
Heisenberg Was on the Write Track

 Pat Helland
Salesforce

PHelland@Salesforce.com

Abstract
This paper argues that in a distributed system comprised of
storage on multiple servers, you can know where you write the
replicas of your data or you can know when the replicas will be
written but you can’t know both.

Introduction
Consider a cluster in which there are a number of simple
commodity servers with attached storage and a network
connecting the servers. Each server has a noticeable failure rate
but the cluster tolerates these failures. Typically, data is
replicated across three of these servers and the failure of a server
causes the creation of a third replica on yet another server.

A committed write is typically defined as one that’s durable on
three servers. In many systems, this is accomplished with a write
to a file system like GFS [3] or HDFS [4] with a NameNode
controlling placement and three DataNodes holding a large block
of the file. Coping with a DataNode failure requires the help of
the NameNode. Some systems like Dynamo [2] will write to
three replicas but the specific three replicas can vary based on
circumstances such as node failure. In Dynamo, there is no
master or NameNode. GFS and HDFS have strongly consistent
placement of data over replicas. Dynamo is weakly consistent.
Many systems count on log-write latency of group commit buffers
to be consistent and fast. An SLA under 5ms 99.9% of the time is
typical when humans await the commit. This is best done with
weakly consistent placement of data over replicas.

Writing to Multiple Replicas
Say you’re writing a log to three replicas picked by the
NameNode. This is fast only if all three are fast. If one or more
of the preselected replicas is a laggard, you can delay and annoy
the humans awaiting commit. Maybe there’s a failure of a replica
and the NameNode gets involved. Odds are very high that you’ve
missed your SLA. If the NameNode is delayed, it’s even worse!
When writing to three prescribed locations, you may be delayed.

Contrast this to a scheme where the writer can retry the log write
to another server. The writer may launch three writes to the
preferred replicas and, if one or more take too long, retry to yet
another replica. This is very similar to the latency bounding
technique described in the excellent paper “The Tail at Scale” [1].
What’s different is that this is not a read and, hence, we need to
deal with the log write landing on a different server than one of
the preferred replicas.

In other words, we don’t quite know where we write but we can
construct much stronger bounds on when the write happens.

This article is published under a Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0/), which
permits distribution and reproduction in any medium as well
allowing derivative works, provided that you attribute the original
work to the author(s) and CIDR 2015.

7th Biennial Conference on Innovative Data Systems Research
(CIDR ’15) January 4-7, 2015, Asilomar, California, USA.

Correlated Stalls Really Mess Up Your SLAs
When all your target replicas can get stalled at the same time, it’s
hard to have tight SLAs. You need to look at anything that affects
all your servers at the same time. For example:

• Network: If the network is saturated and prevents timely
communication to your storage replicas that will wreak
havoc on your SLA to commit the log write.

• Strongly Consistent Replica Coordinator: Whether it’s a
single process or some Paxos-like thing, if it’s strongly
consistent, it can stall and impact the routing of writes to
ALL the replicas. Strongly consistent placement goes hand-
in-hand with correlated stalls.

It’s one thing to have a stall on a single replica. That can be
worked around. Stalling on all the storage replicas will impact the
SLA as shown to the user.

Dealing with Uncorrelated Stalls of Replicas
There are a couple of techniques for dealing with replica stalls:

• Love the Ones You’re With: If one or more of the writes to
the preferred replicas stall and are not confirmed, continue
trying different servers until you’re satisfied. If managed
correctly, you can keep statistically tight SLAs while
sometimes landing the writes in auxiliary replicas.

• Two Outta Three Ain’t Bad: When 2 replicas are durable
and we are actively creating a third, this can meet our data
availability requirements. The log writer can launch three
writes and respond “commit” to the user when two writes are
durable. Combine this with an active retry for the third
replica (and replica repair after a crash) and we meet our
durability goals.

Conclusion
Batch systems like GFS [3] and HDFS [4] are very important in
our computing landscape. They provide huge throughput using
interesting placement techniques for reliable data. This can,
however, come at the expense of predictable and short SLAs.

Fluctuating SLAs are a much bigger problem for user facing
OLTP style updates to data. Tighter SLAs mean the actual
placement of the replicas of the data is only loosely known.

References
 [1] Dean, J.; Barroso, L. A. (2013) “ The Tail at Scale”.

Communications of the ACM, Vol. 56 No.2, Feb 2013, P.74
[2] Decandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.;

Lakshman, A.; Pilchin, A.; Sivasubramanian, S.; Vosshall,
P.; Vogels, W. (2007). “Dynamo” Proceedings of the
Twenty-First ACM Symp on Operating Systems Principles –
SOSP ’07. P.205.

[3] Ghemawat, S.; Gobioff, H.; Leung, S. T. (2003) “The Google
File System”. Proceedings of the Nineteenth ACM Symp on
Operating Systems Principles - SOSP ’03. P. 29.

[4] “HDFS Architecture Guide”.
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

