Towards Creating Application-Specific
Database Management Systems

Alvin Cheung
University of Washington

1. INTRODUCTION

Specialization is an effective way to improve performance. That
principle has manifested time and again in database management
systems (DBMSs), with custom data storage engines such as col-
umn stores and streaming engines outperforming traditional DBMSs
in specific application and architecture domains. Unfortunately,
designing custom data storage engines is a tedious task. Devel-
opers need to first analyze numerous applications and their hosting
platforms to identify common patterns in manipulating persistent
data. This is followed by a painstaking and trial-and-error process
of devising efficient implementations for the data operations on the
target platform. We argue that advances in program analysis and
software synthesis can help in automating this design process. In
the following we describe opportunities where understanding the
application can improve functionalities provided by the DBMS.

2. RESEARCH OPPORTUNITIES

Contextual query processing. Having accurate workload infor-
mation is essential to efficient query processing. As many queries
are now programmatically generated by applications rather than en-
tered free-form by users, analyzing the application will give us in-
sights about the issued queries. For example, a medical record ap-
plication issues many queries to render a patient dashboard. Such
programmatically-issued queries have highly deterministic struc-
ture, for instance query parameters are derived from program vari-
ables. Analyzing the application source allows us to create applica-
tion contexts. Each context represents a program path in the code
and describes the queries that are issued. It also includes the ap-
plication code that manipulates the query results, the relationship
among the query parameters, the frequencies of each query (which
can be approximated from the code or query logs), and the actions
that trigger each query such as a button click.

Application contexts are useful in many scenarios. First, the
DBMS can use application contexts to combine queries and prefetch
a subset of the results. Moreover, the correlations among the query
parameters allow the DBMS to improve the generated query plans.
For instance, if the context indicates that the same program vari-
able is passed into two different queries as parameters, then once
the value of the program variable is known, the DBMS can estimate
the selectivity of both queries accurately. In addition, the DBMS
can make use of context information to determine when to evict
query results from the buffer pool when they are no longer needed.

Infer functional dependencies. Besides optimizing read queries,
application contexts can be used to learn functional dependencies.
For instance, after a user puts in a city name in a form, the appli-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.
7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA.

cation issues a query to fetch the given city’s current population
from the DBMS. After that, the application computes a prediction
of the city’s future population, shows it to the user for validation,
and stores the (city name, predicted population) pair in another ta-
ble. There is an obvious correlation between the current and pre-
dicted populations stored in the DBMS. Discovering such correla-
tion from the logs is difficult as it involves application code, and
the log might include queries issued by multiple concurrent users.
We can instead use the application context for this purpose. For in-
stance, in this case the context will inform us that predicted popu-
lations are derived from another table that stores the current values.

In general, we can use contexts to learn rich functional depen-
dencies of the form X — f(Y'), where some part of f might be
implemented in the application code. Such dependencies are very
difficult to infer using statistical techniques, especially those that
involve continuous data values, such as converting between dif-
ferent measurement units, and computing interest rate given credit
score. One idea is to use program synthesis [[1]] to derive a succinct
representation of f from the source code. Once f is derived, we can
retrieve statistics about X from the DBMS and propagate through
f to estimate the distribution of Y.

Improve query optimization. Classical query optimization fo-
cuses on finding efficient implementations of each operator in the
query tree. Given application contexts, we can treat each contextual
query as a user defined function (UDF) that includes both queries
and application code that processes the results. We can then spe-
cialize the optimizer to find efficient implementations of each UDF
given the physical design.

This insight raises new research opportunities. Since UDFs are
traditionally treated as black boxes in query optimization, it will be
interesting to optimize UDFs using classical program optimization
techniques [2]]. One challenge is to extend such techniques to be
I/O cost-aware in addition to the traditional goal of minimizing the
number of instructions, and consider implementing DBMS func-
tionalities in hardware functional units such as flash controllers and
FPGAs. Addressing these challenges will advance both data man-
agement and programming systems research.

3. CONCLUSION

Rather than manually re-designing DBMSs for new architec-
ture or application domains, we should create tools that can au-
tomatically tune DBMS implementations to make them application
aware. In this abstract we illustrated different aspects of DBMS
functionalities that can be tuned using application information, and
described new research challenges in achieving that vision.

4. REFERENCES

[1] R.Bodik et al. Algorithmic program synthesis: introduction.
International Journal on Software Tools for Technology Transfer,
15(5-6):397-411, 2013.

[2] H. Massalin. Superoptimizer: A look at the smallest program. In Proc.
ASPLOS, pages 122-126, 1987.



	Introduction
	Research Opportunities
	Conclusion
	References

