
A Multicore Database Is Not a Distributed System
Neha Narula
MIT CSAIL

Database concurrency control is evolving to parallelize well on
machines with many cores. Some researchers advocate viewing a
multicore machine as a shared-nothing distributed system, where
data is exclusively partitioned between cores [8]. This approach
breaks down for changing workloads or workloads that do not par-
tition well. In the meantime, other systems have shown that concur-
rency control need not be too expensive. We advocate scheduling
transactions according to workload characteristics in order to ad-
dress the problems that arise with true data contention.

In a shared-nothing main-memory database, transactions use a
single-threaded execution model [4]. This technique eliminates the
need for synchronization protocols like locking or validating for all
transactions which only touch data on a single partition. Many sys-
tems use this approach on multicore machines, with a partition per
core [6–8]. This technique is effective when a workload partitions
perfectly, potentially providing 30% gains over a database which
uses concurrency control [10]. Unfortunately, this strategy suffers
from many serious drawbacks with more general workloads:

Load imbalances. If a single core becomes overloaded, overall
throughput suffers. Solutions have been suggested that re-partition
data on the fly, but this can be expensive if it must happen often.
Data like popular stocks, news articles, and frequently used search
terms are constantly changing with time. The monitoring and data
movement associated with workloads that change frequently can be
very costly.

Badly partitioning workloads. Many important workloads on
the Web do not partition well. Facebook and Twitter store data
based on a two-way follows relationship, and Google’s ad serv-
ing framework requires keeping track of ad campaigns by cus-
tomer and by keyword, which is also a many-to-many relationship.
These types of applications will have a significant number of multi-
partition transactions given any partitioning, requiring a protocol
like two-phase commit or timestamp ordering [1, 9]. Two-phase
commit is expensive due to the required rounds of communica-
tion and stalls on cores. Timestamp ordering can cause stalls when
a transaction has to wait for a slower one assigned earlier in the
timestamp ordering. Even in workloads that mostly partition, the
cost of executing multi-partition transactions can be so high that it
overwhelms the cost of executing single partition transactions [2].

A soft partitioning approach using shared memory provides more
flexibility. Instead of exclusive access to partitions, each core has
“preferred” data partitions, and uses concurrency control. Transac-
tions on a single soft partition are mostly sent to the same core, re-
ducing the potential for conflicts. However, any core is able to cor-
rectly handle any transaction since all use concurrency control. Sys-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.
7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4 - 7 2015, Asilomar, California, USA

tems like Silo and Hekaton have shown that a soft partitioning ap-
proach can get very good performance, achieving millions of trans-
actions per second on up to 32 and 24 cores, respectively [3, 10].
A big new challenge lies in using a good strategy depending on
a workload’s characteristics, and extracting whatever concurrency
can be had when there is contention.

We have an approach which, for some operations, parallelizes
contentious writes on many cores [5]. This technique can schedule
transactions into phases according to their properties; in workloads
with many contending writes, reads are delayed in order to perform
writes in parallel. We are investigating potential extensions to phase
scheduling, for example, in a workload which partitions well, data
can be marked as strictly partitioned (owned by a single core), and
cross-partition transactions can be delayed until concurrency con-
trol is used again.

Modern multicore hardware provides cache coherence whether
we want it or not, so instead of building systems which reimple-
ment cache coherence via communication, we should leverage it.
Phase scheduling transactions lets a database benefit from different
concurrency control techniques depending on the workload.

References
[1] Cowling, J., and Liskov, B. Granola: low-overhead distributed

transaction coordination. In USENIX ATC (2012), USENIX
Association, pp. 21–21.

[2] Curino, C., Jones, E., Zhang, Y., and Madden, S. Schism: a
workload-driven approach to database replication and parti-
tioning. VLDB 3, 1-2 (2010), 48–57.

[3] Diaconu, C., Freedman, C., Ismert, E., Larson, P.-A., Mittal,
P., Stonecipher, R., Verma, N., and Zwilling, M. Hekaton:
Sql server’s memory-optimized oltp engine. In ICDE (2013),
ACM, pp. 1243–1254.

[4] Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A.,
Zdonik, S., Jones, E. P. C., Madden, S., Stonebraker, M.,
Zhang, Y., Hugg, J., and Abadi, D. J. H-Store: A high-
performance, distributed main memory transaction process-
ing system. VLDB 1 (August 2008), 1496–1499.

[5] Narula, N., Cutler, C., Kohler, E., and Morris, R. Phase
reconciliation for contended in-memory transactions. In
OSDI (2014), USENIX Association, pp. 511–524.

[6] Pandis, I., Johnson, R., Hardavellas, N., and Ailamaki, A.
Data-oriented transaction execution. VLDB 3, 1-2 (2010),
928–939.

[7] Pandis, I., Tözün, P., Johnson, R., and Ailamaki, A. Plp: page
latch-free shared-everything oltp. VLDB 4, 10 (2011), 610–
621.

[8] Salomie, T.-I., Subasu, I. E., Giceva, J., and Alonso, G.
Database engines on multicores, why parallelize when you
can distribute? In Eurosys (2011), ACM, pp. 17–30.

[9] Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao, P.,
and Abadi, D. J. Calvin: fast distributed transactions for parti-
tioned database systems. In SIGMOD (2012), ACM, pp. 1–12.

[10] Tu, S., Zheng, W., Kohler, E., Liskov, B., and Madden, S.
Speedy transactions in multicore in-memory databases. In
SOSP (2013), ACM, pp. 18–32.


