
Desiderata for a Big Data Language
David Maier

Portland State University
PO Box 751

Portland, OR 97207-0751
+1 (503) 725-2406

maier@cs.pdx.edu

ABSTRACT
Data management and analytics systems for big data have
proliferated, including column stores, array databases, graph-
analysis environments and linear-algebra packages. This
burgeoning of systems has lead to a surfeit of language and APIs.
It is time to consider a new framework that can span these systems
and simplify the programming and maintenance of Big Data
applications. There are two key goals for such a framework:

Portability: It should be relatively easy to move an application or
tool developed on one platform to operate against another. As a
corollary, back-end data and analytics services should be
swappable in a particular platform.

Multi-Server Applications: It will be more common than not that a
given application will need the services of multiple systems. The
framework should make is easy to construct and deploy such
applications.

Such an organizing framework needs a central abstraction to
facilitate communication between front-end clients and back end
services. LINQ (Language Integrated Query) provides an example
of such a framework, albeit for a narrower class of structures and
operations. In LINQ, the central abstraction is the Standard Query
Operator (SQO) API, which defines a collection of functions on
ordered collections such as Select(), Join() and
Reverse(). LINQ clients deliver queries as expressions over
these operators, and servers (called LINQ Providers) accept SQO
as expressions as input. There are a wide range of Providers,
spanning diverse data types, such as SQLServer, LDAP, XML
and RDF. LINQ has many beneficial properties, including:

• It is algebra at the core. The semantics of the SQO API
is much easier to understand than a surface-language
specification such as SQL. (However, client languages
are free to provide syntactic sugar to provide a more
declarative specification of queries.)

• It can pass queries to Providers in the form of an
expression tree, rather than as a series of remote
function calls. This capability obviously cuts down on
communication between client and Provider, but also
permits optimization and query planning at the
Provider.

• The result of a query is a collection in the client

environment. There is not the awkwardness of cursors.

 We believe a LINQ-like approach is viable for a Big Data
organizing framework. However, there need to be extensions and
adjustments.

• The data model and operations must be more
expressive. In particular, they should include multi-
dimensional arrays and operations upon them.

• There should be support for “control iteration”. Data
algebras rightly encapsulate “data iteration,” but many
areas, such as graph analytics and data mining, require
repeated execution of an expression until some
convergence criterion is met.

• Multi-server queries. It should be easy to evaluate a
query over a combination of data and analytics servers
(such as SciDB and ScaLAPACK), without routing
intermediate results through the application level.

Thus, I advocate an algebraic intermediate form as the nexus for
a multi-server Big Data framework. A possible start would be a
fusion of tabular and array models, with 0 or more attributes in a
table structure being tagged as dimensions, and operators being
dimension-aware.

How will we judge various options for such an algebra? There
are at least four desiderata that should be met.

1. Coverage: Big Data algebra should express the
operations commonly requested of data and analysis
servers. It should at least span standard relational and
array operations.

2. Translatability: Every algebra operator should be
translatable to a back-end system (or a combination of
such systems).

3. Intent Preservation: The mapping from client APIs and
languages into Big Data algebra should not obscure the
original intent of an expression. For example, if the
original function is matrix multiply, it should be
recognizable as such at a server that has a direct
implementation of matrix multiply.

4. Server Interoperation: An algebra query that spans
servers should be realizable as a plan where
intermediate results pass directly between servers,
rather than being routed through the application or a
middle tier.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribu-
tion and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR
2015.

7th Biennial Conference on Innovative Data Systems Research
(CIDR ’15) January 4-7, 2015, Asilomar, California, USA.

