
Big Data Science Needs Big Data Middleware

Bill Howe
University of Washington

billhowe@cs.washington.edu

There has been a “Cambrian explosion” of big data sys-
tems proposed and evaluated in the last eight years, but
relatively little understanding of how these systems or the
ideas they represent compare and complement one another.
In enterprise and science situations, “one size is unlikely to
fit all”: we see analytics teams running multiple systems
simultaneously. However, the highest level of abstraction
for interoperability achieved in practice is basically at the
file system; for example, HDFS. At the same time, there
has been some convergence around higher-level data models
(relations, arrays, graphs) and higher-level computational
models (relational algebra, parallel data-flow, iteration, lin-
ear algebra).

As a result, the design space seems narrower than the
implementation space, suggesting an opportunity to build a
common “complexity hiding” interface to all these seemingly
disparate systems to make them easier to compare, easier to
use together, and perhaps to improve overall performance
by affording cross-platform, federated optimization.

We are exploring a common programming model for big
data systems, subscribing to three design principles:

• Algebra at the core. We are less interested in ad hoc
engineering solutions that bridge various systems than
in identifying and surfacing the primitives, operators,
algorithms, and optimization opportunities they share.
At the same time, we want to avoid “regressing to the
mean” and destroying any competitive advantages or
unique capabilities each system may offer.

• Parallel at the core. We are less interested in gen-
eral purpose (serial) programming than in “intrinsi-
cally parallel” abstractions. For example, calling out
to R running on a single machine in main memory as
an intermediate step is not going to work.

• Iteration at the core. We need to support multi-pass al-
gorithms to express analytics tasks; first-order queries
aren’t enough.

Motivated by these ideas, we are working to expand the
University of Washington Myria system to act a compre-
hensive shared interface for big data systems, regardless of
model, system, or task.

Myria is a hosted Big Data management and analytics
service consisting of three components:

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR
2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA.

• MyriaX: A big-data execution engine emphasizing asyn-
chronous iterative processing.

• MyriaQ: A language translation layer, shared opti-
mizer, and query execution coordinator supporting a)
multiple input languages and b) multiple back-end sys-
tems, of which MyriaX is one. We emphasize a new
imperative, iterative, language called MyriaL.

• MyriaWeb: A web-based editor and IDE designed for
direct use by analysts, with support for collaborative
editing through a shared workspace, visual performance
analysis and debugging, and interactive algorithm.

To register a system with MyriaQ, the sytem designer
provides four components by extending appropriate classes
in the MyriaQ Python library:

• An AST for the input language, API, or algebra.
• A mapping from the MyriaQ algebra into the AST.
• (optional) A set of custom optimization rules required

to generate appropriate plans; we do not discourage
these rules from calling specialized algorithms or UDFs
to optimize particular cases. However, if the compila-
tion process essentially degenerates into a lookup table
mapping every possible input to some special-case al-
gorithm, then that is something we want to learn as
part of this research. Indeed, the number of rules re-
quired to support a suite of benchmark queries may be
a good quantitative metric for ease of use.

• (optional) An implementation of an Administrative
API that includes methods for query execution, schema
browsing, monitoring and logging, fetching data, killing
queries, restarting the system, collecting statistics, and
managing users. Not all of these methods need be
implemented for basic operation, but they provide a
richer experience for the end user.

Data scientists need to be insulated from the complex-
ity and uncertainty that is dominating the systems research
in big data today; we can’t ask them to learn and re-learn
a new API every month, along with the algorithmic tricks
and configuration practices needed for decent performance.
But a shared interface to big data systems will not only
make things easier for end users — it is critical to advance
the science. To do big data systems research today takes a
phenomenal effort: N systems must be installed and main-
tained, and M applications must be implemented and tuned
on each of them. As a result, corners are cut: experiments
compare just two systems, focus on only simple, narrow use
cases, or both. As a field, we must make it significantly
easier to do good science, evaluate realistically complex ap-
plications, and compare a variety of state of the art systems.
We hypothesize that a middleware layer that provides“write
once, run anywhere” capabilities would be a significant step
towards solving this problem.


