-
ferred post-commit, we need to maintain additional information
about these transactions to ensure durability. We do this by uti-
lizing the recovery mechanisms of the underlying database. Each
pending resource transaction is serialized and inserted into a special
database table called the pending transactions table. This inser-
tion happens after the satisfiability check and before the transaction
commits. During recovery, a quantum database module restores the
in-memory quantum state to what it was before the crash based on
the pending transactions table. When a pending resource trans-
action is grounded and executed, it is removed from the pending
transaction table.

Our prototype is implemented as a Java application built over
MySQL (version 5.5.28) using the InnoDB engine. The maximum
number of relations that can be referenced in a single MySQL join
operation is limited to 61; this means our system can only handle
up to 61 atoms in each composed transaction body. This limita-
tion is not fundamental to the problem itself, but arises out of the
maximum number of joins supported by MySQL. The semantics
of quantum databases allows the reduction of uncertainty through
grounding at any time; therefore, we keep the size of the composed

bodies small by forcibly grounding and executing some pending re-
source transactions as needed. Concretely, we ground transactions
to keep the maximum number of pending transactions in each parti-
tion below a parameter k; when grounding, we start with the oldest
transactions based on their arrival time in the system.

5. EXPERIMENTS
In this section, we show the results of an experimental evalua-

tion of quantum databases in a realistic application setting. The
aim of our evaluation is primarily twofold. One, to measure the
overhead of quantum databases over traditional databases, and sec-
ond, to quantify the improvement in allocation of resources due to
deferred execution through quantum databases.

5.1 Application Scenario
Our experiments are set in the travel application scenario used

throughout the paper, enhanced with the presence of user-defined
coordination constraints that are expressed as entangled queries [8].
Entangled queries allow users to build powerful applications where
the heart of the coordination – the choice of data values – is per-
formed at the same declarative level as the data access. Entangled
transactions [9] are transactions which include entangled queries.
The algorithms presented in Section 3.2 can be modified easily
to include functionality related to entanglement and turn quantum
databases into a platform for executing entangled resource transac-
tions.

For example, the transaction in Figure 1 can be read and exe-
cuted as an entangled resource transaction, in the following way.
If Mickey submits this transaction before Goofy has arrived in the
system, the system can maintain Mickey’s request to sit next to
Goofy as a “forward constraint,” to be satisfied if possible should
Goofy arrive in the system later. If Goofy does arrive, the system
will try to give him and Mickey adjacent seats. Of course, if Goofy
never arrives, coordination is impossible, which is why Mickey’s
coordination constraint needs to remain OPTIONAL.

Entangled resource transactions are different from the (pure) en-
tangled transactions [9] where coordination was required for suc-
cessful execution. The execution model for entangled transactions
does not allow an entangled transaction to commit until its part-
ner(s) is also in the system; this means that entangled transactions
must be executed in batches. Our new quantum database model
allows entangled resource transactions to execute and commit indi-
vidually. The benefit of the current approach is that while Mickey
is no longer guaranteed to sit next to Goofy, he is now guaranteed
to have a seat for himself regardless of when and whether Goofy
might submit his transaction.

Since the primary motivation for deferring the execution of an
entangled resource transaction is to allow coordination with a yet-
to-arrive partner transaction, an entangled resource transaction wait-
ing for its partner is finally executed as soon as its partner arrives
and no longer remains in a quantum state. That is, when both coor-
dinating users’ transactions are in the system, their respective seat
assignments are fixed. This situation is an example where the ap-
plication logic decides how long a resource transaction should be
kept in a quantum state.

5.2 Experimental Setup
We created a workload of simulated entangled resource transac-

tions to model the output of the front-end social travel application
as described above. Our workload simulates users desiring to coor-
dinate with their friends on flights and to sit in adjacent seats. We
compare this workload against a workload of non-entangled trans-
actions issued by an “intelligent social” (IS) user. Such a user first

Order of Arrival Characteristic Max. Number of
Pending Xacts

Alternate Ti entangles with Ti+1 1
Random Ti entangles with T j for

some i, j < N
dN/2e

In Order Ti entangles with Ti+N/2 dN/2e
Reverse Order Ti entangles with TN−i dN/2e

Table 1: Four different transaction arrival orders and the maxi-
mum number of pending transactions in the quantum database
assuming a transaction remains pending until its partner ar-
rives.

issues a query to check whether his/her friend has an existing reser-
vation. If so, he books the adjacent seat, and if not he books a seat
with a free adjacent seat. The IS workload simulates the kind of
coordination that is achievable without using a quantum database.

The overhead of quantum databases depends on the complex-
ity of checking the invariants maintained by the quantum database.
Each invariant corresponds to the body of a composed transaction,
and hence the complexity of checking the invariant depends on the
number of pending transactions which are composed together. As
described in Section 5.1, an entangled resource transaction is kept
pending only until the arrival of its partner. Therefore, the order of
arrival of the transactions w.r.t. their partners determines the com-
plexity of the invariants. Table 1 shows four possible orders of
arrival of transactions. In the Alternate arrival order, each user
transaction is followed immediately by his or her partner’s transac-
tion. This only leaves a maximum of 1 pending transaction in the
quantum database. The second possible order of arrival is Random,
which orders transactions randomly and is expected to be the most
realistic. While the maximum number of pending transactions for
the Random order is N/2, it is expected to be lower on average.
Finally, the orders of arrival which lead to over half the total num-
ber of transactions to be pending are denoted as In Order and
Reverse Order. In In Order order of arrival, half the users sub-
mit their transactions followed by their respective partners in the
same order. In Reverse Order, the second half of the users sub-
mit transactions in the reverse order, i.e., the first user sits entangles
with the last user, the second user entangles with the second to last
user and so on. While the maximum number of pending transac-
tions for both In Order and Reverse Order are the same, for
Reverse Order the period for which a transaction is kept pending
varies from 1 to N, as opposed to a constant N/2 for In Order.

We artificially generate a database of flights over which the reser-
vation requests are issued. Each flight in our database is represented
as a set of seats arranged in rows of three. Each row has four pos-
sible adjacent pairs, only two of which can be booked simultane-
ously. The number of rows per flight and the number of flights in
the database are changed across experiments. Appropriate indices
are defined for each relation in the database.

In all our workloads, all coordination partners arrive in the sys-
tem at some point so full coordination is theoretically achievable.
A key metric for measuring the benefit of quantum databases is
the percentage of maximum possible coordination which is actu-
ally achieved. For example, for a single flight in our database with
ten rows (10×3 seats), a maximum of twenty coordination requests
for adjacent seats can be accommodated, and therefore the benefit
of using quantum database is measured as the fraction of users (of
the maximum twenty) who actually are able to coordinate. The ex-
pectation is that quantum databases should allow us to significantly
increase this percentage over what is possible with an intelligent

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100

C
um

ul
at

iv
e

tim
e

(in
 m

ill
is

ec
on

ds
)

Transaction order of arrival

Alternate
Random
In Order

Reverse Order
Random IS

Figure 5: Cumulative time of transaction execution for differ-
ent orders of arrival of transactions.

 0

 20

 40

 60

 80

 100

Alternate Random In Order Reverse Order

P
er

ce
nt

ag
e

of
 C

oo
rd

in
at

io
n

QuantumDB
Intelligent Social (IS)

Figure 6: Percentage of coordination for different orders of ar-
rival of transactions.

social strategy.
We ran all experiments on a 2.13GHz Intel(R) Xeon(R) E5606

with 48 GB of RAM. The MySQL query optimizer by default per-
forms an exhaustive search over all possible query plans, and this
number grows exponentially with the number of tables referenced
in a join query [1]. Quantum database queries typically involve a
high number of joins, and therefore for default values the database
is observed to spend a disproportionate amount of time in query op-
timization as compared to query execution. For all our experiments,
we set the value of the parameter optimizer_search_depth to 3
to reduce the amount of time spent in query optimization without
significant change in query execution time. The reported values are
averages over 5 runs. Executable .jar files and instructions for
replicating our experiments can be found on our project website
[2].

5.3 Results
Order of arrival: The first experiment measures the overhead of

using a quantum database for the four different orders of arrival in
Table 1. We set the parameter for k to its maximum value of 61 for
this experiment. We start with a database containing a single flight
with 102 seats (34 rows of 3 seats each), and issue a sequence of

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 2000 4000 6000 8000 10000 12000 14000

T
im

e
(s

)

Number of transactions

k=40
k=30
k=20

IS

Figure 7: Scalability

102 transactions according to each order. Our choice of the value
of k ensures that the partner for a transaction arrives within the
window provided by k.

Our results are shown in Figure 5 and Figure 6. We ran the ex-
periment with entangled and intelligent social workloads for each
of the four transaction arrival orders described above. We found
that the performance of the system on the intelligent social work-
load does not depend on arrival order, so we only show results for
the four different arrival orders of the entangled workload and for
the intelligent social workload in the Random arrival order. Figure 5
shows the cumulative execution time for each workload. Under the
Alternate arrival order, the overhead of our system as compared
to intelligent social is negligible. This is expected, as only a max-
imum of one transaction is kept pending by the quantum database.
However, for both In Order and Reverse Order arrival orders,
our system is substantially slower than the intelligent social ap-
proach. The steep slopes for both these arrival orders in Figure 5
are caused by the increasingly larger bodies of the composed trans-
actions. As the partner queries start to arrive in the second half of
the respective workloads, the slope reduces as the number of pend-
ing transactions decreases. The Random arrival order, which we
expect to be by far the most realistic, shows a small overhead over
intelligent social, on the order of a few milliseconds per transaction.
We believe this is acceptable in practice, particularly given the sig-
nificant increase in successful coordination that is gained through
using a quantum database.

Figure 6 shows the percentage of the total possible coordination
that the system actually achieves for each arrival order. The quan-
tum database achieves the maximum possible coordination for all
of the four workloads; for all arrival orders except Alternate, this
is a substantial improvement over what is possible with the intelli-
gent social approach.

Scalability: We test the scalability of our system as the number
of flights in the database is increased from 10 to 100. Each flight
in the database has 150 seats (50 rows of 3 seats each). We initial-
ize the system in a state where all flights are fully available, and
issue as many transactions as there are available seats in Random
order. Upon completion of all transactions each user has a seat
and all available seats are booked. Instead of maintaining a single
large invariant for all flights, the system correctly identifies the in-
dependence of queries between different flights, and it maintains a
relatively smaller set of invariants, one for each flight. Such par-
titioning allows the system to scale as the number of flights is in-

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

T
im

e
(s

)

Percentage of Reads

k=40(Updates)
k=30(Updates)
k=20(Updates)

k=40(Reads)
k=30(Reads)
k=20(Reads)

Figure 8: Performance under mixed workload.

Quantum DB

k=20 k=30 k=40
Intelligent Social

45.6 86.9 99.9 20.2

Table 2: Average percentage of successful coordinations

creased.
Figure 7 shows the total time taken for all transactions to com-

plete and Table 2 shows the percentage of successful coordination
among the transactions. The percentage of coordination is depen-
dent on the maximum number of pending transactions per flight and
as expected remains constant with respect to the number of trans-
actions. The average values of the percentage of coordination for
different values of k is shown in Table 2. From Figure 7 it can be
seen that with smaller values of k, execution is faster since the body
of the composed transaction we must maintain and check satisfia-
bility on has a smaller number of joins. However, the percentage
of successful coordination is lower as the system grounds transac-
tions pre-emptively reducing the chances of successful coordina-
tion. Even for small values of k, we see a factor of 2 improvement
in coordination percentage over the IS strategy.

We investigated the unexpected increase in Figure 7 for k = 40 at
13, 500 transactions. This increase occurs due to an unexpectedly
large amount of time spent in finding the solution to the composed
body of a few transactions. Digging deeper, we saw that this is an
artifact of the MySQL query optimizer which chooses a bad query
plan for several quantum database queries. We observed that such
queries occurred rarely and only for certain random orderings. We
modified the value of optimizer_search_depth to find an alter-
nate plan, and with an alternate plan the problem queries could be
answered about two orders of magnitude faster. We believe bet-
ter query plans would eliminate this erratic behavior. An alternate
ad-hoc approach would be to ground some pending transactions to
keep the query complexity and the resulting query execution times
within acceptable limits. A more fundamental approach to solving
this problem is discussed in next section.

Our system scales linearly in terms of execution time and main-
tains a constant coordination percentage as the number of transac-
tions increases. This linear increase is a consequence of the non-
unification based partitioning strategy implemented by the quantum
database.

Mixed Workload: Next, we study the behavior of our system
under realistic workloads which are a mix of resource and non-

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 C

oo
rd

in
at

io
n

Percentage of Reads

k=40
k=30
k=20

Figure 9: Percentage of coordination w.r.t. percentage of reads.

resource transactions. The non-resource transactions are read queries
by users who had earlier issued a resource transaction. Unlike in
normal databases, a non-resource read transaction on a quantum
database can induce updates to the database by forcing grounding
of pending resource transactions. Such forced grounding, however,
reduces the chances of successful coordination.

We run our experiment over a random ordering of 6000 transac-
tions. The database contains 40 flights each with 150 seats (50 rows
of 3 seats each). This ensures after all transactions are executed, ev-
ery user has a seat. We increase the number of read transactions in
steps of 10% (600 transactions) from 0% to 90% (5400 transac-
tions), and use values of k ranging from 20 to 40. As shown Fig-
ure 9, the percentage of successful coordination decreases linearly
with the percentage of reads. This is expected as under a high read
workload, the system needs to pre-emptively fix many transactions
and thereby prevents coordination. This is corroborated by Figure
8 which shows an increasing amount of time spent on the reads and
a decreasing amount of time spent on executing the resource trans-
actions. The decrease in the time spent on resource transactions is
because of preemptive grounding of pending transactions on being
read. This leads to fewer pending transactions in the system, and
correspondingly simpler satisfiability checks.

The anomalous behavior in Figure 8 at 20% reads for k = 40 and
70% reads for k = 30 can be attributed to the choice of bad query
plans by query optimizer as observed and explained in the previous
experiment.

6. DISCUSSION
Making quantum databases a practical platform for developing

applications involving resource allocation raises exciting research
challenges. In this section, we highlight some of these challenges
and discuss potential solutions.

Efficiency of evaluation: A core aspect of maintaining a quan-
tum database is checking and maintaining the satisfiability of the
composed transaction formula. Implementing the satisfiability check
in the naïve way with relational queries is suboptimal in the general
case, as the resulting query has a large number of joins and is not
well-suited to the capabilities of a traditional relational optimizer.
We discuss two potential solutions to overcome this limitation of
quantum database.

First, this problem is an instance of the Satisfiability problem,
which is known to have phase transitions [16]. Most real-world
resource allocation problems are under-constrained at least in the

initial phase, e.g., when seats on a given flight first go on sale. As
resources are allocated the problem tends to reach a critical ratio
of degrees of freedom (variables) vs. constraints at which the prob-
lem is hard; both comfortably under- and over-constrained prob-
lems tend to be easy to solve [16]. By identifying the difficulty of
checking satisfiability, a quantum database can switch to a more
aggressive fixing phase favoring faster response times over better
assignments.

Second, we believe, we can leverage state-of-the-art Satisfiabil-
ity Modulo Theory (SMT) solvers [4], which are essentially SAT
solvers where the interpretation of some symbols is constrained
by a background theory. Identifying the appropriate background
theory for quantum databases and designing an algorithm which
splits the task of satisfiability checking between the database and
the solver to achieve maximum efficiency requires addressing many
research problems, both theoretical and systems-related.

System design: Another key issue is the integration of quantum
database functionality into the technology stack used by develop-
ers. Should quantum databases be implemented within or on top of
a DBMS? The latter approach may be simpler and more portable,
but the former should yield better performance as well as signifi-
cant systems insights as we investigate how to integrate quantum
database functionality with the internals of a DBMS.

The quantum database model for resource allocation has con-
ceptual connections with existing concurrency control algorithms
already implemented in the DBMS to maintain isolation and to per-
form recovery. Consider isolation first: in a crude sense, a transac-
tion that has committed in a quantum database has a “logical lock”
on an instance of the resource and the quantum database system
is performing logical lock management. It is this logical locking
which allows reordering of logically non-conflicting transactions
as explained in Section 3.2.3. While we have presented a practi-
cally viable approach for detecting such logical lock conflicts using
unification, it will be interesting to understand how the algorithms
for maintaining a quantum database can be optimized by offloading
parts of it to the underlying database. Conversely, the algorithms
for maintaining a quantum database may provide insights for de-
signing intention based concurrency control mechanisms. Regard-
ing recovery, in many ways quantum databases avoid rollbacks by
performing resource allocation late and dropping constraints if they
cannot be satisfied. The question arises of whether this in any way
relates to the work performed by the recovery manager. Even if
not, it is possible that the recovery manager should be designed in
a different way to better support the unique features of quantum
databases.

7. RELATED WORK
Quantum databases are related to probabilistic databases [17] in

that both represent sets of possible worlds, although the uncertainty
in our case is strictly internal. More generally, the possible worlds
semantics plays an important role in certain modal logics, notably
logics of knowledge [6].

There is a large body of work on algorithms for resource alloca-
tion and more generally constraint processing [5]. Systems such as
Tiresias [13] and Cologne [12] integrate constraint satisfaction for-
malisms and algorithms with database technology, although they
address different problems than resource allocation. Also relevant
is the work on constraint-based replica reconciliation in the Ice-
Cube system [10] and transactional intent [7]. Resource transac-
tions are a clean and simple way of specifying transactional intent,
and quantum databases perform similar reconciliation to that done
in IceCube, although again in a different application setting.

Triggers or other active database constructs [18] might also be

used to encode the check for satisfiability of pending updates. How-
ever, they are notoriously complex to design and debug, and they
are not suitable for settings requiring transactional guarantees such
as atomicity and durability.

Constraint databases [15, 11] have some conceptual similari-
ties to quantum databases, particularly since both classes of sys-
tems work with intensional representations of state and/or relations.
However, quantum databases do not share the constraint database
goal of representing and reasoning about relations that hold over
an infinite universe. Conversely, work on constraint databases does
not focus on representing and maintaining a set of possible worlds
which changes as the database is modified. Nonetheless, we may be
able to exploit some techniques for query answering in constraint
databases to improve our system; investigating these opportunities
is future work.

8. CONCLUSIONS
In this paper, we presented quantum databases, a novel abstrac-

tion for declarative resource allocation. We introduced the idea
of deferred execution of transactions to improve allocation of re-
sources in a dynamic system. To make this idea practical, we pro-
posed unification based algorithms for efficiently maintaining the
database in a partially intensional representation in the presence
of queries and other transactions. We evaluated the performance of
quantum databases over our prototype implementation in a realistic
application scenario, and demonstrated the improvement in alloca-
tion of resources due to deferred execution. We believe that re-
search to address the quantum database-related research challenges
which we identified will expand the power of and provide insights
into multiple aspects of database engines.

9. ACKNOWLEDGEMENTS
Johannes Gehrke is a collaborator on this project but could not be

credited as co-author of this paper because of CIDR’s one-paper-
per-author rule.

We would like to thank the anonymous CIDR reviewers for their
insightful comments which helped us to improve this paper.

This research has been supported by the NSF under Grants IIS-
1012593, IIS-0911036, by a Google Research Award, by ERC Grant
279804, and by the iAd Project funded by the Research Council of
Norway. Any opinions, findings, conclusions or recommendations
expressed in this paper are those of the authors and do not neces-
sarily reflect the views of the sponsors.

10. REFERENCES
[1] http://dev.mysql.com/.
[2] http://www.cs.cornell.edu/bigreddata/youtopia/.
[3] J. Chen, A. Machanavajjhala, and G. Varghese. Scalable

social coordination with group constraints using enmeshed
queries. In CIDR, 2013.

[4] L. De Moura and N. Bjørner. Satisfiability modulo theories:
introduction and applications. Commun. ACM, 54(9):69–77,
Sept. 2011.

[5] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[6] R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi. Reasoning

about Knowledge. MIT Press, 2004.
[7] S. Finkelstein, T. Heinzel, R. Brendle, I. Nassi, and

H. Roggenkemper. Transactional intent. In CIDR, 2011.
[8] N. Gupta, L. Kot, S. Roy, G. Bender, J. Gehrke, and C. Koch.

Entangled queries: enabling declarative data-driven
coordination. In SIGMOD, 2011.

[9] N. Gupta, M. Nikolic, S. Roy, G. Bender, L. Kot, J. Gehrke,
and C. Koch. Entangled transactions. In VLDB, 2011.

[10] A.-M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel.
The IceCube approach to the reconciliation of divergent
replicas. In PODC, Newport, RI, USA, 2001.

[11] G. M. Kuper, L. Libkin, and J. Paredaens, editors. Constraint
Databases. Springer, 2000.

[12] C. Liu, L. Ren, B. T. Loo, Y. Mao, and P. Basu. Cologne: A
declarative distributed constraint optimization platform.
PVLDB, 5(8):752–763, 2012.

[13] A. Meliou and D. Suciu. Tiresias: the database oracle for
how-to queries. In SIGMOD, pages 337–348, 2012.

[14] G. Miklau and D. Suciu. A formal analysis of information
disclosure in data exchange. J. Comput. Syst. Sci.,
73(3):507–534, 2007.

[15] P. Revesz. Introduction to constraint databases.
Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[16] B. Selman. Stochastic search and phase transitions: AI meets
physics. In IJCAI (1), 1995.

[17] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic
Databases. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2011.

[18] J. Widom and S. Ceri, editors. Active Database Systems:
Triggers and Rules for Advanced Database Processing.
Morgan Kaufmann, 1995.

APPENDIX
A. PROOF OF LEMMA 3.5

Proof. Let Var1 and Var2 denote the set of variables in U1 and
U2, respectively. We assume T1 and T2 have no shared variables,
i.e. Var1 ∩ Var2 = ∅. Under the range restriction requirement for
resource transactions, Var1 and Var2 are subsets of the variables in
B1 and B2, respectively. In the proof below, we use the standard
notion of valuation – a valuation is a map from variables to values
in the database.

The proof is by cases depending on whether U1 is an insert or a
delete.

Case I : U1 is a delete

Consider the database state transitions D
T1
−−→ D′

T2
−−→ D′′, where the

superscript above each arrow denotes the transaction operating on
the database during the transition. Let ν1 and ν2 denote the val-
uations for Var1 and Var2 that lead to the database states D′ and
D′′, respectively. We show that executing T12 on D under the same
valuations for the respective variables leads to the same D′′.

Using our assumption that each relation in D has a key, we claim
that ν1U1 , ν2B2, that is, the relational atom deleted by U1 is not
the same as the relational atom that B2 grounds on. Suppose this
claim is false: then it must be that ν2B2 ∈ D as the only difference
between D and D′ is the deletion of the tuple ν1U1. However, this
means D contained two instances of the same tuple (equal to both
ν1U1 and ν2B2), which is impossible by our assumption that each
relation has a key.

Establishing that ν1U1 , ν2B2 tells us two things. First, by defi-
nition of ϕ, ν1ν2ϕ(U1, B2) = f alse. This implies that B = B1 ∧ B2.
Second, we know that ν2B2 ∈ D. Therefore, ν1∪ν2 is a valid valua-
tion for B, and under this valuation the execution of T12 on D leads
to D′′.

Now let us consider the other direction, i.e. suppose D
T12
−−→ D′′

under valuation ν over Var1∪Var2. Let ν1 and ν2 be the projections
of ν on Var1 and Var2. This implies that both ν1B1 and ν2B2 are in

D. As ¬ν1ν2ϕ(U1, B2) is true, ν1ν2ϕ(U1, B2) must be false. This, by
definition of ϕ(U1, B2), implies ν1U1 , ν2B2. It follows that ν1B1

is a valid valuation for B1 on D, and ν2B2 is a valid valuation for B2

on D′, where D
ν1U1
−−−→ D′ and D′

ν2U2
−−−→ D′′.

Case II : U1 is an insert
The reasoning here is very similar to the first case, so the proof is
omitted.

