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ABSTRACT

Column stores are becoming popular with data analytics in modern
enterprises. However, traditionally, database vendors offer column
stores as a different database product all together. As a result there
is an all-or-none situation for column store features. To bridge the
gap, a recent effort introduced column store functionality in SQL
server (a row store) by making deep seated changes in the database
system. However, this approach is expensive in terms of time and
effort. In addition, it is limited to SQL server. In this paper, we
present Trojan Columns, a novel technique for injecting column
store functionality into a given closed source row-oriented com-
mercial database system. Trojan Columns does not need access
to the source code of the database system. Instead, it uses UDFs
as a pluggable storage layer to write and read data. Furthermore,
Trojan Columns is transparent to users, i.e. users do not need to
change their schema and their queries remain almost unchanged.
We demonstrate Trojan Columns on a row-oriented commercial
database DBMS-X, a closed source top notch database system. We
show experimental results from TPC-H benchmarks. Our results
show that Trojan Columns can improve the performance of DBMS-
X by a factor of up to 9 for TPC-H queries and up to factor 17 for
micro-benchmarks — without changing the source code and with
minimal user effort.

1. INTRODUCTION
1.1 Background

Row stores (e.g. Oracle and DB2) as well as column stores
(e.g. Vertica, MonetDB), have, in recent times, emerged as two
major technologies in the commercial database market. However,
database vendors typically offer different database products for row
and column stores respectively. This is a huge problem for cus-
tomers since they have to make a strategic decision on which (one
or more) database product to use. Alternatively, in recent times,
several people have argued for the superiority of column stores over
row stores [12, 7, 2, 1]. As a result, several enterprise customers
might choose to migrate to a column store. However, this is an ex-
pensive process. It involves new licensing costs, additional training
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for the administrators and developers, and migration effort from
the old to the new database product. For a customer, such change
of faith from one database product to another is a once-in-while
process. Rather, he would be interested in having both row and
column technologies in the same existing system.

1.2 Problem

Nicolas Bruno proposed C-Tables to mimic column stores in
row-oriented databases [3]. The main idea of C-Tables is “fo ex-
tend the vertical partition approach to explicitly enable the RLE
encoding of tuple values”. For a given relation, we need to first
sort its attributes and then apply RLE encoding over each attribute.
[3] introduced the idea of emulating column stores in row stores
and works well with simpler datasets and queries. However, [3]
does not work well with more complex datasets and queries. To
illustrate, Table 1 shows the query times of C-Tables' over four
unmodified TPC-H queries in a row-oriented commercial database
DBMS-X.

Query | Standard Row | C-Table

Q1 820 | 21139
Qs 823 96.17
Q12 9380 | 545737
Qs 861 | 33555

Table 1: TPC-H query times (in seconds) for scale factor 1.

We see that for all four queries C-Tables perform worse than
standard row layout in DBMS-X. Furthermore, C-Tables could be
up to 500 times slower (for @12) than standard row layout. This is
because C-Tables are loosely integrated within the database system
and they incur redundant tuple reconstruction joins at query time.
For example, C-Tables need to perform 6 tuple reconstruction joins
for TPC-H query 1. Hence, C-Tables do not work well with TPC-H
like datasets and queries.

Another recent approach integrated column store indexes into
SQL Server [11]. In that approach, column store indexes store seg-
ments of columns as blobs in the standard row store table. This,
however, requires deep changes in all the layers of the database sys-
tem, including query processing and data storage enhancements.
As a result, this is a considerable effort for the vendors, and
meanwhile the users have to wait for the next product release.
The above approach certainly helps SQL Server users, since they
can still use the rich DBMS features as well as the sophisticated
query optimizer. But what about the users of other database prod-
ucts, e.g. IBM DB2, Oracle? It is not clear whether they can or are

"We tried to implement C-Tables as closely to the description in
the paper as possible except that we do not create any pre-joined
materialized views, as suggested by the C-Table authors, since we
want to see the overall query costs, including possibly costly joins.



willing to emulate column stores as well. Overall, is it possible to
have a generic approach which works across all systems? Users of
these database products will certainly ask this question.

In summary, the research problem we explore in this paper is as
follows. For any proprietary closed source row-oriented database
product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea

Our idea is to use User Defined Functions (UDFs) as an access
layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.

(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.

(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.

(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.

(6.) User queries remain (almost) unchanged.

The novel use of UDFs as an access layer raises several interest-
ing questions. We answer some of them below.

Why UDF? UDFs have been there since long, not just in data man-
aging systems, but also in operating systems, middleware, and pro-
gramming runtime environments. However, in this paper, we ex-
ploit the UDFs in a novel way to enable column store function-
ality in an existing row store, without making heavy untenable
changes into the system. Although the database UDFs were primar-
ily designed to extend the application specific functionality of the
database. However, in this paper, we also consider UDFs as tools
which can be exploited by the vendors (or middlewares) to inte-
grate core database features into the system. With this, the business
model of database distributors is not just limited to shipping new
releases but can also include supplying core functionality patches,
as UDFs, in order to: (i) meet the customer requirements quickly,
and (ii) get quick customer feedback on the functionality before
actually coming out with a new product release.

What about UDF portability? UDF interfaces may differ slightly
from one database product to another. However, the core con-
cepts remain the same. This is similar to different implementa-
tions of SQL, having the same core concepts. In our work, we
consider three major commercial database systems and one major
open source database system. We found the UDF interfaces of all
these systems to be very similar. Thus, we believe that we can ab-
stract the majority of the functionality into a common code base for
these systems.

What about query optimization? One might think that the use
of UDFs for core database features rules out automatic query op-
timization. However, this is not true. Several researchers have
proposed techniques to inspect the UDF code and use it for auto-
matic query optimization. For example, Manimal [4] and Hadoop-
ToSQL [9] analyse UDFs in MapReduce for automatic query op-
timization. [5] considers query optimization, query rewriting and
view maintenance for queries with user defined aggregate func-
tions, i.e. optimizing UDFs similar to built-in aggregate functions
(min, max, count, sum, avg). More recently, researchers have pro-
posed to build a query optimizer which performs a fully automatic
static code analysis pass over the UDFs (or black boxes as they
call it), and enable several query optimizations, including selection
and join reordering, as well as limited forms of aggregation push-
down [8]. Thus, we believe our framework could be extended to
leverage these prior works for automatic query optimization.

1.4 Contributions

Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)

(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)

(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over three different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [12], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS

In this section, we present Trojan Columns: a novel way of in-
Jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs? to translate
the user’s logical row view to the physical column view on disk.
The core philosophy of Trojan Columns is very similar to Trojan
techniques in Hadoop++ [6, 10]: effect the changes from inside
without changing the source code of the system. In the following,
we describe how to create Trojan Columns.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

We store each entry in the blob_data column of the above table
as a BLOB, thus mimicking a column-oriented storage. Experi-
mentally, we found bigger segment sizes, e.g. ~10M, to be more
suitable. The data storage idea for Trojan Columns is inspired

Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.
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Customer
name | phone | market_segment
smith | 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark | 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household
Customer_trojan
segment_ID | attribute_ID blob_data
1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment | automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment | building, automobile, household, household

by SQL Server Column Indexes [11]. However, in practice, Tro-
jan Columns is radically different from Column Indexes in several
ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a. physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [14]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

3. QUERYING TROJAN COLUMNS

In the previous section, we described how to create Trojan
Columns. In this section, we describe how we process queries us-
ing Trojan Columns. Since Trojan Columns internally store data
in column-oriented fashion, we need to translate the data back to
row layout before passing it to the query processor, i.e. use a UDF
to scan the table. Additionally, we may also push down other
operators to the UDF in order to boost performance. Below, we
first describe operator pushdown as a technique to process Trojan
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Figure 1: Standard and UDF query plans for TPC-H Query 6.

Columns, and then we describe how to rewrite user queries.

3.1 Operator Pushdown

The core idea of querying Trojan Columns is to push a part of the
query tree down to the UDF. This means that a part of the query is
processed by the UDF while the remaining query is still processed
by the standard database query executor. Let’s consider query 6
from the TPC-H benchmark [13] as a running example below. Fig-
ure 1(a) shows the logical query plan for query 6. Below, let’s see
how we can push down one or more operators in query 6 to a UDF.

Scan Pushdown. First of all, we need to push down the scan
operator to the UDF. This is because we need to interpret Trojan
Columns correctly (and differently) at the leaf level. Suppose that
lineitem table in query 6 is stored as Trojan Columns. Fig-
ure 1(b) shows the query plan with the UDF. As shown in the figure,
the UDF now figures out which physical table to read (the blob and
not the row representation) for 1ineitem table. Also, the UDF
is responsible for interpreting the physical table, reconstructing the
logical 1ineitem tuples, and passing them on to the upper part
of the query tree.

Projection Pushdown. Along with the scan, we can also push
down the projection operator to the UDF, i.e. pass the projected at-
tributes as parameters to the UDF. The UDF now returns only the
projected attributes. Since the UDF return type is still the complete
row, all other attribute values are set to NULL. A consequence of
pushing projection down to the UDF is that the UDF now needs to
fetch the blobs of only the projected attributes. This saves consid-
erable I/O cost and improves query performance.

Selection Pushdown. To push the selection down, we simply pass
the selection predicate to the UDF, as shown in Figure 1(c). The
UDF is now responsible for evaluating the select predicate on each
of the incoming tuple. To do so, the UDF now only fetches the
selection attributes first. Then, before returning the tuple, the UDF
evaluates the selection predicate. If the predicates hold true then the
UDF fetches the projection attribute blobs, if needed, and returns
a tuple of the projected attributes. If the selection predicates do
not hold true, then the UDF inspects the next selection attribute
values. This continues until either a qualifying tuple if found or
end of data is reached. Pushing down the selection to the UDF
has two advantages: (1) the number of UDF output tuples, and
consequently the number of UDF calls are reduced, and (2) we
can perform late materialization by fetching projection attributes
only for segments having at least one tuple qualifying the selection
predicates. The first advantage saves the overhead in each UDF
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Figure 2: Example UDF query plan for TPC-H query 14.

call, while the second advantage saves I/O for projection attributes.

Aggregation Pushdown. We can even push down the aggregates
(and group by) to the UDF. The UDF must now do the grouping
and aggregation before outputting any of the tuples. This means
that the UDF must precompute the results when initializing and
then simply return the aggregated result subsequently. The major
benefit of pushing aggregation down the UDF is to dramatically
reduce the number of UDF calls.

Dealing with Join Queries. So far we have considered single ta-
ble queries, i.e. no join conditions. Now let us see how joins are
processed in the presence of Trojan Columns. For queries having
join conditions, we simply push down the scan, selection, and pro-
jection operators to the UDF and let the database do the join. This
works well because the output of UDF can be processed by the
database query executor. Figure 2 shows the UDF query plan for
TPC-H query 14. From the figure we see that the 1ineitem leaf
is pushed inside the UDF, while the join is still performed outside.
Also note that the query plan in Figure 2 accesses part table us-
ing the standard database access method. This is because part
is a much smaller table and it does not pay off to use a UDF for
it. Thus, we see that UDFs can be seamlessly integrated into the
query pipeline. This holds true even for nested queries, e.g. TPC-
H query 8. Alternatively, instead of letting the database executor
process the join, one could think of even pushing down the join to
the UDF. The UDF would then have to access two physical tables
and join them based on the join condition. The advantage would
be that we could have even lesser output tuples (depending on join
selectivity). However, the problem is that we will need to recode
the physical join operators as well as the optimizer logic to pick the
physical join operator. Thus, we see the pros and cons of pushing
too many operators down the UDF. Exploring these in more detail
will be part of a future work.

Where does operator pushdown lead to? In the extreme case, we
can push down the entire SQL query, i.e. all query operators, down
to the UDF. However, this means that the UDF is now responsible
for deciding how to execute a given query. In other words, the UDF
must take care of query optimization as well as execution, making
it a micro-kernel for processing SQL queries. The consequence is
that the user must now recode all physical operators, cost models,
as well as the optimization logic. Obviously, this is very hard to do.
Therefore, it is important to strike the right balance when pushing
down to the UDF. While too much is nasty, too little kills perfor-
mance. A general practice could be to push only the leaves to the
UDF and let the database handle the joins, unless they could be

rewritten to selections.

3.2 Query Rewriting

Typically, there are two extremes of query rewriting with col-
umn layout: (1) complete query rewriting, due a complete change
in schema, e.g. C-Table [3] and standard vertical partitioning, and
(2) no query rewriting, if the column stores are natively imple-
mented, i.e. no schema change at all. Our approach finds the middle
ground. At bare minimum, we only rewrite the data access paths
in the query, while keeping the rest of the query unchanged. This
means that we can simply specify a data access UDF, for accessing
Trojan Columns, in the FROM clause of the SQL statement. Note
that we can use Trojan Columns for any subquery, thereby hav-
ing layouts (row or column) on a per-table basis. In the following,
let us see how to rewrite the SQL statements when using Trojan
Columns. Consider TPC-H query 6 from Figure 1(a):

SELECT
SUM (1_extendedpricex1l_discount) AS revenue
FROM
lineitem
WHERE
1_shipdate >= 71994-01-01" AND 1_shipdate < 71995-01-01"
AND 1_discount BETWEEN 0.05 AND 0.07
AND 1_quantity < 24;

Assume we have a scan UDF scanUDF(table_name) to read the
blob data and convert them into logical tuples of table table_name.
The query with scan pushdown is as shown in Figure 1(b):

SELECT
SUM (1_extendedpricexl_discount) AS revenue
FROM
scanUDF ('’ lineitem’)
WHERE
1_shipdate >= 71994-01-01" AND 1_shipdate < ’71995-01-01"
AND 1_discount BETWEEN 0.05 AND 0.07
AND 1_guantity < 24;

If we further push down the selection and projections, using UDF
selectUDF, query 6 is now as shown in Figure 1(c):

SELECT
SUM (1_extendedpricex1l_discount) AS revenue
FROM
selectUDF (
‘lineitem’,
‘quantity,discount, extended price,price’,
‘1l _discount in (0.05,0.07)
AND 1 shipdate in (1994-01-01,1995-01-01)
AND 1 _quantity < 24’
)

In the extreme case, if we push everything inside the UDF, the
query will simply be: SELECT » FROM everythingInUDF(....);

In future, we hope to leverage the view mechanism in standard
databases to automatically rewrite the incoming user queries with
the UDF access paths. Further study on this will be a part of future
work.

3.3 Handling Inserts and Updates

Trojan Columns is primarily a read-only approach. This is a rea-
sonable assumption since by design the column store functionality
is suited for analytical workloads, which are typically read-only.
Therefore, similar to SQL Server Column Indexes [11], Trojan
Columns does not support direct inserts and updates to the under-
lying column-oriented representation. Still, Trojan Columns han-
dles inserts as follows: (1) maintain a temporal row table to store
the newly inserted records, (2) create an insert trigger to keep a
count of the number of rows inserted in the temporal row store, and
(3) use write-UDF to create and insert blobs into the physical table,
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Figure 3: Comparing TPC-H Query Runtimes of Trojan Columns with Standard Row in DBMS-X.

once sufficient number of rows which can fill a segment have been
inserted into the standard row table. At query time, the read-UDF
must also read the temporal row table for newly inserted rows.

Note that the above strategy of a trigger and function call for
every insert might be too expensive for insert intensive applica-
tions. Alternate strategies could be to periodically bulk load Trojan
Columns from the base table or to partition the base table into mul-
tiple tables and create Trojan Columns for each partition indepen-
dently. To handle updates, the update-UDF first needs to determine
the segment in which the update must be applied. Thereafter, the
update-UDF must read the affected blobs in that segment and write
them back.

4. EXPERIMENTS

We implemented Trojan Columns in DBMS-X, a closed source
commercial database system. We ran experiments to see the per-
formance improvements due to Trojan Columns in DBMS-X. We
ran all experiments on a single node with 3.3 GHz Dual Core i3
running 64-bit platform Linux openSuse 12.1 OS, 4x4 GB main
memory, 2 TB 5,400 rpm SATA hard disk. We use cold file system
caches for all our experiments and restart the database, in order to
clear database buffers, before running each query. We repeat each
measurement 3 times and report the average.

In the following, we proceed as follows. First, we evaluate Tro-
jan Columns on TPC-H queries and see the impact. Then, we study
the pros and cons of Trojan Columns using single table micro-
benchmarks. Finally, we see how far are Trojan Columns from
materialized views as well as from a column store database system.

4.1 Trojan Columns on TPC-H queries
4.1.1 Simplified queries, Simplified dataset

In this experiment, we use the simplified TPC-H queries as
proposed in the C-Store paper [12], and also used by other re-
searchers [3]. In addition, we apply the same dataset settings to
Trojan Columns as applied to C-Store in the simplified benchmark,
i.e. we (1) simplify the schema of the tables, (2) exploit prema-
terialized joins (D-tables), and (3) presort the tables to allow for
efficient sort-based grouping and compression. Figure 3(a) shows
the results for scale factor 10. We can see that Trojan Columns
improve over standard row for all queries, with improvements of
almost 5 times for ()1 and 4.4 times for Q2. Even in the worst case
Trojan Columns improve query Q7 by 70%. All this in the same
closed source commercial database DBMS-X.

4.1.2 Simplified queries, Unmodified dataset

Let us now see how the Trojan Columns behave if we apply them
over the above 7 simplified TPC-H queries without making any
dataset/schema changes, i.e. we neither use pre-materialized joins
nor simplify the table schemas or pre-sort the data. Figure 3(b)

shows the results for scale factor 10. From the table we can see that
the improvement factor of Trojan Columns over standard row goes
up to 13.3, 11.84, and 8.47 for QQ1, Q2, and Q3 respectively. This
means that Trojan Columns work even better for these queries on
unmodified datasets. However, on the other hand, for queries Q4,
Qs, and @7, Trojan Columns performs worse than standard row.
Thus, indeed the results change if we do not modify the dataset.
With unmodified datasets, we see that Trojan Columns do not work
very well for low selectivity queries (Q4, Q¢, Q7). Before inves-
tigating this further in Section 4.2, let us first see the query per-
formances with unmodified dataset and unmodified TPC-H queries
below.

4.1.3 Unmodified queries, Unmodified dataset

Let us now take four non-nested, high selectivity, (and un-
modified) TPC-H benchmark queries: @1, Qs, Q12, and Q14.
Figure 3(c) shows the query times for standard row and Trojan
Columns for these four queries on scale factor 10. We can see that
Trojan Columns outperforms standard row over all these queries.
The maximum improvement is by factor 9 for Q)¢, followed by fac-
tor 4 for Q1, factor 2.6 for (D14, and factor 2.5 for Q12. All this in
the same system (DBMS-X) and without touching the source code.

Next, let us see the query times for non-nested and low selec-
tivity (unmodified) TPC-H queries — Q3, @5, Q10, and Q19. Ta-
bles 2 show the results.

Query | Standard Row | Trojan Columns
Q3 111.88 809.38
Qs 99.73 169.34
Q1o 110.94 119.46
Q19 79.14 43.12

Table 2: TPC-H query Set 2 runtimes (in seconds).

We can see that, apart from (19, Trojan Columns does not per-
form very well with low selectivity queries, similar as in the pre-
vious section. We also tried nested (and unmodified) TPC-H
queries. However, query nesting reduces the benefits of using Tro-
jan Columns. This is because Trojan Columns only improves the
/O costs, which is just a fraction of the overall query costs. Apart
from I/O, the remaining query processing costs are still the same as
those for standard row.

4.2 Trojan Columns on Micro-benchmarks

In this section, we evaluate Trojan Columns on a micro-
benchmark. The idea is to understand the pros and cons of Trojan
Columns using simpler single table queries. Our micro-benchmark
consists of queries of the following form over the 1 ineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE 1_partkey >= lowKey AND 1_partkey < highKey;
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Figure 4: Comparing TPC-H Query Runtimes with Materialized Views and Column Stores.

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Fig-
ure 5 shows the improvement factor of Trojan Columns over stan-
dard row when varying the number of referenced attributes from 1
to 16, and selectivity from 10~° to 1. From the figure, we see that
Trojan Columns has a maximum improvement factor of over 17
(lower left region). Also, we see that for low selectivities (> 0.1)
Trojan Columns performs worse than standard row. To investigate
this, we break down the query runtime into data access, data pro-
cessing (decompression, operator evaluation etc.), and data output
costs. Our results showed that data output costs dominate (as high
as 60 — 80%) the query runtime for low selectivity queries. This
is because each call to the UDF interface has some overhead: the
lower the selectivity, the more function calls, the higher the over-
head. These function call overheads overshadow the performance
improvements of Trojan Columns for low selectivities. In princi-
pal, this overhead could be removed if the database storage inter-
face were available in LLVM bitcode. Then the UDF query could at
runtime be dynamically recompiled fogether with the DBMS stor-
age layer to remove that boundary and bake the UDF into the ker-
nel. This remains an interesting avenue for future work.

However, overall even for medium sized selectivites the perfor-
mance gains of Trojan Columns are tremendous.

# referenced attributes (r)

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

Figure 5: Trojan Columns improvement factor in DBMS X.

4.3 How far are Trojan Columns?

4.3.1 Comparison with Materialized Views

The focus of Trojan Columns in this paper is to improve query
I/0 cost. However, as mentioned before, 1/0 is just a fraction of the
total query costs. Since the database system is unaware of the col-
umn store inside, the query processing costs remain the same out-
side the UDF. To better understand the impact of Trojan Columns,
let us now see the query times inside the subquery. To do so, we
measure just the time to compute the subquery computed by the
read-UDF using (1) Standard Row, (2) Trojan Columns, and (3) a

Materialized View perfectly matching the query expression.

Figure 4(a) shows the results. We can see that Trojan Columns
is significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) among
these four queries, and therefore Trojan Columns does not perform
as well as Materialized Views. This is a very good result consider-
ing that Materialized Views require ~12GB of storage in this ex-
periment, whereas Trojan Columns only requires ~5GB. Still, the
performance of Trojan Columns is very close to Materialized Views
for QQ14. We conclude that Trojan Columns provides considerable
improvements in terms of 1/O costs. Furthermore, we see Trojan
Columns as a method that improves over Materialised Views, i.e. a
better way of storing and accessing query subexpressions.

4.3.2 Comparison with Column Stores

Trojan Columns allows users to use their existing row-oriented
database system for efficiently supporting analytical workloads as
well, i.e. bridge the huge gap between row stores and column
stores. Thus, it would be interesting to see how far are Trojan
Columns from a database system with column store technology as
well as from a full blown column store. To do so, we run unmod-
ified TPC-H queries on Trojan Columns as well as on two other
systems: (i) a top notch commercial row-oriented database sys-
tem DBMS-Y, with vendor support for column store technology,
and (ii) a top notch commercial column-oriented database system
DBMS-Z.

Figure 4(b) shows the results. We can see that while Trojan
Columns are slower than DBMS-Y for Q12 and Q14 (by around
10%), Trojan Columns are in fact faster than DBMS-Y for Q1
and Qs (by 10% and 80% respectively). This is even though
DBMS-Y is deeply modified in order to support column function-
ality, whereas Trojan Columns does not even have access to the
source code. The better performance of Trojan Columns for ()1
and Q¢ is because Trojan Columns push down even the aggrega-
tion operator to the data access layer. DBMS-Z (a) in Figure 4(b)
denotes DBMS-Z with the same (default) table schemas as Tro-
jan Columns. From the figure, we see that Trojan Columns are
quite competitive to a full blown column-oriented database system
and can achieve comparable query performance in the same row-
oriented database system. On the other hand, Trojan Columns are
still far off from DBMS-Z, if the table schemas in DBMS-Z are op-
timized to achieve the best possible compression ratios — denoted
as DBMS-Z (b) in Figure 4(b). Trojan Columns are up to 3.2 times
slower than DBMS-Z (b) for single table queries and as high as 8.7
times slower for multi-table queries.

Overall, we see that Trojan Columns bridge the huge gap be-
tween the performances of row store and column store. In fact,



Trojan Columns match or even outperform the performance of a
database system with column functionality, even without touching
the source code of underlying database system. However, Trojan
Columns still have some ground to cover before matching the per-
formance of a full blown column-oriented database system.

5. DISCUSSION

Trojan Column Benefits. From the above experiments, we see that
Trojan Columns significantly improves the performance of DBMS-
X. This is because Trojan Columns can successfully emulate a col-
umn store without any overhead that typically exists in full vertical
partitioning or other schema level approaches. The main advantage
of Trojan Columns comes from improved /O performance: we ac-
cess only the referenced attributes. In addition, we apply light-
weight column-oriented compression schemes. Furthermore, we
push one or more SQL operators down to the UDF and evaluate
them directly on BLOB data.

In contrast, C-Tables work only for up to 3 attributes, unless the
input datasets are pre-joined. For a higher number of referenced
attributes, the tuple reconstruction joins kill the C-Table perfor-
mance. This is not the case for Trojan Columns. In fact, as we
saw in the experiments, Trojan Columns is not at all affected by the
number of referenced attributes.

Trojan Column Limitations. We found that the major per-
formance problem in using table UDFs, for accessing Trojan
Columns, is the additional overhead of UDF-function calls. These
function calls lead to a significant decrease in performance if many
rows are returned. For each row that is returned to the outside,
DBMS-X invokes one call of the UDF and passes a large number of
arguments to it. For a table like 1ineitem with 16 attributes, this
means passing already 32 return variables (16 return variables + 16
indicators ) to the function in each call, additional to the arguments
passed by the user. Thus low selectivity queries are a problem for
Trojan Columns.

The UDFs which perform only projection and selection are very
flexible and need only the table schema to be generated. For exam-
ple, we have one UDF for 1ineitem, and it can perform all kinds
of projections and selections on the table. This is possible since
the result schema of the query is always a subset of the Lineitem
schema. However, for queries which also perform grouping and ag-
gregation, we need to generate the UDFs for each individual query.
This is because the schema of the query result might not be a subset
of the original table schema. Though manual, these adaptations can
still be done easily and quickly.

As future work, a main goal is to increase the flexibility of the
approach. We are planning to build generators and compilers (also
in the form of UDFs), which create and install all necessary func-
tions for a given query or table and database product. This is pos-
sible since only small adaptations are needed to tweak a function
towards a query. Another main problem we face at the moment
is the additional overhead at the leaf level caused by too many re-
sult rows. We could eliminate this problem in many cases, if we
could push the join operator into the UDF. This would also allow
for performing grouping/aggregation after the join and would lead
to a significant decrease of function call overhead.

Query Optimization Considerations

(a) Selectivity. At the moment, we decide whether or not to use
Trojan Columns manually. Ideally, however, we would like to hide
this decision using a view, which is then used in the query invoked
by the user. The view should be able to switch between Trojan

Columns and the standard row store, depending on the query selec-
tivity. Note that the view needs to pass the projection and selection
operators down to the UDF, in case it chooses Trojan Columns.

(b) UDF cost estimates. DBMS-X supports a mechanism to adjust
the estimated cost of a UDF in terms of the expected cardinality,
i.e. it is possible to specify the number of rows that the UDF might
return. Unfortunately, this cardinality is static and has to be set for
each individual query. This cardinality information is then used in
the access plan calculation to find the best plan.

(c) Intermediate results. If a query materializes intermediate results
on disk, then the optimizer could consider using Trojan Columns
for them, thus improving performance higher up in the query tree.

6. CONCLUSION

In this paper, we presented Trojan Columns, a radically dif-
ferent approach for supporting analytical workloads efficiently in
a closed source commercial row-oriented database system. Tro-
jan Columns does not make any changes to the source code of
the database system, but rather use UDFs as a pluggable storage
layer for data read and write. Trojan Columns can be easily inte-
grated into an existing database system environment (without even
restarting the DBMS). As a result, Trojan Columns is transparent
to the user, i.e. the user continues using his existing database prod-
uct with minimal changes to his queries. We implemented Tro-
jan Columns in DBMS-X and show query runtimes from unmodi-
fied TPC-H benchmark, simplified TPC-H queries (as proposed by
other researchers), as well as from single table micro-benchmarks.
Our results show that Trojan Columns improves the performance
of DBMS-X by up to a factor 9 on the unmodified TPC-H bench-
mark, by up to a factor 13 on simplified TPC-H queries, and by up
to a factor 17 on single table micro-benchmarks. All this without
touching the source code of the database system.
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APPENDIX
A. IMPLEMENTATION DETAILS

In the paper, we presented the general idea of Trojan Columns.
In this section, we discuss the implementation details for Trojan
Columns in DBMS-X. We considered two interfaces to implement
Trojan Columns in DBMS-X: (i) UDF interface, and (ii) CLI in-
terface. In the following, we describe how we implemented Trojan
Columns using these two interfaces.

A.1 DBMS-X Table UDF Interface

Interface. The table UDF interface in DBMS-X is a C interface to
write UDFs. In general, the signature of UDF to query the Trojan
Columns (with n attributes) looks as follows.

void SQL_API_FN udf_name (
SQLUDF_CHAR* tableName,
SQLUDF_CHAR«* projectionStr,
SQLUDF_CHAR=* selectionStr,
SQLUDF_CHAR* groupbyStr,
SQLUDF_CHAR+* logFile,
SQLUDF_RESULTTYPElx RESULTI1,
SQLUDF_RESULTTYPE2x RESULTZ2,

SQLUDF_RESULTTYPEnx RESULTn,
SQLUDF_SMALLINT* RESULT1_IND,
SQLUDF_SMALLINT* RESULTZ2_IND,

SQLUDF_SMALLINT+ RESULTn_IND,

SQLUDF_TRAIL_ARGS_ALL // current UDF state

)

The first 5 arguments are actually passed to the function by the user,
when invoking the UDF. The remaining arguments are not passed
to the function by the user. They are the result variables to which
we write the result row. For each call, DBMS-X maps the memory
of the result table to these pointers.

Scratch Pad. There is a specific memory area provided by DBMS-
X, which is called the scratchpad. This memory area is kept alive
during the individual calls to the UDF and can be used to maintain a
state between the calls. In our approach, all main data structures are
held inside of the scratchpad, since they are used in several phases.

Multi-threading. Apart from the main (output) thread, we main-
tain separate threads for I/O and processing. This means that as
soon as one of the buffers is free, the next segment is already loaded
into it. For each loaded attribute that is compressed, we decom-
press it in a separate processing thread. The processing thread also
performs the selection and produces a selection vector, indicating
which tuples qualify. Until the processing thread performs the de-
compression and selection, the main (output) thread waits. When
the processing thread is finished, the main thread inspects the se-
lection vector. If a selected row is found in the vector, then the
row data is immediately returned. We keep the current position of
the selection vector in the scratchpad to output the next row in the
subsequent UDF call. There are several wait/notify constructs nec-
essary to coordinate the segment loading with double buffering, se-
lection and outputting. In between the function calls, we keep alive
the processing thread (together with the decompression threads) in
the scratchpad.

Communication with DBMS-X. To communicate with DBMS-X
from inside the UDFs, we use embedded SQL in C (SQC). As a
result, the UDF program is not written in pure C, but in a mixture
of C and SQL. For example, it is possible to place statements like
“EXEC SQL FETCH ... INTO ..." within the functions. These

statements are used to query the Trojan Columns blobs from the
database. Anytime we query the database with embedded SQL
statements, we have to store the result of this query inside host vari-
ables, which act as a connection bridge between DBMS-X and our
program. Host variables have to be declared in a separate area and
they support special datatypes, corresponding to SQL types. Note
that it is not possible to modify the database using UDFs in DBMS
X; only querying is allowed. Before installing, the SQC file must
be precompiled to create a standard pure C file. This file contains
calls to internal DBMS-X functions that represents the SQL equiv-
alents. We can then compile this file using a standard C compiler
and link it to the database.

Installation. Finally, we install the UDF to query Trojan Columns
(with n attributes) in DBMS-X as follows.

CREATE FUNCTION udf_name (
tableName VARCHAR(128),
attributeStr VARCHAR(1000),
selectionStr VARCHAR (1000),
groupbyStr VARCHAR (1000),
timeFile VARCHAR(1000)

)

RETURNS TABLE (
attribute_1 TYPE1,
attribute_2 TYPEZ2,

attribute_n TYPEn,
)
SPECIFIC udf_name // internal UDF name
EXTERNAL NAME ’ext_udf_name’ // UDF program name
LANGUAGE C
PARAMETER STYLE DBMS_X_SQL
NOT DETERMINISTIC
FENCED NOT THREADSAFE
READS SQL DATA
NO EXTERNAL ACTION
SCRATCHPAD 10000
FINAL CALL
DISALLOW PARALLEL;

A.2 DBMS-X Call Level Interface (CLI)

The table UDF interface in DBMS-X has the limitation that the
exact schema of rows to return must be fixed at compile time.
To overcome this, we developed a second approach based on the
DBMS-X Call Level Interface (CLI) and Stored Procedures (SP).
CLI is a C/C++ interface that translates queries and data between
an application and a database. It allows us to create the queries for
accessing the data dynamically at runtime. Furthermore, as a CLI
exists for many DBMSs, the routine is easily portable. In DBMS-
X, the entry function for stored procedures looks as follows.

// different address space

// size in bytes
// final call phase executed
// single database partition

SQL_API_RC SQL_API_FN udf_name (
CHAR xtableName,
CHAR xprojectionStr,
CHAR *selectionStr,
CHAR +*logFile,
SQLINT16 *tableName_IND,
SQLINT16 *projectionStr_IND,
SQLINT16 xselectionStr_IND,
SQLINT16 xlogFile_IND,
SQLUDF_TRAIL_ARGS

)

// stored procedure state

Note that in contrast to table UDF interface, we do not need to spec-
ify the return type for stored procedures. However, they are not
able to return their results directly. Instead, in contrast to UDFs,
they allow write accesses to the database. We exploit this to store
the results of a query into a temporary table in the database. There
it can be queried by normal SQL or used as an intermediate result
for further computation. This means an existing user query cannot
be translated one to one, but it must be split into two calls: (1) a



stored procedure call, and (2) a query for post-processing and re-
turning the results to the user. For example, for TPC-H query 14
the rewritten query first calls the stored procedure to project and
select the relevant data from lineitem. The final query then
joins part table with the result table, which is several orders of
magnitude smaller than the original 1ineitem table. So the fi-
nal query is extremely cheap and the overall costs are dominated
by the stored procedure. The main advantage of CLI -SP is that
because of its highly dynamic interfaces, we don’t need to recom-
pile the routine for every query or table. We only have a single
stored procedure that can be used in arbitrary queries without more
effort than rewriting the query. We install the stored procedure for
querying Trojan Columns as follows.

CREATE PROCEDURE sp_name (
IN name VARCHAR(128),
IN attr VARCHAR(512)
IN selPred VARCHAR(512),
IN logfile VARCHAR(128)
)
SPECIFIC sp_name
DYNAMIC RESULT SETS O
NOT DETERMINISTIC
LANGUAGE C
PARAMETER STYLE SQL
FENCED NOT THREADSAFE
MODIFIES SQL DATA
PROGRAM TYPE SUB
EXTERNAL NAME ’ext_sp_name’

// do not return results

// used as library
// procedure program name

B. EFFECT OF COMPRESSION

Now let us see the impact of compression on Trojan Columns.
We play around with four light weight compression techniques for
column stores: delta, 7-bit, dictionary, and run length encoding.
We look at the cardinalities of each of the attributes, estimate the
expected compression ratio, and pick the compression method
which gives the maximum compression ratio. For dictionary
compression, we also consider the expected dictionary size. Since
Trojan Columns works very well on query set 1, we focus on
that in this section. Also note that Trojan Columns is used only
for l1ineitem table in query set 1, since other tables have no
selection predicates and hence have very high function calls
overhead. We successively turn on four levels of compression on
lineitem table as follows:

Compression Level 0. no compression applied.

Compression Level 1. delta encoding enabled.

Compression Level 2. Level 1 + 7-bit encoding enabled.
Compression Level 3. Level 2 + dictionary compression enabled.
Compression Level 4. Level 3 + run length encoding enabled.

Table 3 shows the data load times for different compression levels.

Measurement Level 0 Level 1 Level 2 Level 3 Level 4
Upload Time (sec) | 1636.44 | 1642.73 | 1610.59 | 1550.63 | 1451.39
Table Size (GB) 11.83 11.57 10.89 5.19 5.07

Table 3: Upload times and tables sizes with compression.

We can see that the upload time decreases with higher levels of
compression. From compression level 0, i.e. no compression, to
compression level 4, the improvement in upload time is 185 sec-
onds. The reason for this is that while we spend more CPU cycle
to compress the data, we save on I/O when writing the data to disk.
Figure 6 shows the query times of query set 1 for different compres-
sion levels. From Figure 6, we can see that the query time improves
up to compression level 4. For instance, for query 6, the improve-
ment in runtime from compression level 0 to compression level 4

is 49%. However, the improvement is not dramatic. The reason for
this is that the overall query costs as well as the UDF overheads
dominate the improvements in I/O due to compression.
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Figure 6: Effect of compression on query set 1.

Table 4 shows the compression methods used for each of the
lineitem attribute. Except ExtendedPrice (too small com-
pression ratio) and Comment (VARCHAR), we apply compression
on all 1ineitem attributes.

[ Attribute [ Compression Method | Expected Compression Ratio |
OrderKey Delta 4
PartKey 7-Bit 1.4
SuppKey 7-Bit 2
Linenumber 7-Bit 4
Quantity Dictionary 8
ExtendedPrice None -
Discount Dictionary 8
Tax Dictionary 8
ReturnFlag Run Length Encoding 1.42
LineStatus Run Length Encoding 3.63
ShipDate Dictionary 4.98
CommitDate Dictionary 4.98
ReceiptDate Dictionary 4.98
ShipInstruct Dictionary 25
ShipMode Dictionary 10
Comment None -

Table 4: Compression methods and the expected compression
ratio for each Lineitem attribute.

C. SEGMENT SIZES

In all our previous experiments on Trojan Columns, we used
a segment size of 10M rows, i.e. 10M rows of the relation were
stored as one data blob. Now let us see the impact of segment size
on data upload and query times. Note that higher segment sizes
produce fewer number of data blobs and hence have lesser random
I/Os. Furthermore, higher segments sizes allow us to compress the
data better and hence the I/O performance improves even further.
However, higher segment sizes consume more database resources
(memory, CPU) each time a data blob is processed. Additionally,
higher segment sizes limit our capability to parallelize data load-
ing and decompression®. Finally, the segment size should be small
enough so that the blob data does not exceed its maximum allowed
size (e.g. PostgreSQL allows maximum blob size of 1GB).

Table 5 shows the upload times when varying the segment size.
We can see that the upload time drops to almost half when vary-
ing the segment size from 100K to 10M. This is because higher
segment sizes result in more compressed bobs and hence better /O
performance. Figure 8 shows the query runtimes with different seg-
ment sizes. For all queries in Figure 8, the query runtimes improve

31deally, a blob should be just as big such that the time to load and
the time to decompress the blob are nearly equal.
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Figure 7: Comparing query times of CTable and standard row for different attribute cardinalities.

with larger segment sizes. However, the improvement is more when
changing segment size from 100K to 1M than when changing the
segment size from 1M to 10M.

Segment Size [ 100K T 1M [ 10M
Upload Time (sec) | 2824.79 | 1681.26 | 1451.39

Table 5: Upload times with varying segment size.
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Figure 8: TPC-H query runtimes with varying segment size.

D. QUERY COST BREAK-DOWN

In order to understand where we can further improve the UDFs,
we need to see its cost breakdown. Figure 9(a) shows the break-
down of UDF processing time into four costs: fetching data, de-
compressing data, processing (selections, grouping/aggregation),
and outputting the results. From the figure we can see that process-
ing costs dominate in query (01 while outputting costs dominate in
query QQ14. However, fetching and decompression are at the ma-
jor costs for Q¢ and Q12. To contrast the effect of compression,
Figure 9(b) shows the cost breakdown for uncompressed data. We
can see that there are no decompression costs now, however the
fetching costs go up significantly and dominate most queries.
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Figure 9: Query cost breakdown (in seconds) for Trojan
Columns over TPC-H query set 1.

E. STORED PROCEDURES

As discussed in Section A, we considered two interfaces to
implement Trojan Columns in DBMS-X. In the experiments, we
showed results from the Table UDF Interface implementation in
DBMS-X. This was because the UDFs thus created can be eas-
ily nested in SQL queries without much changed (we just need to
change the FROM clause). In contrast, the Call Level Interface
(CLI) in DBMS-X needs a CALL statement to invoke the UDF and
store the results in a temporary table. This temporary table must be
then used by the remainder of the query. For the sake of complete-
ness, we also present the results from the CLI implementation of
Trojan Columns.

Figure 10 shows the runtimes of Trojan Columns using stored
procedures (SP) for TPC-H query set 1. We can see that except for
query @14, Trojan Columns using stored procedures are very close
to those Trojan Columns using UDFs. Stored procedures are slow
for Query Q14 because it produces a large number of output tuples.
Since stored procedures cannot return the results, they must write
these output tuples into another table.
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Figure 10: Query times (in seconds) with stored procedures.

F. C-TABLE EVALUATION

In order to investigate C-Table in more detail, we ran some
micro-benchmarks on them. We take three synthetic datasets. Each
dataset contains integer attributes with the same cardinality (10,
100, and 1000 respectively). For each dataset, we create C-Tables
over its attributes and vary the number of referenced attributes.

Figure 7 shows the results. We can see from the figure that for
lower cardinalities C-Tables work very well compared to standard
row. For instance, for cardinality 10, C-Tables are better than row
for up to 6 referenced attributes. However, for higher cardinalities
e.g. 1000, C-Tables do not work so well. This is because the tuple
reconstruction costs overshadow the benefits of RLE encoding in
C-Tables.
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