
Big Data
Complex Data

A Simple Hard Problem
A Practical Abstract Framework

Wednesday, January 16, 13

Account defineMethod: [| getHoldingsOverlap |
!lowerPct <- pctEq * 0.8; !upperPct <- … ;
holdings send: [security].
 select: [type isEquity].
 collectListElementsFrom: [holdings].
 groupedBy: [account].
 select: [pctEq >= ^my lowerPct
	
 && pctEq <= ^my upperPct].
 extendBy: [
	
 !xref <- ^my holdings;
	
 !ofactor <- groupList total: [
	
 percentOfPort min: (^my xref at: security.
	
 percentOfPort)
	
]
].
 sortDown: [ofactor]
];

A Simple Hard Problem
A mutual fund manager needs to measure

holdings overlap with other funds

Wednesday, January 16, 13

Account defineMethod: [| getHoldingsOverlap |
!lowerPct <- pctEq * 0.8; !upperPct <- … ;
holdings send: [security].
 select: [type isEquity].
 collectListElementsFrom: [holdings].
 groupedBy: [account].
 select: [pctEq >= ^my lowerPct
	
 && pctEq <= ^my upperPct].
 extendBy: [
	
 !xref <- ^my holdings;
	
 !ofactor <- groupList total: [
	
 percentOfPort min: (^my xref at: security.
	
 percentOfPort)
	
]
].
 sortDown: [ofactor]
];

A Simple Hard Problem
A mutual fund manager needs to measure

holdings overlap with other funds

Is this an application program or a
database query?

Wednesday, January 16, 13

Account defineMethod: [| getHoldingsOverlap |
!lowerPct <- pctEq * 0.8; !upperPct <- … ;
holdings send: [security].
 select: [type isEquity].
 collectListElementsFrom: [holdings].
 groupedBy: [account].
 select: [pctEq >= ^my lowerPct
	
 && pctEq <= ^my upperPct].
 extendBy: [
	
 !xref <- ^my holdings;
	
 !ofactor <- groupList total: [
	
 percentOfPort min: (^my xref at: security.
	
 percentOfPort)
	
]
].
 sortDown: [ofactor]
];

A Simple Hard Problem
A mutual fund manager needs to measure

holdings overlap with other funds

Is this an application program or a
database query?

This product space query can easily touch
large parts of a large database.

Wednesday, January 16, 13

Account defineMethod: [| getHoldingsOverlap |
!lowerPct <- pctEq * 0.8; !upperPct <- … ;
holdings send: [security].
 select: [type isEquity].
 collectListElementsFrom: [holdings].
 groupedBy: [account].
 select: [pctEq >= ^my lowerPct
	
 && pctEq <= ^my upperPct].
 extendBy: [
	
 !xref <- ^my holdings;
	
 !ofactor <- groupList total: [
	
 percentOfPort min: (^my xref at: security.
	
 percentOfPort)
	
]
].
 sortDown: [ofactor]
];

A Simple Hard Problem
A mutual fund manager needs to measure

holdings overlap with other funds

Is this an application program or a
database query?

This product space query can easily touch
large parts of a large database.

 Does the conceptual vocabulary exist in
SQL to expose a group’s constituents?

Wednesday, January 16, 13

Account defineMethod: [| getHoldingsOverlap |
!lowerPct <- pctEq * 0.8; !upperPct <- … ;
holdings send: [security].
 select: [type isEquity].
 collectListElementsFrom: [holdings].
 groupedBy: [account].
 select: [pctEq >= ^my lowerPct
	
 && pctEq <= ^my upperPct].
 extendBy: [
	
 !xref <- ^my holdings;
	
 !ofactor <- groupList total: [
	
 percentOfPort min: (^my xref at: security.
	
 percentOfPort)
	
]
].
 sortDown: [ofactor]
];

A Simple Hard Problem
A mutual fund manager needs to measure

holdings overlap with other funds

Is this an application program or a
database query?

This product space query can easily touch
large parts of a large database.

Does the conceptual framework exist in either
SQL or NoSQL to optimize this?

 Does the conceptual vocabulary exist in
SQL to expose a group’s constituents?

Wednesday, January 16, 13

Account defineMethod: [| getHoldingsOverlap |
!lowerPct <- pctEq * 0.8; !upperPct <- … ;
holdings send: [security].
 select: [type isEquity].
 collectListElementsFrom: [holdings].
 groupedBy: [account].
 select: [pctEq >= ^my lowerPct
	
 && pctEq <= ^my upperPct].
 extendBy: [
	
 !xref <- ^my holdings;
	
 !ofactor <- groupList total: [
	
 percentOfPort min: (^my xref at: security.
	
 percentOfPort)
	
]
].
 sortDown: [ofactor]
];

A Simple Hard Problem
A mutual fund manager needs to measure

holdings overlap with other funds

Is this an application program or a
database query?

This product space query can easily touch
large parts of a large database.

Does the conceptual framework exist in either
SQL or NoSQL to optimize this?

 Does the conceptual vocabulary exist in
SQL to expose a group’s constituents?

What if this application is run for a
collection of accounts?

FundUniverse do: [^self getHoldingsOverlap
first: 10 . do: [...]]

Wednesday, January 16, 13

Account defineMethod: [| getHoldingsOverlap |
!lowerPct <- pctEq * 0.8; !upperPct <- … ;
holdings send: [security].
 select: [type isEquity].
 collectListElementsFrom: [holdings].
 groupedBy: [account].
 select: [pctEq >= ^my lowerPct
	
 && pctEq <= ^my upperPct].
 extendBy: [
	
 !xref <- ^my holdings;
	
 !ofactor <- groupList total: [
	
 percentOfPort min: (^my xref at: security.
	
 percentOfPort)
	
]
].
 sortDown: [ofactor]
];

A Simple Hard Problem
A mutual fund manager needs to measure

holdings overlap with other funds

Is this an application program or a
database query?

This product space query can easily touch
large parts of a large database.

Does the conceptual framework exist in either
SQL or NoSQL to optimize this?

 Does the conceptual vocabulary exist in
SQL to expose a group’s constituents?

What if this application is run for a
collection of accounts?

Or depends on the context dependent
fabric of relationships in the data itself?

FundUniverse do: [^self getHoldingsOverlap
first: 10 . do: [...]]

2 yearsAgo evaluate: [MyFund getHoldingsOverlap ...]

Wednesday, January 16, 13

Account defineMethod: [| getHoldingsOverlap |
!lowerPct <- pctEq * 0.8; !upperPct <- … ;
holdings send: [security].
 select: [type isEquity].
 collectListElementsFrom: [holdings].
 groupedBy: [account].
 select: [pctEq >= ^my lowerPct
	
 && pctEq <= ^my upperPct].
 extendBy: [
	
 !xref <- ^my holdings;
	
 !ofactor <- groupList total: [
	
 percentOfPort min: (^my xref at: security.
	
 percentOfPort)
	
]
].
 sortDown: [ofactor]
];

A Simple Hard Problem
A mutual fund manager needs to measure

holdings overlap with other funds

Is this an application program or a
database query?

This product space query can easily touch
large parts of a large database.

Does the conceptual framework exist in either
SQL or NoSQL to optimize this?

 Does the conceptual vocabulary exist in
SQL to expose a group’s constituents?

What if this application is run for a
collection of accounts?

Or depends on the context dependent
fabric of relationships in the data itself?

FundUniverse do: [^self getHoldingsOverlap
first: 10 . do: [...]]

2 yearsAgo evaluate: [MyFund getHoldingsOverlap ...]

Or both !!

Wednesday, January 16, 13

A Practical Abstract Framework
The power of the arrow ...

Wednesday, January 16, 13

A Practical Abstract Framework
The power of the arrow ...

... and category theory

Wednesday, January 16, 13

A Practical Abstract Framework
The power of the arrow ...

... and category theory

A relationship centric view of the world...

Wednesday, January 16, 13

A Practical Abstract Framework
The power of the arrow ...

... and category theory

... in which Sets (nodes) are structure-less

A relationship centric view of the world...

Security

Number

Holding

Account

String

Wednesday, January 16, 13

A Practical Abstract Framework
The power of the arrow ...

... and category theory

... in which Sets (nodes) are structure-less

A relationship centric view of the world...

... and Functions (arrows) are structure-rich

Security

Number

Holding

Account

String

acctId

acctId

secId

secId price

Wednesday, January 16, 13

A Practical Abstract Framework
The power of the arrow ...

... and category theory

... in which Sets (nodes) are structure-less

A relationship centric view of the world...

... and Functions (arrows) are structure-rich

... it generalizes the relational model

Security

Number

Holding

Account

String

acctId

acctId

secId

secId price

account security

Wednesday, January 16, 13

A Practical Abstract Framework
The power of the arrow ...

... and category theory

... in which Sets (nodes) are structure-less

A relationship centric view of the world...

... and Functions (arrows) are structure-rich

Security

Number

Holding

Account

String

acctId

acctId

secId

secId price

... it generalizes the relational model

... and models its computations (e.g. join)

Wednesday, January 16, 13

A Practical Abstract Framework
The power of the arrow ...

... and category theory

... in which Sets (nodes) are structure-less

A relationship centric view of the world...

... and Functions (arrows) are structure-rich

Something else to consider...

Security

Number

Holding

Account

String

acctId

acctId

secId

secId price

... it generalizes the relational model

... and models its computations (e.g. join)

Wednesday, January 16, 13

A Practical Abstract Framework
The power of the arrow ...

... and category theory

... in which Sets (nodes) are structure-less

A relationship centric view of the world...

... and Functions (arrows) are structure-rich

Something else to consider...

Security

Number

Holding

Account

String

acctId

acctId

secId

secId price

... it generalizes the relational model

... and models its computations (e.g. join)

If reading an arrow in the natural
(forward) direction models a

functional relationship, what does
reading it in reverse model?

Wednesday, January 16, 13

A Practical Abstract Framework
The power of the arrow ...

... and category theory

... in which Sets (nodes) are structure-less

A relationship centric view of the world...

... and Functions (arrows) are structure-rich

Something else to consider...

Security

Number

Holding

Account

String

acctId

acctId

secId

secId price

... it generalizes the relational model

... and models its computations (e.g. join)

If reading an arrow in the natural
(forward) direction models a

functional relationship, what does
reading it in reverse model?

Collections !!!

Wednesday, January 16, 13

A Practical Abstract Framework
The power of the arrow ...

... and category theory

... in which Sets (nodes) are structure-less

A relationship centric view of the world...

... and Functions (arrows) are structure-rich

Something else to consider...

Security

Number

Holding

Account

String

acctId

acctId

secId

secId price

... it generalizes the relational model

... and models its computations (e.g. join)

If reading an arrow in the natural
(forward) direction models a

functional relationship, what does
reading it in reverse model?

Collections !!!

A proven, powerful, unifying theory
for data base programming.

Intrigued?

Wednesday, January 16, 13

