
The Case for Small Data Management

Jens Dittrich

Saarland University
infosys.cs.uni-saarland.de

ABSTRACT
Exabytes of data; several hundred thousand TPC-C transactions per
second on a single computing core; scale-up to hundreds of cores
and a dozen Terabytes of main memory; scale-out to thousands of
nodes with close to Petabyte-sized main memories; and massively
parallel query processing are a reality in data management. But,
hold on a second: for how many users exactly? How many users do
you know that really have to handle these kinds of massive datasets
and extreme query workloads? On the other hand: how many users
do you know that are fighting to handle relatively small datasets,
say in the range of a few thousand to a few million rows per ta-
ble? How come some of the most popular open source DBMS have
hopelessly outdated optimizers producing inefficient query plans?
How come people don’t care and love it anyway? Could it be that
most of the world’s data management problems are actually quite
small? How can we increase the impact of database research in ar-
eas when datasets are small? What are the typical problems? What
does this mean for database research? We discuss research chal-
lenges, directions, and a concrete technical solution coined PDbF:
Portable Database Files.

1. INTRODUCTION
Database researchers consider small data management solved

and proceed building database systems for even bigger data. How-
ever, we are under attack by other communities which are build-
ing their own systems: With the NoSQL [3] movement, including
highly scalable key-(value/document) stores, we have witnessed a
wave of distributed systems focussing on handling big data. Inter-
estingly, NoSQL attacks databases in two dimensions: the first is
scalability (“We can scale to thousands of nodes with ease!”). One
of our students phrased this like: “I would never use a database sys-
tem! NoSQL systems are so much faster.” A sentence he did not
dare to repeat anymore after a 90 min database class setting things
straight for him. The second argument against database systems is
interfacing (“SQL is awkward!”). So, even for “small data” where
databases perform very very well, people would be unwilling to
pick the database system. In a recent conversation, a professor in
business informatics (specialized in data management) explained to

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.
7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4–7, 2015, Asilomar, California, USA.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

me how they used a NoSQL-document store to query a few thou-
sand RDF tuples. Another example is MapReduce, which is often
used for tiny, Megabyte-sized datasets [1].

This paper is asking the question: what happens if the data is
small? Say up to a few million rows only? What happens if you
do not need to execute several ten thousand queries every second?
How can we increase the impact of database technology in that
space? Is this a problem of teaching developers? A problem of
MOOCifying or flipping [2] database knowledge? Is all of this just
another “64K is enough” for everyone argument [4]? Or should
we simply continue building cars with 100,000 horse powers just
to make the two mile trip to the supermarket?

2. PORTABLE DATABASE FILES
We should work on an open file format allowing non-DB peo-

ple to easily share and (re-)process data. No, I neither mean XML
nor anything alike (some of us tried hard, but we also learned that
it did not get wide adoption and was replaced by JSON). I mean
something that is as easy to use and portable as pdf, yet has the ca-
pabilities of a database. We need some sort of pdf with query pro-
cessing capabilities. The widely used SQlite file format is already a
nice step towards portability (being superior than proprietary MS-
Access file formats in that respect). However, what we believe and
foster in this paper goes beyond that: we believe we need a full fu-
sion of pdf and databases. We coin this portable database files
(pdbf). A pdbf is downward compatible to pdf. A pdbf can be
viewed by a special browser (which is just an extension or wrapper
of an existing pdf viewer). That pdbf-browser may overlay certain
regions of the underlying pdf with data input and output facilities
which are processed by a query engine (just as pdf forms, yet no
external DB connection necessary). The pdbf-browser visualizes
the contents of the database using: (1) a database file, and (2) a
pdbf configuration file, specifying geometry and behavior of the
dynamic overlays. Both files are kept as attachments to the pdf.
With this any part of the pdfb may become dynamic and database-
driven.

3. USE-CASES
Open this pdf with Adobe Reader (Adobe Professional or XI is

not required) and inspect the attachment ‘usecases.sqlite’ SQLite
or SQLite Database Browser. See table ‘UseCases’.

4. REFERENCES[1] Y. Chen, S. Alspaugh, and R. H. Katz. Interactive Analytical
Processing in Big Data Systems: A Cross-Industry Study of
MapReduce Workloads. PVLDB, 5(12), 2012.

[2] http://datenbankenlernen.de.
[3] J. Dittrich. Say No! No! and No! In CIDR, 2013.
[4] M. Fowler. Introduction to NoSQL. In GOTO, 2013.

http://infosys.cs.uni-saarland.de
http://www.sqlite.org/
http://sqlitebrowser.org/
http://datenbankenlernen.de
http://youtu.be/fXc-QDJBXpw
http://youtu.be/qI_g07C_Q5I

	Introduction
	Portable Database Files
	Use-Cases
	References

{"overlay1": {
		"database": "usecases.sqlite",
 		"table": "UseCases",
		"widget": "EditableTableScroll",
		"positionOnPDF": {
			"page": "1",
			"X1": "52%",
			"Y1": "43%",
			"X2": "95%",
			"Y2": "90%"
		}
	}
}

