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Account defineMethod: [ | getHoldingsOverlap |
!lowerPct <- pctEq * 0.8; !upperPct <- … ;
holdings send: [security].
   select: [type isEquity].
   collectListElementsFrom: [holdings].
   groupedBy: [account].
   select: [pctEq >= ^my lowerPct
	
 && pctEq <= ^my upperPct].
   extendBy: [
	
 !xref <- ^my holdings;
	
 !ofactor <- groupList total: [
	
    percentOfPort min: (^my xref at: security.
	
       percentOfPort)
	
 ]
   ].
   sortDown: [ofactor]
];
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A proven, powerful, unifying theory 
for data base programming.

Intrigued?
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